Standard Model Higgs Searches at LHC

Standard Model Higgs
Searches at LHC
Suyong Choi
Korea U
SM HIGGS PRODUCTION AND
DECAY
SM Higgs Production Cross
Sections at 7 TeV
SM Higgs Production Cross
Sections at 14 TeV
Branching Fractions
SM Higgs ๐œŽ × ๐ต๐‘Ÿ
โ€ข Sensitivity depends
on
โ€“ ๐œŽ × ๐ต๐‘Ÿ
โ€“ Backgrounds
โ€“ Mass resolution
More info in https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections
SM Higgs Search Channels
โ€ข ๐‘€๐ป < 130 ๐บ๐‘’๐‘‰
โ€“ ๐›พ๐›พ โ€“ good mass resolution
โ€“ ๐‘๐‘ โ†’ 4โ„“ - clean, good mass resolution
โ€“ ๐ป โ†’ ๐‘๐‘, ๐œ + ๐œ โˆ’ - not clean, worse mass resolution
โ€ข 130 < ๐‘€๐ป < 180
โ€“ ๐‘Š๐‘Š โ€“ statistics
โ€ข ๐‘€๐ป > 180 ๐บ๐‘’๐‘‰
โ€“ ๐‘๐‘ โ†’ 2โ„“2๐œˆ โ€“ statistics, clean
โ€“ ๐‘๐‘ โ†’ 4โ„“ - clean, good mass resolution
โ€ข Overall, they are very complicated analyses
SM HIGGS SEARCHES AT CMS
AND ATLAS
CMS SM Higgs Channels
ATLAS SM Higgs Channels
๐ป โ†’ ๐œฯ„
VBF selection
Boosted selection
1 jet pT>150 GeV
๐ป โ†’ ๐œฯ„
๐ป โ†’ ๐‘๐‘
โ€ข W/Z+H
๐ป โ†’ ๐‘๐‘
๐‘ฏ โ†’ ๐œธ๐œธ
๐ป โ†’ ๐›พ๐›พ
โ€ข Event categories divided into
โ€“ 2 classes where the smallest ๐‘…9 of two
photons is less or greater than 0.94
โ€“ 2 classes where the largest ๐œ‚ is in endcap
or barrel
โ€“ Total of 2x2=4 classes
Mass resolution for ๐‘€๐ป = 120 ๐บ๐‘’๐‘‰
๐ป โ†’ ๐›พ๐›พ
Excess: (1.7 ± 0.8) × ๐œŽ๐‘†๐‘€
SM signal x5
Consistency
โ€ข P-value - Probability that background to produce
fluctuation as large as observed
2.3๏ณ
@123.5 GeV
๐ป โ†’ ๐›พ๐›พ Upper Limit
Data disfavors Higgs in 127 โ€“ 131 GeV @ 95% CL
ATLAS ๐ป โ†’ ๐›พ๐›พMass resolution
1.7 GeV
ATLAS ๐ป โ†’ ๐›พ๐›พ
โ€ข 114 โ€“ 115, 135-136 GeV excluded @
95% CL
โˆ—
๐‘ฏ โ†’ ๐’๐’ โ†’ ๐Ÿ’โ„“
๐ปโ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“
โ€ข ZZ selection
โ€“ A second lepton pair:
๐‘š๐‘2 > 12 ๐บ๐‘’๐‘‰
โ€“ ๐‘š4โ„“ > 100 ๐บ๐‘’๐‘‰ for 4e,
4๏ญ
โ€“ Two sets of cuts for
low-mass and highmass Higgs
โ€ข Signal efficiencies
Channel
๐’Ž๐‘ฏ = ๐Ÿ๐Ÿ—๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
๐’Ž๐‘ฏ = ๐Ÿ’๐ŸŽ๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
4e
49%
59%
2e2๏ญ
61%
71%
4๏ญ
78%
82%
๐ปโ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“
โ€ข Higgs mass resolutions
Channels
๐’Ž๐‘ฏ = ๐Ÿ๐Ÿ“๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
๐’Ž๐‘ฏ = ๐Ÿ๐Ÿ—๐ŸŽ ๐‘ฎ๐’†๐‘ฝ
4e
2.7 GeV
3.5 GeV
2e2๏ญ
2.1 GeV
2.8 GeV
4๏ญ
1.6 GeV
2.5 GeV
๐ปโ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“
โ€ข Backgrounds
72 observed
67.1 ± 6.0 exepected
โ€“ Reducible - ๐‘๐‘๐‘, ๐‘๐‘ ๐‘,
๐‘๐‘—๐‘—
โ€“ Irreducible - ๐‘๐‘
โ€“ All derived from data
Theory: 27.9 ± 1.9 ๐‘“๐‘
๐ปโ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“ low mass region
