St. Mark’s School Mid-Year Examination (2005 2006) Form 6 Pure Mathematics Suggested Answer Section A (40 marks) 1. (a) 1 xn C0n C1n x C2n x 2 ... Crn x r ... Cnn x n … (*) Diff. (*) w.r.t. x, n1 x n 1 C1n 2C2n x 3C3n x 2 ... nCnn x n1 … (**) 1M Put x 1, we have C1n 2C 2n 3C3n ... nC nn n 2 n 1 . 1A (b) From (**), we have nx1 x n 1 C1n x 2C2n x 2 3C3n x 3 ... nCnn x n … (***) Diff. (***) w.r.t. x, nn 1x1 x n 2 n1 x n 1 C1n 2 2 C2n x 32 C3n x 2 ... n 2Cnn x n1 1M Put x 1, we have C1n 2 2 C 2n 3 2 C3n ... n 2 C nn nn 1 2 n 2 n 2 n 1 n 2 n2 n 1 1A (4) 2. Let S n be the statement “ a n 3 n 1 2 ”. For n = 0, LHS = a 0 1 , RHS 3 01 2 1 S 0 is true. For n 1, LHS = a1 7 , RHS 311 2 7 S 1 is true. 1M Assume S k and S k 1 are true for some non-negative integer k. i.e. a k 3 k 1 2 and a k 1 3 k 2 2 1M For n k 2 , ak 2 4ak 1 3ak 0 a k 2 4 3 k 2 2 3 3 k 1 2 12 3 k 1 8 3 3 k 1 6 9 3 k 1 2 3 k 3 2 1M 1M 1A S k 2 is true. By mathematical induction, S n is true for all non-negative integers n. (5) Page 1 of 10 3. (a) Tr 1 Tr Crkn x r Crkn1 x r 1 kn! x r kn! x r 1 r 1!kn r 1! r !kn r ! correct kn r 1 x 1 r 1A for both C rkn and C rkn1 ( x 0 ) kn r 1 2 1 r k 1M 2kn 2r 2 rk 2kn 1 r k2 (b) Putting n 17 and k 3 in (a), we have 251 1 r 3 2 r 20.8 1A 1M 1A So, we have T1 T2 ... T21 and T21 T22 ... T52 . 20 2 The greatest term is T21 C . 3 51 20 1A (6) 4. (a) 1 A B C xx 1x 2 x x 1 x 2 1M Ax 1x 2 Bx x 2 Cxx 2 1 1 2 Put x 1 , B 1 1 Put x 2 , C 2 1 1 1 1 . xx 1x 2 2 x x 1 2x 2 Put x 0 , A n (b) 1A 1 k k 1k 2 k 1 n 1 1 1 k 1 2k 2 k 1 2k 1M 1 1 1 2 2 6 1 1 1 4 3 8 1 1 1 6 4 10 1 1 1 8 5 12 Page 2 of 10 1 1 1 2n 2 n 1 2n 1 1 1 2n 1 n 2n 1 1 1 1 2n n 1 2n 2 1 1 1 1 4 2n 1 n 1 2n 2 1 1 1 4 2n 1 2n 2 n lim n 1M 1A 1 1 1 1 k k 1k 2 lim 4 2n 1 2n 2 n k 1 1 4 1A (6) 5. (a) 2x 2 1 2x 5 2x 5 +1 x 3 3x 2 3 2 2x 2x 1 x3 x2 3 x 1 x 2 x 2 x x3 x3 Px and Qx are relative prime. x x2 x2 2 x +1 2x x 1 x 2 3 x 1 1M+1A (b) Let r1 x x 2 x 2 . Px 2 x 2 1 Qx r1 x … (1) Qx x 1r1 x 3 … (2) 1M (1) x 1 : x 1Px 2 x 2 1x 1Qx x 1r1 x 1M x 1Px 2 x 2 1x 1Qx Qx 3 1 xPx 2 x 3 2 x 2 x 2Qx 3 1 1 x Px 1 2 x 3 2 x 2 x 2 Qx 1 . 3 3 1 1 mx 1 x , nx 2 x 3 2 x 2 x 2 . 3 3 1A 1A (6) 6. 2 cos x, x c For f x 2 , ax b, x c lim f x lim ax 2 b ac 2 b xc xc 1M+1A lim f x lim 2 cos x 2 cos c x c 1A x c The necessary condition f x to be continuous at x c is Page 3 of 10 ac 2 b 2 cos c 2 cos c b a , c 0. c2 For c = 0, b = 2. aR. 7. (a) 1 n 1 n 1 1M 1A 1A (6) 1 ... 