Universal Rise of Hadronic Total Cross Sections based on ー Forward πp, Kp and pp, pp Scatterings Muneyuki Ishida(Meisei University) Phys.Lett.B670(2009)395-398. arXiv:0903.1889[hep-ph] In collaboration with Keiji Igi Rise of Total Cross Sections • Total Cross Sections σtot rise in high-energy regions logarithmically. • σtot = B (log s/s0)2 + Z COMPETE collab. Pomeron contrib. :dominant in high-energies in Regge theory. B : New term introduced consistently with Froissart unitarity bound. better in low energies than soft-Pomeron fit, σtot =βP (s/s0)0.08 by Donnachie Landshoff • Squared log behaviour was confirmed by using the duality constraint of FESR . Keiji Igi & M.I. ’02. Block & Halzen, ’05. Universal Rise of σtot ? • B (coeff. of (log s/s0)2) : Universal for all hadronic scatterings ? • Phenomenologically B is taken to be universal in ー the fit to πp,Kp, pp,pp,∑p,γp, γγ forward scatt. COMPETE collab. (adopted in Particle Data Group) • Theoretically Colour Glass Condensate of QCD suggests the B universality. Ferreiro,Iancu,Itakura,McLerran’02 Not rigourously proved only from QCD. Test of Universality of B is Necessary. Experimental Data Situations σtot Forー pp scatterings We have data in TeV. Tevatron Ecm=1.8TeV σtot = Bpp (log s/s0)2 + Z (+ ρ trajectory) in high-energies. parabola of log s SPS ー pp ISR Ecm<0.9TeV Ecm<63GeV CDF D0 pp Fitted energy region Bpp = 0.273(19) mb estimated accurately. Depends the data with the highest energy. (CDF D0) πp , Kp Scatterings No Data πーp π+p No Data K-p K+p • No Data in TeV Estimated Bπp , BKp have large uncertainties. Test of Universality of B • Highest energy of Experimetnal data: ー : Ecm = 0.9TeV SPS; 1.8TeV Tevatron pp π-p : Ecm < 26.4GeV Kp : Ecm < 24.1GeV No data in TeV B : large errors. Bpp = 0.273(19) mb Bπp = 0.411(73) mb Bpp =? Bπp =? BKp ? BKp = 0.535(190) mb No definite conclusion • It is impossible to test of Universality of B only by using data in high-energy regions. • We attack this problem using duality constraint from finite-energy sum rule (FESR). Kinematics • ν: Laboratory energy of the incident particle s =Ecm2 = 2Mν+M2+m2 ~ 2Mν M : proton mass of the target. Crossing transf. ν ー ν m : mass of the incident particle m=mπ , mK , M for πp, Kp,ーpp,pp • k = (ν2 – m2)1/2 : Laboratory momentum ~ ν • Forward scattering amplitudes fap(ν): a = p,π+,K+ Im fap (ν) = (k / 4 π) σtotap : optical theorem • Crossing relation for forward amplitudes: f π-p(-ν) = fπ+p(ν)* , fK-p(-ν) = fK+p(ν)* pp f (-ν) = fpp(ν)* Kinematics • Crossing-even amplitudes : F(+)(ーν)=F(+)(ν)* F(+)(ν) = ( f -ap(ν) + fap(ν) )/2 ー average of π-p, π+p; K-p, K+p;pp, pp Im F(+)asymp(ν) = βP’ /m (ν/m)α (0) +(ν/m2)[ c0+c1log ν/m +c2(log ν/m)2] P’ βP’ term : P’trajecctory (f2(1275) ): α (0) ~ 0.5 c0,c1,c2 terms : corresponds to Z + B (log s/s0)2 P’ : Regge Theory c2 is directly related with B . (s~2M ν) • Crossing-odd amplitudes : F(-)(ーν)= ーF(-)(ν)* F(-)(ν) = ( f -ap(ν) ー fap(ν) )/2 Im F(-)asymp(ν) = βV /m (ν/m)αV(0) ρ-trajecctory:αV(0) ~0.5 βP’ , βV is Negligible to σtot( = 4π/k Im F(ν) ) in high energies. Finite-energy sum rule(FESR) • πp Forward Scattering ~ F(ν) = F(+)(ν) ー F(+)asymp(ν) ~ ν -1.5 ~ F(N) = ~0 ~ ∞ ~ Re F(mπ) = (P/π)∫-∞ dν’ Im F(ν’)/(ν’-m) N high-energy , but finite. ~ ∞ = (2P/π)∫0 dν’ Im F(ν’) ν’/ k’2 (2P/π) ∫0N dν Im F(+)(ν) ν/k2 ーRe ~ F(mπ) = (2P/π) ∫0N dν Im F(+)asymp(ν) ν/k2 Igi 1962 • moment Sum Rules ∫0N dν Im F(+)(ν) Igi Matsuda; Dolen Horn Schmid 1967 νn = ∫0N dν Im F(+)asymp(ν) νn n=1,3,… contribution from higher-energy regions is enhanced. FESR Duality • ‘Average’ of Im F(+)(ν)( = k/4π σtot(+)(k) ) in low-energy regions should This shows many peak and dip structures of resonances. coincide with the low-energy extension of the asymptotic formula Im F(+)asymp(ν) . • Taking two N’s : N1 in resonance-energy, N2 in asmptotically high energy. Taking their difference N ∫N- 2 σtot(+)(k) dk /2π2 estimated from low-energy exp. data. 1 N2 = 2/π ∫N1 dν Im F(+)asymp(ν) ν/k2 calculable Relation between high-energy parameters βP’,c2,1,0 : A constraint Choice of N1 for πp