โ€ข 13 events observed
โ€ข 9.5 ± 1.3 expected
Channels
Expected
Observed
4e
1.7
3
2e2๏ญ
4.5
5
4๏ญ
3.3
5
โ€ข No significant excess
๐ปโ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“
Limits from ๐ป โ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“
340~465 GeV
134~158 GeV
180~305 GeV
expected exclusion: 130-160 GeV, 182-420 GeV
ATLAS ๐ป โ†’ ๐‘๐‘ โ†’ 4โ„“
71 events observed
62๏‚ฑ9 events expected
Below 180 GeV,
8 events observed
9.3๏‚ฑ1.5 events expected
2e2ฮผ events (m=123.6 GeV, m=124.3 GeV), one 4ฮผ event (m=124.6 GeV)
ATLAS ๐ป โ†’ ๐‘๐‘ โ†’ 4โ„“
ATLAS ๐ป โ†’ ๐‘๐‘ โ†’ 4โ„“
135 โ€“ 156 GeV
excluded
181-234 GeV
excluded
255-415 GeV
excluded
โˆ—
๐‘ฏ โ†’ ๐‘พ๐‘พ โ†’ ๐Ÿโ„“๐Ÿ๐‚
Further selections
โ€ข mass-dependent selection
โ€“ ๐‘๐‘‡โ„“ , ๐‘šโ„“โ„“ , ฮ”๐œ™(โ„“โ„“), ๐‘š ๐‘‡
Yields after signal selection
โ€“ Experimental uncertainties only
โ€“ Signal efficiency uncertainty ~ 20%
โ€“ Background uncertainty in signal region ~
15%
๐‘ฏโ†’
โˆ—
๐‘พ๐‘พ
โ†’ ๐Ÿโ„“๐Ÿ๐‚ Limits
129-270 GeV Excluded @ 95%CL
127-270 GeV expected exclusion
ATLAS ๐ป โ†’ ๐‘Š๐‘Š โ†’ 2โ„“2๐œˆ
ATLAS ๐ป โ†’ ๐‘Š๐‘Š โ†’ 2โ„“2๐œˆ
ATLAS ๐ป โ†’ ๐‘Š๐‘Š โ†’ 2โ„“2๐œˆ
โ€ข 2.05 fb-1
110 events observed
91๏‚ฑ10 expected
If Higgs of certain mH existed
๐ป โ†’ ๐‘Š๐‘Š โ†’ 2โ„“2๐œˆ
โ€ข 145 โ€“ 206 GeV excluded @ 95% CL
โ€“ Excpected exclusion: 134 โ€“ 200
โˆ—
๐‘ฏ โ†’ ๐’๐’ โ†’ ๐Ÿโ„“๐Ÿ๐‚
๐‘ฏโ†’
โ€ข
โ€ข
โ€ข
โ€ข
โˆ—
๐’๐’
โ†’ ๐Ÿโ„“๐Ÿ๐‚
Dilepton trigger
Veto events with 3rd lepton
Cuts to reject Fake Missing ET
Final selection
โ€“ MET cut โ€“ mass dependent
โ€“ MT
Backgrounds
โ€ข MET modeling using
๐›พ + ๐‘—๐‘’๐‘ก๐‘  events
โ€“ reweighting according
to n-jets, boson pT
โ€“ Less reliance on MC
simulation
โ€ข Data driven methods
to estimate nonresonant backgrounds
โ€“ Top pair, single top, WW,
W+jets, ๐‘ โ†’ ๐œ๐œ
๐‘ฏโ†’
โˆ—
๐’๐’
โ†’ ๐Ÿโ„“๐Ÿ๐‚
๐‘ฏโ†’
โˆ—
๐’๐’
โ†’ ๐Ÿโ„“๐Ÿ๐‚ Limits
270-440 GeV excluded at 95% CL
CMS COMBINATION
Expected exclusion: 117 โ€“ 543 GeV
Global p-value 1.9๏ณ with LEE in 110~145 GeV
0.6๏ณ with LEE in 110~600 GeV
CMS Combined Higgs Exclusion
Limits
ATLAS COMBINATION
RESULTS
Consistency with Background only
hypothesis
โ€ข 3.6๏ณ excess
โ€“ ๐›พ๐›พ: 2.8๏ณ
โ€“ ZZ*: 2.1๏ณ
โ€“ WW*: 1.4๏ณ
โ€ข With LEE
โ€“ 3.6โ†’2.3๏ณ
โ€“ 7% to observe
excess in ๐›พ๐›พ
โ€“ ~30% to observe
excess in ZZ
โ€ข SM expectation
is 2.4๏ณ for
126 GeV Higgs
1.9x10-4
Combined ATLAS SM Higgs
Exclusion Limits
95% exclusion limits:
112.7 - 115.5 GeV
131 โ€“ 237 GeV
251 โ€“ 453 GeV
Expected 95%CL
exclusion:
124.6 โ€“ 520 GeV
99% exclusion limits:
131 โ€“ 230 GeV
260 โ€“ 437 GeV
Summary and Outlook
โ€ข Atlas and CMS data narrowed the
allowed mass range for SM Higgs
