Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* University of Göttingen, II. Physikalisches Institut May 27th 2014, 16th International DEPFET Workshop Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 1 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Method for measuring X /X0 Measurement Procedure Use tracks from the EUDET pixel telescope to reconstruct angle distributions from multiple scattering (MSC) on a central plane The width of these distributions depend on the radiation length X /X0 of the crossed material Is a spatial resolved X /X0 measurement (with errors below 10%) possible, when using a EUDET telescope and a beam energy of a few GeV? What problems do occur during the measurement process? Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 2 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Multiple scattering A particle with momentum p and charge q crosses matter with the radiation length X /X0 MSC projected angular distribution (u-z plane) ≈ Gaussian function with σp given by Highland Formula (HL) Analog: v-z plane Highland Formula(only small scattering angles) r X 0.0136 · q[e] X σp = · 1 + 0.0038 ln rad β · p [GeV] X0 X0 V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods,1975 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 3 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion MSC Models Highland model and Single Scattering model Highland Model MSC Simulation 104 103 102 -3 ×10 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 θp [rad] MSC simulation based on single scatterings: See R. Frühwirth, Nuclear Instruments and Methods, 2001 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 4 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Reconstruction of MSC angles in a EUDET teleskop Reconstruct angles on the DEPFET telescope arm I Particle crosses sensor → hits 23mm 27mm DEPFET 111mm telescope arm II 67mm 28mm 27mm particle p,q Mimosa Pixel Sensoren Pixel Pitch 18.4 µm X/X0 Mimosa Pixel Sensoren Pixel Pitch 18.4 µm Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 5 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Reconstruction of MSC angles in a EUDET teleskop Reconstruct angles on the DEPFET Particle crosses sensor → hits telescope arm I 23mm 27mm DEPFET 111mm telescope arm II 67mm 28mm 27mm Forward- backward Kalman Filter (KF) pair on hits hit on DEPFET not needed → maps forward KF Take MSC in air gaps into account backward KF Mimosa Pixel Sensoren Pixel Pitch 18.4 µm X/X0 Mimosa Pixel Sensoren Pixel Pitch 18.4 µm Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 5 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Reconstruction of MSC angles in a EUDET teleskop Reconstruct angles on the DEPFET Forward KF In-State (ηf,Cf) DEPFET Particle crosses sensor → hits Forward- backward Kalman Filter (KF) pair on hits θp hit on DEPFET not needed → maps Backward KF Out-State (ηb,Cb) Take MSC in air gaps into account θp calculated from (mu ,mv ) Reco error σreco from TrackState η = (u,v,mu,mv) Cov. Matrix C error propagation Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 5 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Example of a reconstructed angle distribution 2000 1800 Reco Distr. Truth Distr. 1600 1400 1200 1000 800 600 400 200 0 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 θp[rad] Composition of the Reco Distribution Reconstructed MSC angle distribution is a convolution between the truth MSC distribution and a Gaussian noise distribution caused by the reconstruction errors Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 6 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Example of a reconstructed angle distribution 2000 1800 Reco Distr. Truth Distr. 1600 1400 1200 1000 800 600 400 200 0 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 θp[rad] Problem 1: Fitting the Reco Distribution Non-Gaussian tails and convolution with Gaussian noise function complicate the fit → A stable fitting method is needed Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 6 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Example of a reconstructed angle distribution 2000 1800 Reco Distr. Truth Distr. 