Bull. Sci. math. 126 (2002) 343–367 An algebra of differential operators and generating functions on the set of univalent functions Hélène Airault a , Jiagang Ren b a INSSET, Université de Picardie Jules Verne, 48 rue Raspail, 02100 Saint-Quentin, (Aisne), Laboratoire CNRS FRE 2270, LAMFA (Amiens), France b Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China Received August 2001 Presented by M.P. Malliavin Abstract With a method close to that of Kirillov [4], we define sequences of vector fields on the set of univalent functions and we construct systems of partial differential equations which have the sequence of the Faber polynomials (Fn ) as a solution. Through the Faber polynomials and Grunsky coefficients, we obtain the generating functions for some of the sequences of vector fields. 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. AMS classification: 17B66; 17B68; 33C80; 33E30; 35A30 Keywords: Faber polynomials; Algebra of differential operators; Univalent functions 1. Introduction In the first part, we consider the function g(z) = z + b1 + ∞ n=1 bn+1 1 zn (1.1) E-mail addresses: [email protected] (H. Airault), [email protected] (J. Ren). 0007-4497/02/$ – see front matter 2002 Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. PII: S 0 0 0 7 - 4 4 9 7 ( 0 2 ) 0 1 1 1 5 - 6 344 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 the coefficients (b1 , b2 , . . . , bn , . . .) are in the subset M of C N such that g(z) is univalent outside the unit disc. ∞ 1 g (z) = Fn (b1 , b2 , b3 , . . . , bn ) n (1.2) z g(z) z n=0 where Fn (b1 , b2 , b3 , . . . , bn ) is a homogeneous polynomial of degree n, the variables b1 , b2 , . . . , bn have respective weight, 1 for b1 , 2 for b2 , 3 for b3 , . . . , n for bn . We have (see for example [3]) F0 = 1, F1 = −b1 , F2 = b12 − 2b2 , F3 = −b13 + 3b2b1 − 3b3, F4 = b14 − 4b12b2 + 4b1b3 + 2b22 − 4b4 . On the submanifold M, we define the partial differential operators (Zk )k1 , the variables are b1 , b2 , . . . , bn , . . . , and ∂n = ∂b∂ n denotes the partial derivative with respect to the nth variable bn , Zk = − ∞ n bn ∂n+k−1 . (1.3) n=1 For a function φ(z, b1 , b2 , . . . , bn , . . .), we consider the system of partial differential ∂ φ. We find that the sequence (Fn ) of the Faber polynomials is a equations, Zk φ = ∂z solution of an infinite system of partial differential equations involving the (Zk ). We show how to calculate the Faber polynomials from the coefficients in the asymptotic expansion p of the function ( g(z) z ) where p is an integer, p1 g(z)p = 1 + Kn n zp z (1.4) n1 p in the notation Kn , n and p are indices. We define generalized Faber polynomials (Hjk ), j 0, k ∈ Z, associated to g by k−j 1 g (z) g(z) k z =1+ Hj (1.5) g(z) z zj j 1 and generalized Faber polynomials (Fjk ), j 0, k ∈ Z, associated to the univalent function f (z) = z(1 + b1 z + b2 z2 + · · · + bn zn + · · ·) by k+j f (z) f (z) k =1− Fj zj = 1 + (k + 1)b1 z + · · · . (1.6) z f (z) z j 1 When g(z) z k−j = zf ( 1z ), then Kjk = 12 (Hj Fnk = − k H k−2n k − 2n n k+j − Fj ) and n Knk . and Fnn+k = − 1 + k (1.7) With an iteration procedure, we obtain homogeneous fractions which are solutions of a system