Scattering • Many resonances in π-p & π+p • The smaller N1 is taken, the more accurate c2 (and Bπp) obtained. Various values of N1 Δ(1232) N(1520) N(1650,75,80) • We take various N1 corresponding to peak and dip positions of resonances. (except for k=N1=0.475GeV) Δ(1905,10,20) For each N1, Δ(1700) FESR is derived. Fitting is performed. The results checked. Analysis of πp Scattering • Simulateous best fit to exp. data of σtot for k = 20~370GeV(Ecm=6.2~26.4GeV) and ρ(= Re f(k) / Im f(k)) for k > 5GeV in π-p, π+p forward scatterings. • Parameters : c2,c1,c0,βP’,βV, F(+)(0) (describing ρ) • FESR N2=20GeV fixed. Various N1 tried. Integral of σtot estimated very accurately. Example : N1=0.818GeV 0.872βP’+6.27c0+25.7c1+109c2=0.670 (+ー0.0004 negligible) βP’ = βP’ (c2,c1,c0):constraint. fitting with 5 params N1 dependence of the result N1(GeV) 10 7 5 4 3.02 2.035 1.476 c2(10-5) 142(21) 136(19) 132(18) 129(17) 124(16) 117(15) 116(14) χtot2 149.05 149.35 149.65 149.93 150.44 151.25 151.38 N1(GeV) 0.9958 0.818 0.723 (0.475) 0.281 No SR c2(10-5) 116(14) 121(13) 126(13) (140(13)) 121(12) 164(29) χtot2 151.30 150.51 149.90 150.39 147.78 • # of Data points : 162. • best-fitted c2 : very stable. • We choose N1=0.818GeV as a representative. • Compared with the fit by 6 param fit with No use of FESR(No SR) 148.61 Result of the fit to σtotπp No FESR Fitted region FESR integral Fitted region π-p FESR used π+p much improved c2=(164±29)・10-5 Bπp=0.411±0.073mb c2=(121±13)・10-5 Bπp=0.304±0.034mb ー Choice of N1 in Kp, pp,pp ー pp K-p pp K+p • Exothermic K-p open at thres. ∑-p, Λp • Exotic K+p, pp ー pp meson-channels steep decrease at Ecm~2GeV ? We take N1 larger than πp. N1=5GeV, representat. Result of the fit to σtot No FESR FESR used Fitted region FESR integral Fitted region c2=(266±95)・10-4 BKp=0.535±0.190mb large uncertainty Kp c2=(176±49)・10-4 BKp=0.354±0.099mb much improved ー pp,pp Result of the fit to σtot No FESR FESR used FESR integral Fitted region large Fitted region large c2=(491±34)・10-4 c2=(504±26)・10-4 Bpp=0.273±0.019mb Bpp=0.280±0.015mb Improvement is not remarkable in this case. Test of the Universal Rise • σtot = B (log s/s0)2 + Z B (mb) πp B(mb) 0.304±0.034 0.411±0.073 Kp 0.354±0.099 0.535±0.190 pp 0.273±0.019 0.280±0.015 FESR used Bπp= Bpp= BKp within 1σ Universality suggested. No FESR Bπp ≠? Bpp =? BKp No definite conclusion in this case. Concluding Remarks • In order to test the universal rise of σtot (A common value of B in σtot=B (log s/s0)2 + Z ) in all the hadron-hadron scatterings, we have analyzed π±p,K±p, ー pp,pp independently. • Rich information of low-energy scattering data constrain, through FESR, the high-energy parameters to fit experimental σtot and ρ ratios. • The values of B are estimated individually for three processes. Concluding Remarks • We obtain Bπp= Bpp= BKp. Universality of B suggested. Kp πp pp • Use of FESR is essential to lead this conclusion. • Our result, Bpp = 0.280(15) mb, predicts σppLHC=108.0(1.9) mb . • Our Conclision will be checked by LHC TOTEM. • Colour Glass Condensate of QCD In high-energy scattering, proton is not composed of three valence quarks, but a large number of gluons with small momentum fraction x. • The gluon density of the target proton drastically increases with small x ( = large s) gluon condensation. BFKL, BK eq. derived from pQCD. strong absorption of incident beam : black disc Its radius R increases like ~log s : depends upon soft physics. σtot ~ 2 π R2 ~ B (log s)2 • CGC: B=0.446mb(αs=0.1) rNLO BFKL eq Itakura, lectures in Dec.2008 B(LO) = π/2 (ω α- s/mπ)2=2.09mb • Bpp(exp) = 0.280±0.015mb ~ 0.3 mb ( << B(Martin) = π/mπ2=62mb ) 高エネルギー散乱での陽子の振る舞い Lecture by Itakura 深非弾性散乱でみた陽子の内部構造 パートン:クォークとグルオンの総称 陽子 各パートンの分布関数 g* 1/Q transverse longitudinal 1/xP+ Q2 = qT2 : transverse resolution x =p+/P+ : longitudinal mom. fraction パートンの持つ運動量比x ・ 陽子は単純な3つのヴァレンスクォークの集まりでは「ない」 ・ 陽子は小さな運動量比( x < 10 -2 )を持つ膨大な数のグルオンからなる ・ そのグルオンは高エネルギー散乱( x ~ Q2/(Q2+W2) 0 )で見えてくる 同様のことは、全てのハドロンや原子核にあてはまる Result of the fit to ρ ratios π-p π+p K-p K+p ー pp pp
© Copyright 2026 Paperzz