2n lim n 1 n 2n 1 2n n 1 1 2n ... 1 2n 1A 2n 1A 1 1 1 lim ... . i.e. limit does not exist. n n 1 2n n x2 1 (b) lim 2 x x 1 x2 1M 1 lim x 1 1 x2 1 x2 1A x2 x2 1 1 2 x lim x2 x 1 1 2 x 1M x x 1 1 lim 1 2 1 2 x x x 2 2 e e e 2 . 1M 1A Alternatively, x2 1 lim 2 x x 1 x2 2 lim 1 2 x x 1 x2 2 lim 1 2 x x 1 1M 2 x2 x 2 1 2 x 2 1 1M e2 1A (7) Page 4 of 10 Section B (60 marks) 8. (a) Let f x x 4 3x 2 k If , then is a root of f x 0 with multiplicity 2 . 1 is a root of f ' x 0 1 i.e. 4 x 3 6 x 0 6 2 0 , 1 2 2 which contradicts that 2 Hence, . Alternatively, If , then 1 . Sub. Into f x 0 gives k 2 . 1 1 1 1 Solving x 4 3x 2 2 0 , we have x 1 or 2 or no two roots are equal sum of any two roots 2 which contradicts that 2 which contradicts that Hence, . 1+1 1 (5) (b) 3 k 0 4 2 2 2 32 k 0 1 2 is a root of y 2 3 y k 0 Similarly, 2 is a root of y 2 3 y k 0 . and ( 2 ) 2 2 1 4 1A 2 2 2 2 4 3 2 4 1 2 1A k 2 1 4 1A (5) (c) 1 0 4 4 x 4 12 x 2 1 0 x 4 3x 2 x2 12 144 16 8 1A 64 2 4 1A Page 5 of 10 2 2 2 22 2 x 1 2 1A+1A 2 the values of and are 1 2 . 2 1A (5) (15) 9. (a) Let x 3 x 2 3x 2 x 2 x 1 2 A B C D . 2 x x x 1 x 12 1M Axx 1 Bx 1 Cx 2 x 1 Dx 2 x 3 x 2 3x 2 2 2 A C x 3 2 A B C Dx 2 A 2Bx B x 3 3x 2 1M A 1 , B 2 , C 0 , D 1 i.e. x 3 x 2 3x 2 1 2 1 . 2 2 2 x x x 12 x x 1 1A (3) (b) (i) Px mx 1 x 2 x 3 x 4 P' x mx 2 x 3 x 4 x 1 x 3 x 4 x 1 x 2 x 4 x 1 x 2 x 3 P' x 4 1 Px i 1 x i 4 (ii) From (b)(i), 1 1 x i 1 1A i P' x . P x Diff. both sides w.r.t. x, 4 1 x 2 i 1 4 2 Px 2 i 1 x i 1 Px P' ' x P' x 2 i P' x 2 Px P' ' x Px 2 1 (3) (c) (i) Solving f x 0 , we have b b 2 4a 2 x 2a 2 b 2 4a 2 and a 0 , | b | b 2 4a 2 0 Page 6 of 10 1A ab 0 ( a 0 and b 0 ) or ( a 0 and b 0 ) If b 0 , then b b 2 4a 2 0 and a 0 . If b 0 , then b b 2 4a 2 0 and a 0 . Both cases imply that x 2 0 . Hence all the four roots of f ( x) 0 are real. 1 Besides, f 0 a 0 and 1 f 1 2a b 0 b 2 4a 2 2a b2a b 0 1 Both 0 and 1 are not the roots of f x 0 . i 3 i 2 3 i 2 i 2 i 12 i 1 4 (ii) 4 1 i 1 i 4 i 1 4 2 i 1 4 1 i 2 i 1 1 i 12 (by (a)) 1M 4 4 1 1 1 2 2 0 i i 1 0 i i 1 i 12 f ' 0 f 0 f ' ' 0 f ' 1 f 1 f ' ' 1 f ' 0 2 f 0 f 02 f 12 2 2 (by (b)(i)&(ii)) f x ax 4 bx 2 a , f ' x 4ax 3 2bx and f ' ' ( x) 12ax 2 2b 1M 1A f 0 a , f ' 0 0 , f ' ' 0 2b and f 1 2a b , f ' 1 22a b , f ' ' 1 26a b . Hence, i 3 i 2 3 i 2 i 2 i 12 i 1 4 a 2b 42a b 22a b 6a b 02 a2 2a b 2 2 4b 4a 2b a 2a b 4a 2 10ab 4b 2 a2a b 1A 1A (9) (15) Page 7 of 10 10. (a) (i) x 4 2ax 2 4bx c x 2 2tx r x 2 2tx s Comparing the coefficient of x , 2ts 2tr 4b . 