of partial differential equations involving the (Zk )k1 . H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 345 p j p The sequence of Faber polynomials and the other polynomials (Kn ), (Fn ), (Hn ) can be obtained as the solution of many systems of partial differential equations with an infinite number of variables. For example (see [1,4]), with the embedding map f (z) = z 1 + bn zn → (b1 , b2 , . . . , bn , . . .) n1 in the submanifold M of C N , we put ∂n = where k 1, the vector fields Lk = ∂k + ∂ ∂bn and we associate to Lk f (z) = z1+k f (z), ∞ (n + 1)bn ∂n+k . (1.8) n=1 We calculate the polynomials (Fk )k0 and (Fjk ) with Lp (Fjk ) = 0 for j p, and k−p−1 k ) = −k, L (F k ) = kF Lp (Fp+1 p j j −p−1 for j p + 2. In the second part, we study the generating functions associated to the sequence of vector fields found by Kirillov in [4]. Let f (z) = z(1 + n1 cn zn ) be a univalent function bn + · · · be a univalent function on the unit disc, and let g(z) = b0 z + b1 + bz2 + · · · + zn−1 outside the unit disc. With the action of vector fields on the set of the diffeomorphisms of the circle Diff(S 1 ), and a variational approach on the equation f ◦ γ = g, where γ is a diffeomorphism of the circle, Kirillov [4] obtained the following vectors fields on the set of univalent functions 2 2 f (z)2 dt t f (t) 1 L−p f (z) = = φp (z) + z1−p f (z). (1.9) 2 p+1 2iπ f (t) f (t) − f (z) t ∂D The term φp (z) comes from the residue at t = 0 for the contour integral (1.9) and vanishes if p < 0. In that case Lk f (z) = z1+k f (z) = Lk [f (z)], where k 1 and Lk is given by (1.8). We assume p 0. We have φp (z) = Np (f (z)) and (Np (w))p0 is given by the generating function φf (ξ, w) = Np (w)ξ p = p0 w2 ξ 2 f (ξ )2 . 2 f (ξ ) f (ξ ) − w (1.10) In this work, we obtain (1.10) with the Faber polynomials of h(z) = 1/f ( 1z ). Moreover, L−p f (z) = ∞ p An zn+1 . (1.11) n=1 p j In [1], the (An ) are given in terms of the polynomials Kn and Pnk such that f (z)j j n = Kn z zj n0 and z 2 f (z) f (z) 2 f (z) z k =1+ n1 Pnn+k zn . (1.12) 346 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 p In the present paper, we obtain the generating function for the (An ) in two different manners, θf (u, v) = p Ak up v k+1 = k1 p0 u2 f (u)2 v 2 f (v) f (v)2 + . 2 v−u f (u) [f (u) − f (v)] (1.13) p We deduce (1.13) from (1.10) or in Part II, Section 2, we prove (1.13) writing the An in terms of the Grunsky coeffients βj k of h(z), given by (see [3,6]) K(u, v) = log 1 f (u) 1 u − − 1 f (v) 1 v =− 1 n1 k1 n βnk un v k . (1.14) Section 3, Part II, is a further step towards the classification of Faber type polynomials which was started in Part I. We express the Grunsky coefficients βkj of h(z) in terms of j the polynomials Kn with generating function (1.12), or in terms of the Pjk , the following identity (1.15) is a factorization of the symmetric matrix kβj k into a product of two infinite matrices 1 1 βkj = K n K −n . k n k−n j +n k (1.15) n=1 p The expression of the (An ) found in [1] yields 1−p Kk+p + p−1 p j +1−p Pj Kk+p−j j =1 (1.16) = βp−1,k+1 + 2c1 βp−2,k+1 + · · · + (p − 1)cp−2 β1,k+1 . Let the Schwarzian derivative of f , Sf (z) = ( ff " ) − 12 ( ff " )2 and the