1600 1400 1200 1000 800 600 400 200 0 -0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 θp[rad] Problem 2: Gaussian noise is dominant for thin materials → relative errors of σreco must be known well (< 10%). To ensure this, we need: Accurate knowledge of telescope geometry, beam energy, good tracking model Calibration measurements for the reconstruction errors ∗ → σreco = λ · σreco with calibration factor λ Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 6 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Solution of the 1. problem: Template fits Templates Template: Distribution of MSC angles from simulations Add Gaussian noise due to σreco Template Fit Produce several templates based on different X /X0 or σreco values in a certain range Compare the templates and the distribution via Kolmogorov-Smirnov-Test (KS) Problems Large track sample needed Only feasible in small X /X0 ranges Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 7 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion σreco calibration Best calibration scenario Test beam (TB) calibration runs with material plane of precisely known X /X0 σreco determined from error propagation ∗ use template fits with fixed X /X0 to determine σreco ∗ → Calibration factor λ=σreco /σreco Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 8 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion σreco calibration Here: Calibration via Monte Carlo (MC) data Use TB Run MC Simulation → X /X0 known MSC model of the real particle: MSC simulation based on single scatterings Tracking MSC model: Highland model → Correction of the errors (on σreco ) coming from HL Model in the tracking Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 8 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion σreco calibration Here: Calibration via Monte Carlo (MC) data Use TB Run MC Simulation → X /X0 known MSC model of the real particle: MSC simulation based on single scatterings Tracking MSC model: Highland model → Correction of the errors (on σreco ) coming from HL Model in the tracking Reco Distr. σreco=150 µ rad 2400 Simu of a TB run 3.75 GeV electrons, σreco =173µrad Hybrid 4 module 2200 σreco=190 µ rad σreco=250 µ rad 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -3 ×10 -0.3 -0.2 -0.1 0 0.1 0.2 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks 0.3 θp [rad] University of Göttingen 8 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion σreco calibration Here: Calibration via Monte Carlo (MC) data Use TB Run MC Simulation → X /X0 known MSC model of the real particle: MSC simulation based on single scatterings Tracking MSC model: Highland model D → Correction of the errors (on σreco ) coming from HL Model in the tracking 0.03 Simu of a TB run 3.75 GeV electrons, σreco =173µrad Hybrid 4 module ∗ =190 Best fit: σreco µrad σ λ= σ reco;m reco,exp ≈ 1.1 0.025 0.02 0.015 0.01 0.005 0 Dmax 160 180 200 220 240 σreco [ µ rad] Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 8 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion DEPFET Hybrid 4 Map X/X0[%] v[mm] X/X0 Map 6 area of the map 2.5 4 sensitive area 2 2 0 -2 1.5 -4 -6 Switcher 1 -8 -10 0.5 -12 -14 -4 -2 0 2 4 6 u[mm] 0 DCDB Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion DEPFET Hybrid 4 Map X/X0[%] v[mm] X/X0 Map v profile 6 2.5 4 2 0 u profile -2 -4 2 fitting: Gaussian fit on distribution without tails (6% cuts on either side) 1.5 calibration factor λ = 1.1 1 -6 0.5 -8 -10 tracksample: 1.8 Mio Tracks, pixel size: 200µm x 200µm use indicated profiles to compute X /X0 in different regions of the map u profile: sum over 24 pixels -2 0 2 4 6 u[mm] 0 v profile: sum over 8 pixels Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion DEPFET Hybrid 4 Map 2 PCB+Al PCB+Si-Chip+Al sensitive area+Al 2.5 PCB+Al 3 PCB+Si-Chip+Al X/X0[%] u Profile Alu. window unknown structure Si PCB 1.5 Si sens. area unknown structure PCB 1 Alu. window 0.5 0 -4 -2 0 2 4 6 u[mm] Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion DEPFET Hybrid 4 Map sensitive area+Al Silicon Chip+Al X/X0[%] v Profile 3.5 3 2.5 Alu. window unknown structure Si 2 PCB 1.5 Si sens. area unknown structure PCB 1 0.5 0 -14 Alu. window -12 -10 -8 -6 -4 -2 0 2 4 6 v[mm] Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion v[mm] H4 DEPFET Map 6 X/X0[%] DEPFET Hybrid 4 Map 2.5 X/X0=(0.160+/-0.003)% 4 2 2 Alu. window 0 1.5 -2 Si PCB -4 Si sens. area PCB 1 -6 0.5 -8 -10 -2 0 2 4 6 u[mm] Alu. window 0 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion v[mm] H4 DEPFET Map 6 X/X0[%] DEPFET Hybrid 4 Map 2.5 X/X0=(0.510+/-0.040)% 4 2 2 Alu. window 0 1.5 -2 Si PCB -4 Si sens. area PCB 1 -6 0.5 -8 -10 -2 0 2 4 6 u[mm] Alu. window 0 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion v[mm] H4 DEPFET Map 6 X/X0[%] DEPFET Hybrid 4 Map 2.5 X/X0=(1.960+/-0.020)% 4 2 2 Alu. window 0 1.5 -2 Si PCB -4 Si sens. area PCB 1 -6 0.5 -8 -10 -2 0 2 4 6 u[mm] Alu. window 0 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion v[mm] H4 DEPFET Map 6 X/X0[%] DEPFET Hybrid 4 Map 2.5 X/X0=(1.540+/-0.020)% 4 2 2 Alu. window 0 1.5 -2 Si PCB -4 Si sens. area PCB 1 -6 0.5 -8 -10 -2 0 2 4 6 u[mm] Alu. window 0 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 9 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Results Measurement results (X /X0 )PCB+Si+Al = (1.96 ± 0.02) % (X /X0 )PCB+Al = (1.54 ± 0.02) % (X /X0 )Si+Al = (0.510 ± 0.04) % (X /X0 )ThinSi+Al = (0.16 ± 0.003) % Radiation length and thickness of the silicon chip (X /X0 )SiChip = (X /X0 )PCB+Si+Al − (X /X0 )PCB+Al = (0.42 ± 0.03) % → dSiChip = (390 ± 30) µm (expected : 420 µm) Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 10 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Results Measurement results (X /X0 )PCB+Si+Al = (1.96 ± 0.02) % (X /X0 )PCB+Al = (1.54 ± 0.02) % (X /X0 )Si+Al = (0.510 ± 0.04) % (X /X0 )ThinSi+Al = (0.16 ± 0.003) % Thickness difference between silicon chip and thin silicon layer (X /X0 )SiGap = (X /X0 )Si+Al − (X /X0 )ThinSi+Al = (0.35 ± 0.04) % → dSiGap = (330 ± 40) µm (expected : 370 µm) Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 10 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Results Measurement results (X /X0 )PCB+Si+Al = (1.96 ± 0.02) % (X /X0 )PCB+Al = (1.54 ± 0.02) % (X /X0 )Si+Al = (0.510 ± 0.04) % (X /X0 )ThinSi+Al = (0.16 ± 0.003) % Radiation length and thickness of the sensitive area (X /X0 )ThinSi = (X /X0 )SiChip − (X /X0 )SiGap = (0.07 ± 0.05) % → dThinSi = (70 ± 50) µm (expected : 50 µm) Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 10 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Results Measurement results (X /X0 )PCB+Si+Al = (1.96 ± 0.02) % (X /X0 )PCB+Al = (1.54 ± 0.02) % (X /X0 )Si+Al = (0.510 ± 0.04) % (X /X0 )ThinSi+Al = (0.16 ± 0.003) % Radiation length of the PCB (X /X0 )PCB = (X /X0 )PCB+Si+Al − (X /X0 )ThinSi+Al − (X /X0 )SiGap = (1.48 ± 0.06) % (expected : X /X0 = 1.50 %) Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 10 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion DEPFET Hybrid 5 Map 14 Capacities 12 14 10 12 8 10 6 X/X0[%] v[mm] X/X0 Map 8 4 6 2 4 0 2 -2 -10 -8 -6 -4 -2 0 u[mm] 0 Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 11 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Conclusion and future plans Conclusion A method to estimate the spatial resolved radiation length has been developed and tested on TB data Relative and absolute values of X /X0 can be determined A calibration of the reconstruction errors is needed for a precise measurement of the radiation length of thin materials ( 100 µm Si) Future plans What are the effects of other systematicals like energy loss of the particle beam in the telescope? Larger track samples/merging track samples: Improve spatial resolution in the map and reduce statistical errors of the pixels Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 12 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Many Thanks for your attention! Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 12 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Back Up Slides Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 12 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Kolmogorov Smirnov Test Used for testing, if two data sets are based on the same PDF Test parameter: maximum distance between the two cumulative distributions Used here: 5 % significance level Critical value for the test parameter: Dmax = N: Number of data points 1.36 √ , N Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 12 / 12 Introduction Rekonstruction of MSC angles σreco calibration DEPFET H4&H5 maps Conclusion Forward and Backward KF Forward KF gives In-State prediction of track state on sensor i+1 based on tracks state i ηi+1 = Fi→i+1 ηi Vi+1 = T Fi→i+1 Vi Fi→i+1 + QF;i Backward KF gives Out-State prediction of track state on sensor i based on tracks state i+1 ηi = Fi+1→i ηi+1 Vi = Fi+1→i Vi+1 F T i+1→i + QB;i+1 F : Extrapolation matrix Q: MSC effects Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Spatial resolved radiation length (X /X0 ) measurements of DEPFET pixel sensors using EUDET tracks University of Göttingen 12 / 12
© Copyright 2026 Paperzz