โ€“ ATLAS : 115.5 โ€“ 131 GeV
โ€“ CMS : 114 โ€“ 127 GeV
โ€ข 20 fb-1 more data per experiment in
2012 allows 5๏ณ observation per
experiment at mH=125 GeV
BACKUP
Dataset
Lumi
Uncertainty
4.5%
Good data up to 4.7 fb-1 used in the updated analyses
Backgrounds
WW Selection event yields
๐ป โ†’ ๐›พ๐›พ
โ€ข Background modeling
โ€“ MC simulation of background was not used
for background estimation, but in
agreement with data
โ€“ 30% non-prompt photons
โ€“ 5th order Bernstein polynomial fitted to the
100 < ๐‘š๐›พ๐›พ < 180 ๐บ๐‘’๐‘‰
โ€ข Maximize sensitivity
๐ป โ†’ ๐›พ๐›พ
โ€ข Signal
โ€“ 110 < ๐‘š๐›พ๐›พ < 150 ๐บ๐‘’๐‘‰ in 5 GeV steps (9 mass
points)
โ€“ POWHEG NLO + PYTHIA
โ€“ Higgs ๐‘๐‘‡ reweighted to NNLL+NLO
โ€ข Using HqT program
โ€ข Fine corrections to photon energies
โ€“ Intercalibration
โ€“ Transparency corrections
โ€“ Improves resolutions by 10%
๐ป โ†’ ๐›พ๐›พ
โ€ข Diphoton trigger
โ€“ Asymmetric ET thresholds
โ€“ complementary photon quality selections
โ€“ 100% trigger efficiency
โ€ข Photon energy corrected for conversions
upstream of Electromagnetic calorimeter
โ€“ Boosted decision tree regression trained on
MC samples
๐ป โ†’ ๐›พ๐›พ
โ€ข Vertex location
โ€“ Mean number of pp interactions ~ 9.5
โ€“ RMS spread in beam direction ~ 6 cm
โ€“ 10mm accuracy in vertex location ensures that energy
resolution is not spoiled
โ€ข Identifying the correct vertex
โ€“ Kinematic properties of tracks emerging from the vertex
and their correlation with diphoton kinematics
โ€ข Sum of track ๐‘๐‘‡2 , momentum balance
โ€“ Converted tracks point to vertex
โ€ข 3% gain in efficiency
๐ป โ†’ ๐›พ๐›พ
โ€ข Photon kinematic selection
โ€“ ๐‘๐‘‡1 >
๐‘š๐›พ๐›พ
3
, ๐‘๐‘‡2 >
๐‘š๐›พ๐›พ
4
โ€“ ๐œ‚๐›พ < 2.5, excl. barrel-endcap transition
โ€ข Backgrounds
โ€“ Irreducible ๐›พ๐›พ
โ€“ Fakes: ๐›พ + ๐‘—๐‘’๐‘ก, dijet
๐ป โ†’ ๐›พ๐›พ
โ€ข Photon isolation
โ€“ Energies in Ecal and Hcal โ€“ affected by pile up
โ€ข Estimate effect of pileup in the event by average energy
density away from jets
โ€“ charged tracks around the photon candidate โ€“ fake
vertex allows non-isolated photon to appear
isolated
โ€ข Calculate track isolation w.r.t. vertex that maximizes it
โ€ข Photon quality
โ€“ H/E
โ€“ Transverse width of a photon shower
โ€“ Electron track veto (E/p)
๐ป โ†’ ๐›พ๐›พ
โ€ข Dividing photon candidates
โ€“ Different S/B for photons of different criteria
โ€“ Barrel vs Endcap
โ€ข Barrel photon has less QCD background
โ€“ ๐‘…9
โ€ข Energy in a 3x3 crystals around highest energy /
supercluster energy
โ€ข Photons with large ๐‘…9 have less probability to
have converted
๐ป โ†’ ๐›พ๐›พ
โ€ข Photon ID efficiencies
โ€“ Measured using ๐‘ โ†’ ๐‘’ + ๐‘’ โˆ’ , excluding track
veto eff.