asymptotic expansion ∂2 z2 Sf (z) = 6 n0 Pn zn . Since ∂u∂v |u=v K(u, v) = − 16 Sf (u), see [2], we obtain the Neretin polynomials (Pn )n0 in terms of the (βj k ), Pn = βn−1,1 + 2βn−2,2 + 3βn−3,3 + · · · + (n − 1)β1,n−1 . (1.17) Then, as in [4] and [1], the set of functions univalent inside the unit disc is embedded into the submanifold M in C N , via the map n f (z) = z 1 + cn z → (c1 , c2 , . . . , cn , . . .). n1 For k 1, ∂k = ∂c∂ k . On M ∈ C N , we consider the partial differential operators (1.8) and (1.3). We have ∂n Lj = Lj ∂n + (n + 1)∂n+j . We express ∂k in terms of the (Lp )pk with the generating function f 1(z) = 1 + n1 Bn zn . We put L0 = n1 ncn ∂n and for p 1, p following [4] and [1], we associate to (1.9) the operator L−p = n1 An ∂n . We obtain L−p in terms of the (Lj )j 1 . H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 347 bn In the third part, with the function g(z) = b0 z + b1 + bz2 + · · · + zn−1 + · · ·, with b0 = 0, we consider on the subset of (b0 , b1 , . . . , bn , . . .) such that g(z) is univalent outside the unit disc, the vector fields R−p = b0 ∂ ∂ ∂ − b2 − · · · − (n − 1)bn − ··· ∂bp ∂bp+2 ∂bn+p if k 0. (1.18) The (Rp ) are obtained in [4] from right invariant vector fields on Diff(S 1 ). We relate the (Zk )k1 of (1.3) to the (R−k ). It permits to define Zk for negative k. Part I I.1. The differential operators (Zk )k1 and the Faber polynomials Let b1 1 1 + h(z) = g(z) = 1 + bn n z z z n1 and h (z) = − n1 n bn 1 . zn+1 (I.1.1) We consider h(z) as a function h(z) = φ(z, b1 , b2 , . . . , bn , . . .) of the infinite number of variables z, b1 , b2 , . . . , bn , . . . . In this way, we have ∂ 1 1 ∂ [h(z)] = , . . . [h(z)] = n , . . . . (I.1.2) ∂b1 z ∂bn z ∂ ∂ Thus zh (z) = − ∞ n=1 nbn ∂bn (h(z)) = Z1 [h(z)] with Z1 = − n1 nbn ∂bn and the ∂ φ= function h(z) = φ(z, b1 , b2 , . . . , bn , . . .) satisfies the partial differential equation z ∂z bn 1 Z1 φ. In the same manner, since zk−2 h (z) = − n1 n zk+n−1 , we obtain for k 1, the partial differential equation 1 zk−2 ∂ [h(z)] = Zk [h(z)] ∂z (I.1.3) where (see (1.3)) Zk = − ∞ n bn ∂n+k−1 . (I.1.4) n=1 We have [Z1 , Z2 ] = −Z2 , . . . , [Zk , Zk+r ] = −rZ2k+r−1 . The operators (Zk )k1 defined above are different from the (Lk )k1 of (1.8). We do not know a priori if the (Zk )k1 in (1.3) come from an ε-perturbation on Diff(S 1 ) as it appears in [4] for the (Lk ). Lemma. Let the function ψ(z, b1 , b2 , b3 , . . . , bn , . . .) = s0 Ps (b1 , b2 , b3 , . . . , bn , . . .) z1s , ∂ ∂ we have for any k 1, Zk ( ∂z ψ) = ∂z Zk (ψ). In particular, Zk [h (z)] = (Zk [h(z)]) where = ∂ and for the derivative of order p, we denote (p) = ∂ p , ∂z ∂zp (p) (p) . (I.1.5) Zk h (z) = Zk [h(z)] 348 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 The proof is straightforward. Theorem. The Faber polynomials (Fn ) defined by (1.2) are solutions of the system of partial differential equations Z1 Fn = −nFn , Z F = 0, 2 0 Z2 F1 = 1 − F0 = 0, Z F = −nF for n 2, Z2 Fn = 0 n−1 for n k − 2, k n Zk Fk−1 = (k − 1)(1 − F0 ) = 0, Zk Fn = −nFn−k+1 for n > k − 1. (I.1.6) The equation Z1 Fn = −nFn shows that the polynomial Fn is homogeneous of degree n and the variables b1 , b2 , b3 , . . . , bn