1M t s r 2b b 0 , t 0 . (ii) Comparing the coefficient of x 2 , s r 4t 2 2a 2b By (a)(i), we hve s r . t Thus, we have b b r a 2t 2 , s a 2t 2 . t t 1A+1A (iii) Comparing the constant terms, rs c . By (a)(ii), we have 1 b b 2 2 a 2t a 2t c t t a 2t 2 2 1M b2 c t2 2 t 2 2t 2 a b 2 ct 2 0 4t 6 4at 4 a 2 c t 2 b 2 0 . 1 (6) (b) (i) Putting y x h in y 4 4 y 3 2 y 2 52 y 9 0 , x h 4 4x h 3 2x h 2 52x h 9 0 1M x 4 4h 4h 3 6h 2 12h 2 x 2 4h 3 12h 2 4h 52 x h 4 4h 3 2h 2 52h 9 =0 4h 4 0 h 1 1M 1A Thus, when y x 1 , (*) can be written as x 4 8 x 2 64 x 48 0 . (ii) Put a 4 , b 16 and c 48 in (a), we have x 4 8x 2 64 x 48 x 2 2tx r x 2 2tx s , where 4t 6 16t 4 64t 2 256 0 . i.e. f (t) = t 6 4t 4 16t 2 64 0 f 2 2 6 46 16 t 2 64 0 4 1A 1M f t t 2t 2 t 4 16 0 Take t 2 . By (a)(ii), r 4 and s 12 . So, we have x 4 8 x 2 64 x 48 0 x 2 x 4 x 4 x 2 4 x 12 0 1A (accept t 2 ) 1M 4 16 16 4 16 48 or x 2 2 Page 8 of 10 x 2 2 2 or x 2 2 2i 1A Thus, all the roots of (*) are 3 2 2 , 3 2 2 , 1 2 2 i and 1 2 2 i . 1M (9) (15) 11. (a) Let S n be the statement “ an n and bn n ” For n = 1, a1 b1 1 S 1 is true. Assume S k is true for some integer k. i.e. a k k and bk k For n k 1, a k 1 a k 2bk n 2n n 1 1 bk 1 ak bk nn n 1 1 S k 1 is true. By mathematical induction, S n is true for all positive integers n. an 2bn an1 2bn1 2an bn 2 2 2 an1 2bn1 2 2 2 1M 1 n 1 1 a 1 n 1 1 2 2b1 2 1 2 n 1 (4) (b) (i) If n is odd, an 2bn 1 2 2 an 2bn 2 1M 2 an 2 bn 1 If n is even, Page 9 of 10 an 2bn 1 2 2 an 2bn 2 2 an 2 bn 1 an 2 an an1 2bn1 an bn 2 bn an1 bn1 bn 1M an 2bn 2an bn an an 2bn an bn bn 1M 2 a n 2bn bn 2a n 3bn 2 2 1n1 2 bn 2a n 3bn 1 (ii) From the above results, a 2 k 1 a a 2 and 2 k 1 2 k 1 , i.e. strictly increasing and bounded above by b2 k 1 b2 k 1 b2 k 1 a2k a a 2 and 2 k 2 2 k , i.e. strictly decreasing and bounded below by b2 k b2 k 2 b2 k a a By monotone convergence theorem, 2 k 1 and 2 k converge. b2 k 1 b2 k Let lim n 2 2. 1M 1 a2k a l1 and lim 2 k 1 l 2 . n b2 k b2 k 1 an1 a 2bn lim n n b n a b n 1 n n lim an 2 bn lim n a n 1 bn If n is odd, l1 1M l2 2 , i.e. l1l 2 l1 l 2 2 l2 1 If n is even, l 2 l1 2 , i.e. l1l 2 l 2 l1 2 l1 1 Comparing these two results, l1 l 2 2 . 1M 1A (9) (15) Page 10 of 10
© Copyright 2026 Paperzz