農業金融講義

第三章 資本在時間上的配置
Capital Allocation over Time
1
分配原則:
( Principles of Allocation )
2
Effect of the rate of return (i):
3
Time Value of Money:
$100 today or a year later ?
today is better
∵ uncertainty
alternative uses,
inflation
4
Mathematics of Compound Interest
Simple interest:
S = s.(1 + i.n) i: interest
Compound interest:interest is paid more than once
(interests add to principal)
S = s.(1 + i )n
Present Value (PV)
PV 
FV
1  i n ….. FV.Table 2
(s .Table 1)
Future Value (FV)
FV  PV  1  i  ….. PV.Table 1
n
i: discount rate = (riskless equity return + inflation rate + risk premium)
5
Mathematics of Compound Interest(續)
The present value of a sequence of annual incomes:
n FVt
FV3
FVn
FV1
FV2
PV  



 .....
1  i  1  i 2 1  i 3
1  i n
t 1 1  i n
if n →∞ and FV constant (annuity)
PV 
FV
i
if FV constant but n → ∞
PV

1  i n  1
1  1  i n
 FV 
 FV 
n
i
i 1  i 
FV = PV.Table 3
PV = FV / Table 3
or
or
 FV  Table 4
annuity
FV = PV / Table 4
PV = FV.Table 4
6
7
8
9
10
11
12
Application of the Time Value of Money
• Bond valuation : (p.63)
n
It
PV 
 
1  i n t 1 1  i t
Pn
eg:Bond face value: $1000 , interest rate: 5%, time
value of money: 7%, mature in 10 yrs.
$1000 × 5% × 7.0236+$1000 × 0.5083=$859.48
(Table 4)
(Table 2)
• Valuation of farm real estate: (p.65)
end of year 0
0
1
0
2
0
Table 4 Table 2

3 4 5
........………. 20
0 $100 $100 ….....….......$100
$1,200
Table 2

$100  PV17yr,8%  PV3yr,8%  $1,200 PV20yr,8%
13