have respectively the weight 1 for b1 , 2 for b2 , 3 for b3 , . . . , n for bn . The coefficient of b1n in Fn is (−1)n . With the operators Zk , k n, and with (I.1.6), we calculate the homogeneous polynomial Fn from the Fk , k < n. For example, F5 is homogeneous of degree 5 and Z5 F5 = −5F1 , Z4 F5 = −5F2 , Z3 F5 = −5F3 , Z2 F5 = −5F4 . We find F5 = −b15 + 5b13 b2 − 5b12b3 − 5b1 b22 + 5b2 b3 + 5b1 b4 − 5b5 , F6 = b16 + 3b32 + 6b13b3 − 12b1 b2 b3 − 6b14 b2 − 2b23 + 9b12b22 + 6b1 b5 + 6b2 b4 − 6b12b4 − 6b6 . Proof of (I.1.6). From h(z) = 1z g(z), we have z h h = − 1z + g g and h F1 1 1 = −1 + + Fn n = Fn n . h z z z n0 (I.1.7) n2 Since Zk is a derivation, with (I.1.5), and then using (I.1.3) to replace Zk [h(z)], we obtain h (z)Zk [h(z)] Zk [h(z)] h (z) Zk [h (z)] −z =z Zk z = z h(z) h(z) h(z)2 h(z) 1 h (z) = z k−2 . (I.1.8) z h(z) (z) by its expansion given by (I.1.7), We replace the expression z hh(z) 1 1 1 Zk (Fn ) n = −z k−1 + z Fn n+k−1 z z z n0 = k−1 − zk−1 n0 (k − 1 + n)Fn n0 By identifying in (I.1.9) the coefficients of 1 zp , 1 . zn+k−1 we obtain (I.1.6). (I.1.9) H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 349 With the same method, and from the identity Zk (φ p ) = pφ p−1 Lk (φ), we deduce Lemma. Consider v = (z hh )p = Zk (v) = z(k−1)(p−1)+1 1 np Hn zn v zp(k−1) for any integer p, then . Moreover Zk (Hn ) = −(n + (p − 1)(k − 1))Hn−k+1 for n p + k − 1 and if n p + k − 2, Zk (Hn ) = 0. p The Faber polynomials in (1.2), can be obtained from the following (Kn ). For any p p 1 p integer p ∈ Z, let g(z) n1 Kn zn where in the notation Kn , n and p are indices, zp = 1 + (see (1.4)). From (I.1.3), we have g(z)p 1 g(z)p Zk . (I.1.10) = zp zk−2 zp p Kn , n 1, p ∈ Z, is a homogeneous polynomial in the variables b1 , b2 , . . . , bn where p p b1 has weight 1, b2 weight 2, . . . . Moreover Zk (Kn ) = −(n − k + 1)Kn−k+1 for n k p p and Zk (Kn ) = 0 for n < k. This permits to obtain the Kn . The coefficient of b1n in p p! p! = (p−n+1)(p−n+2)···p the polynomial Kn is (p−n)!n! b1n . Remark that the notation (p−n)!n! n! p extends to any p ∈ Z. The other coefficients in Kn are calculated with the (Zp )p2 . For p p p p b12 + αb2 and Z2 (K2 ) = −K1 with K1 = pb1 , Z2 = −b1 ∂b∂ 2 . This example, K2 = p(p−1) 2 p gives the value of α and K2 = the operators Lk , see (1.8). p p(p−1) 2 b1 2 p + pb2 . In [1] (A.1.6), the Kn are obtained with p(p − 1)(p − 2) 3 b1 , 3! p(p − 1) 2 p(p − 1)(p − 2) 2 = p(p − 1)b1 b3 + pb4 + b2 + b1 b2 2 2 p! b4 , + (p − 4)!4! 1 K3 = p(p − 1)b1 b2 + pb3 + p K4 p Kn = p! p! p! b1n + b1n−2 b2 + bn−3 b3 (p − n)!n! (p − n + 1)!(n − 2)! (p − n + 2)!(n − 3)! 1 p! p−n+3 2 b1n−4 b4 + b2 + (p − n + 3)!(n − 4)! 2 n−j p! b1n−5 b5 + (p − n + 4)b2b3 + b 1 Vj , + (p − n + 4)!(n − 5)! j 6 where Vj with 6 j n, is a homogeneous polynomial of degree j in the variables b2 , . . . , bn . 