Spatial Dynamic Factor Analysis Hedibert Freitas Lopes, Esther Salazar, Dani Gamerman Presented by Zhengming Xing Jan 29 ,2010 * tables and figures are directly copied from the original paper. Outline • • • • • Introduction Spatial Dynamic Factor Analysis Model Inference and Application Experiment Future direction introduction Basic factor analysis yt ut f t t yt ft t ~ N (0, ) observations Factor loading matrix Factor score N 1 N m m 1 Spatial dynamic FA model yt ( y1t ,..., y Nt ) Locations: s1 ,..., sN Times: t 1,..., T key idea: Temporal dependence is modeled by latent factor score and spatial dependence is modeled by the factor loadings Spatial Dynamic Factor Analysis Model: yt f t t t ~ N (0, ) t ~ N (0, ) y* t f t f t 1 t * * ( j ) ~ GRF ( j , (.)) N ( j , 2j R ) 2 j j j (l , k ) element of R j : rlk j (| sl sk |) (d ) exp( d / ) diag (1 ,...., m ) diag ( 1, .... , m ) diag ( 12 , ..., N2 ) Covariate effects y* t Mean level of the spatio-time process 1.Constant mean y* t j 1. y 2.Regression model 2. ty X ty y * 3.Dynamic coefficient model X y* t y t y t ty ~ N ( ty1 ,W ) Mean level of Gaussian process * * j 0 * j j 1N 3. * j X j j Prior information Recall: yt f t t t ~ N (0, ) t ~ N (0, ) y* t f t f t 1 t diag ( 1, .... , m ) ( j ) ~ GRF ( j , 2j (.)) N ( j , 2j R ) * diag (1 ,...., m ) * j j (l , k ) element of R j : rlk j (| sl sk |) diag ( 12 , ..., N2 ) Priors: i2 ~ IG (n / 2, n s / 2) i ~ IG (n / 2, n s / 2) j ~ Ntr ( 1,1) (m , s ) j ~ Ntr ( 1,1) (m , s ) (1 )1 ( j ) j ~ N (m , S ) 2j ~ IG(n , n s ) j ~ IG (2, b) b 0 /( 2 ln( 0.05)) 0 max i , j 1,..., N | si s j | Seasonal dynamic factors Goal: capture the periodic or cyclical behavior Example : p=52 for weekly data and annual cycle Spatio-temporal separability Assume Z ( s, t ) Random process indexed by space and time if cov( Z ( s1 , t1 ), Z ( s2 , t2 )) cov s ( | ) covt (h | ) or ( cov s ( | ) covt (h | ) ) then separable Choose for convenience rather than for the ability to fit the data SDFA model m=1 cov( yit , y j ,t h ) ( h )(1 2 )1 ( 2 (, ) i j ) m>1 m cov( yit , y j ,t h ) (k k )(1 k ) 1 ( k ( , k ) ik jk ) k 1 h 2 2 MCMC Inference Assume: Model in matrix notation Posterior distribution: Full conditional distribution of all parameters can be found in appendix Number of factors Reverse jump MCMC Collect samples Proposal distribution: accept With probability Applications Prediction Interpolation Experiment Data description Sulfur dioxide concentration in eastern US 24 stations 342 observations (from the first week of 1998 to the 30th week of 2004) 2 station left out for interpolation and the last 30 weeks left out for prediction Dataset available online: http://www.epa.gov/castnet/data.html Experiment Spatial dynamic factor models Benchmark model Experiment Experiment Experiment Experiment Experiment Future direction • Time varying factor loadings • Allow binomial and Poisson response • Non-diagonal covariance matrix and more general dynamic structure.
© Copyright 2026 Paperzz