Systematic Uncertainties in ๐ป โ†’ ๐›พ๐›พ
๐ปโ†’
โ€ข
โ€ข
โ€ข
โ€ข
โˆ—
๐‘๐‘
โ†’ 4โ„“
3 channels โ€“ 4e, 4๏ญ, 2e2๏ญ
Covers 110 โ€“ 600 GeV
Used 4.7 fb-1
Triggers
โ€“ Dilepton triggers with asymmetric thresholds
of pT>8, 17 GeV
๐ปโ†’
โˆ—
๐‘๐‘
โ†’ 4โ„“
โ€ข Offline
โ€“ Electrons pT>7 GeV, ๐œ‚๐‘’ < 2.5, (90% for ๐‘๐‘‡๐‘’ โ‰ˆ
20 ๐บ๐‘’๐‘‰)
โ€“ Muons pT>5 GeV, ๐œ‚๐œ‡ < 2.4, 98% efficient
โ€“ Small impact parameter significance<4
โ€“ Z1: lepton pair with mass closest to mZ and
50 < ๐‘š๐‘1 < 120 ๐บ๐‘’๐‘‰
๐‘ฏโ†’
โˆ—
๐‘พ๐‘พ
โ†’ ๐Ÿโ„“๐Ÿ๐‚
โ€ข 2 leptons + MET
โ€“ ee, e๏ญ, ๏ญ๏ญ
โ€“ 1 or 2 high pT leptons in the trigger
โ€ข 97~99% efficiency for signal of mH=160 GeV
โ€“ 0, 1, 2 jet categories considered
Offline Selection
โ€ข Offline
โ€“ Lepton pT 20 GeV, 10(15) GeV for e๏ญ(ee,๏ญ๏ญ), Consistent with
coming from Vertex
โ€“ Jets ๐ธ๐‘‡ > 30 ๐บ๐‘’๐‘‰, ๐œ‚ < 5
โ€“ Projected missing ET>20(40) e๏ญ(ee,๏ญ๏ญ)
โ€“ Azimuthal opening angle dilepton-leading jet < 165 degrees
(ee,๏ญ๏ญ)
โ€“ Dilepton mass cut
โ€ข Remove low mass resonances, Z
โ€“ Reject events where jets tagged with soft leptons or large
impact parameter tracks
โ€ข Remove top events
โ€“ Reject events with 3rd isolated lepton
โ€ข Remove ZZ, WZ
โ€“ Identify converted photons to reject ๐‘Š๐›พ
Background estimation
โ€ข Mostly data driven
โ€“ Apply antiselection, then extrapolate to
signal region
โ€“ W+jets, QCD multijets
โ€“ ๐‘ก๐‘ก, ๐‘ก๐‘Š
โ€“ ๐‘Š๐‘Š โ€“ select events ๐‘šโ„“โ„“ > 100 ๐บ๐‘’๐‘‰
โ€“ Statistics of control sample limits
background estimate error
WW+0 jet baseline selection
WW+1-jet baseline selection
๐‘ฏโ†’
โˆ—
๐‘พ๐‘พ
โ†’ ๐Ÿโ„“๐Ÿ๐‚
ee + ๐œ‡๐œ‡
0 jet
1 jet
๐‘’๐œ‡