Contribution of wide-band oscillations excited by the fluid excitation functions to the prediction errors of the pole coordinates data W. Kosek1, A. Rzeszótko1 , W. Popiński2 1Space Research Centre, Polish Academy of Sciences, Warsaw, Poland 2Central Statistical Office, Warsaw, Poland Journées "Systèmes de référence spatio-temporels" and X. Lohrmann-Kolloquium 22, 23, 24 September 2008 - Dresden, Germany DATA x, y pole coordinates data from the IERS: EOPC04_IAU2000.62-now (1962.0 - 2008.6), Δt = 1 day, http://hpiers.obspm.fr/iers/eop/eopc04_05/, Equatorial components of atmospheric angular momentum from NCEP/NCAR, aam.ncep.reanalysis.* (1948 - 2008.6) Δt = 0.25 day, ftp://ftp.aer.com/pub/anon_collaborations/sba/, Equatorial components of ocean angular momentum (mass + motion): 1) c20010701.oam (gross03.oam) (Jan. 1980 - Mar. 2002) Δt = 1 day, 2) ECCO_kf049f.oam (Mar. 2002 - Mar. 2006), Δt = 1 day, http://euler.jpl.nasa.gov/sbo/sbo_data.html, Equatorial components of effective angular momentum function of the hydrology obtained by numerical integration of water storage data from NCEP: water_ncep_1979.dat, water_ncep_1980.dat, …, water_ncep_2004.dat, Δt = 1 day, ftp://ftp.csr.utexas.edu/pub/ggfc/water/NCEP. x, y pole coordinates model data computed from fluid excitation functions Differential equation of polar motion: i m (t ) m(t ) (t ) ch m(t) x(t) iy(t) - pole coordinates, (t ) (t ) i (t ) - equatorial excitation functions corresponding to AAM, OAM 1 2 ch 2 1 i Tch 2Q and HAM, - complex-valued Chandler frequency, where Tch 433 days and Q 170 Approximate solution of this equation in discrete time moments can be obtained using the trapezoidal rule of numerical integration: m(t t) m(t) expi ch t i ch t 2 (t t) (t) expi ch t THE MORLET WAVELET TRANSFORM COHERENCE The WT coefficients of complex-valued signal x(t ) are defined as: 1 1 / 2 X (b, a) | a | x() (a) exp(ib)d, 2 where a 0, b are dilation and translation parameters, respectively, () exp(( 2 )2 / 2) is the CFT of complex-valued Morlet wavelet function: (t) exp(t 2 / 2) exp(i2 t) / x() is the CFT of x(t). 2 and Spectro-temporal coherence between x(t ) and y(t ) time series is defined as: Xˆ (t b, a)Yˆ (t b, a) M b M ˆxy (t, a) Xˆ (t b, a) M b M 2 M Yˆ (t b, a) 2 , err ˆ xy (t , a ) b M where M is a positive integer and Δt is the sampling interval. a t (2M 1) The MWT spectro-temporal coherence between IERS x, y pole coordinates data and x, y pole coordinates model data computed from AAM, OAM and HAM excitation functions x - iy 400 200 IERS, AAM -200 -400 0.9 0.8 0.7 0.6 0.5 period (days) 1965 1970 1975 1980 1985 1990 1995 2000 2005 400 200 IERS, OAM -200 -400 1980 1985 1990 1995 2000 2005 0.4 400 0.3 200 IERS, HAM 0.2 0.1 -200 0 -400 1980 1985 1990 1995 2000 2005 YEARS The MWT spectro-temporal coherence between IERS x, y pole coordinates data and x, y pole coordinates model data computed from AAM, AAM+OAM and AAM+OAM+HAM excitation functions x - iy 400 200 IERS, AAM -200 -400 1965 1970 1975 1980 1985 1990 1995 2000 2005 0.9 0.8 0.7 0.6 0.5 period (days) 400 200 IERS, AAM+OAM -200 -400 1980 1985 1990 1995 2000 2005 0.4 400 0.3 200 IERS, AAM+OAM+HAM 0.2 0.1 -200 0 -400 1980 1985 1990 1995 YEARS 2000 2005 Prediction of x, y pole coordinates data by the LS+AR method x, y x, y LS model (Chandler circle + annual and semiannual ellipses + linear trend) LS extrapolation Prediction of x, y x, y LS residuals AR prediction Prediction of x, y LS extrapolation x, y LS residuals LS+AR prediction errors of IERS x, y pole coordinates data and of x, y pole coordinates model data computed from AAM, OAM and HAM excitation functions y (IERS) x (IERS) 300 300 200 200 100 100 0 1980 1984 1988 1992 1996 2000 2004 2008 0 1980 days in the future 300 300 200 200 100 100 1984 1988 1992 1996 2000 2004 2008 300 200 200 100 100 1988 1992 1996 2000 2004 2004 2008 arcsec 0.1 0.04 1984 1988 1992 1996 2000 2004 300 200 200 100 100 1988 1992 YEARS 1996 2000 2004 2008 0.02 0 1984 1988 1992 1996 2000 2004 1988 1992 1996 2000 2004 y (HAM) 300 1984 2000 0.06 0 1980 x (HAM) 0 1980 1996 y (OAM) 300 1984 1992 0.08 0 1980 x (OAM) 0 1980 1988 y (AAM) x (AAM) 0 1980 1984 0 1980 1984 YEARS The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed from AAM (orange), OAM (blue) and HAM (green) excitation functions arcsec arcsec x IERS 0.03 y 0.03 OAM 0.02 0.02 AAM HAM 0.01 0.00 0.01 0.00 0 100 200 300 days in the future 0 100 200 300 days in the future The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed from AAM+OAM (red) and AAM+OAM+HAM (purple) excitation functions arcsec arcsec x IERS 0.03 y AAM+OAM 0.03 AAM+OAM+HAM 0.02 0.02 0.01 0.01 0.00 0.00 0 100 200 300 days in the future 0 100 200 300 days in the future DISCRETE WAVELET TRANSFORM BAND PASS FILTER The DWT j-th frequency component of the complex valued signal x(t) is given by: 2 j11 p x j (t) S j,k j,k (t) for t 0,1,...,n 1, j j0, j0 1,..., p 1, n 2 , k 2 j1 Signal reconstruction: n1 p1 S j,k x(t ) j,k (t ) - the DWT coefficients, x j (t ) x(t ) j j t 0 0 j,k (t) n 2 j / 2 j (t n / 2 2 j kn) - discrete Shannon wavelets. For fixed lowest frequency index 0 j p 2 and time index k 2 0 ,2 0 1,...,2 0 1 0 j j 1 0 j (t ) 1n exp[i (t n / 2) / n] sin[2 (t n / 2) / n], sin[ (t n / 2) / n] 0 j j j 1 j (n / 2) 2 0 / n 0 For higher frequency index j j0 1, j0 2,..., p 1 and time index k 2 j 1,2 j 1 1,...,2 j 1 1 j j j (t ) 1n exp[i (t n / 2) / n]sin[2 (t n / 2) / n](2cos[2 (t n / 2) / n]1) , sin[ (t n / 2) / n] j (n / 2) 2 j / n The DWT frequency components of x pole coordinate data arcsec 0.04 0.00 -0.04 0.04 0.00 -0.04 0.04 0.00 -0.04 0.04 0.00 -0.04 0.30 0.00 -0.30 0.04 0.00 -0.04 0.02 0.00 -0.02 0.01 0.00 -0.01 0.01 0.00 -0.01 0.01 0.00 -0.01 0.01 0.00 -0.01 0.01 0.00 -0.01 j= 0 j= 1 j= 2 longer period j= 3 j= 4 Chandler + Annual j= 5 Semiannual j= 6 j= 7 j= 8 j= 9 j=10 j=11 1962 40000 44000 48000 MJD 52000 2008 shorter period The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed by summing the chosen DWTBPF components arcsec 0.04 x 0.03 arcsec IERS 0.04 Ch + An + Sa Ch + An + shorter period Ch + An + longer period Ch + An 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0 50 100 150 200 250 300 350 days in the future 0 y 50 100 150 200 250 300 350 days in the future The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed from AAM+OAM (red) excitation functions as well as by summing the DWTBPF components corresponding to Chandler, annual and shorter period oscillations (green) arcsec arcsec x IERS 0.03 AAM+OAM y 0.03 Ch + An + shorter period 0.02 0.02 0.01 0.01 0.00 0.00 0 100 200 300 days in the future 0 100 200 300 days in the future CONCLUSIONS The contributions of atmospheric or ocean angular momentum excitation functions to the mean prediction errors of x, y pole coordinates data from 1 to about 100 days in the future is similar and of the order of 60% of the total prediction error. The contribution of ocean angular momentum excitation function to the mean prediction errors of x, y pole coordinates data for prediction lengths greater than 100 days becomes greater than the contribution of the atmospheric excitation function. The contribution of the joint atmosphere and ocean angular momentum excitation to the mean prediction errors of x, y pole coordinates data is almost equal to the contribution of the sum of Chandler + annual and shorter period frequency components. Both contributions explain about 80÷90% of the total prediction error. Big prediction errors of IERS x, y pole coordinates data in 1981-1982 and in 2006-2007 are mostly caused by wide-band ocean and atmospheric excitation, respectively. The contribution of the hydrologic angular momentum excitation to the mean prediction errors of x, y pole coordinates data is negligible. Acknowledgements This paper was supported by the Polish Ministry of Education and Science, project No 8T12E 039 29 under the leadership of Dr. W. Kosek. The authors of this poster are also supported by the Organizers of Journées "Systemes de référence spatiotemporels" and X. Lohrmann-Kolloquium. poster available: http://www.cbk.waw.pl/~kosek
© Copyright 2025 Paperzz