350 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 I.2. Generalized Faber polynomials We assume that g(z) is given by (1.1). We have n f (z) = z 1 + bn z . g(z) z = zf ( 1z ) where (I.2.1) n1 Since b1 (b12 − b2 ) z =1− + +··· g(z) z z2 and z 1 1 f ( z ) g (z) =2− g(z) z f ( 1z ) (I.2.2) (u) n = 1 + b1 u + · · · = 1 − ∞ we deduce u ff (u) n=1 Fn (b1 , b2 , . . . , bn )u . We put k+j f (u) f (u) k =1− Fj uj = 1 + (k + 1)b1u + · · · u f (u) u (I.2.3) j 1 j then Fj = Fj where Fj is the j th Faber polynomial. On the other hand, if we take k = 1 1+j in (I.2.3), we find Fj = −(j + 1) bj . With the same polynomials Fjk , we have, for any k ∈ Z, f (u) k =1− Fjk f (u)j . (I.2.4) u j 1 Definition. We call the polynomials (Fjk ), the generalized polynomials associated to the function f (z) = z(1 + n1 bn zn ). When k = −1 in (I.2.4), we obtain u = f (u) − Fj−1 f (u)j +1 . (I.2.5) j 1 In particular, if w = f (u) where f is univalent, we have the asymptotic expansion of the inverse map f −1 , u = f −1 (w) = w − Fj−1 wj +1 = w + b1 w2 + b2 − 2b12 w3 (I.2.6) j 1 + 5b13 − 5b1 b2 + b3 w4 + · · · . We rewrite (I.2.4) with k ∈ Z as uk = f (u)k − j 1 Fj−k f (u)j +k , or −1 k f (w) = wk − Fj−k wj +k = wk + kb1 wk+1 + · · · . j 1 The homogeneous polynomials (Fjk ) can be calculated with (I.2.3) and the (Lp )p0 as (z) f (z) k ( z ) . By in [1] (A.3.3)–(A.6.5): We have Lp [f (z)] = zp+2 f (z). Let φ(z) = z ff (z) commuting ∂ ∂z and Lp , we get Lp [φ(z)] = zp+2 φ (z) + (p + 1 + k)zp+1 φ(z). From H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 351 k+j (I.2.3), Lp [φ(z)] = − j 1 Lp (Fj )zj . With the identification of the coefficients in the asymptotic expansions (I.2.3), we obtain (compare with (I.1.6)) Lp (Fjk ) = 0 for j p, k−p−1 k and Lp (Fp+1 ) = −k, Lp (Fjk ) = kFj −p−1 for j p + 2. This gives F1k = −kb1 , F2k = F4k = F5k = k(3 − k) 2 b1 − kb2 , 2 F3k = k(k − 5)(4 − k) 3 b1 + k(4 − k)b1 b2 − kb3 , 6 k(5 − k)(k − 6)(k − 7) 4 k(5 − k)(k − 6) b1 + b2 b12 + k(5 − k)b1 b3 4! 2 k(5 − k) 2 b2 − kb4 , + 2 k(6 − k)(k − 7)(k − 8)(k − 9) 5 k(k − 7)(6 − k)(k − 8) 3 b1 + b1 b2 5! 3! k(k − 7)(6 − k) 2 k(6 − k)(k − 7) b1 b3 + b1 b22 + 2 2 + k(6 − k)b2 b3 + k(6 − k)b1 b4 − kb5 , (k − 7)!k 6 (k − 7)!k 4 (k − 7)!k 3 k(7 − k) 2 b1 − b1 b2 − b1 b3 + b3 6!(k − 12)! 4!(k − 11)! 3!(k − 10)! 2 (k − 7)!k (k − 9) 2 b2 + b4 b12 + k(7 − k) (k − 8)b2 b3 + b5 b1 − 2!(k − 9)! 2 k(7 − k)(k − 8) 3 b2 + k(7 − k)b2 b4 − kb6 , + 6 F6k = − (k − 8)!k 7 (k − 8)!k 5 (k − 8)!k 4 b1 − b1 b2 − b b3 7!(k − 14)! 5!(k − 13)! 4!(k − 12)! 1 (k − 8)!k (k − 11) 2 (k − 8)!k b2 + b4 b13 − − (k − 10)b2b3 + b5 b12 3!(k − 11)! 2 2!(k − 10)! k(8 − k)(k − 9) k − 10 3 2 b2 + b3 b1 + k(8 − k) (k − 9)b2 b4 + b6 b1 + 2 3 k(8 − k)(k − 9) 2 b2 b3 + k(8 − k)b3 b4 + k(8 − k)b2 b5 − kb7 . + 2 Like in (I.2.3)–(I.2.4), we find that k−j 1 g(z) k 1 g (z) g(z) k =1+ Hjk and z =1+ Hj (I.2.7) j z g(z) g(z) z zj F7k = − j 1 with the same polynomials −j Hj j 1 Hjk , k ∈ Z and j 1. Because of (I.2.2), the polynomials = Fj are the Faber polynomials. Definition. We call (Hjk ) the generalized Faber polynomials associated g(z). 352 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 1−j = −(j − 1) bj and Hk0 = 0 for any k 1. As in (I.2.5), we put k = −1 in the first equation of (I.2.7), this gives z = g(z) + j 1 Hj−1 g(z)1−j and if w = g(z), then Hj−1 w1−j . z = g −1 (w) = w + We have Hj j 1 We have k(k + 1) 2 b1 + kb2 , 2 k(k + 1)(k + 2) 3 b1 + k(k + 2)b1 b2 + kb3 , H3k = 6 H1k = kb1 , H2k = k(k + 1)(k + 2)(k + 3) 4 k(k + 2)(k + 3) b1 + b2 b12 + k(k + 3)b1b3 4! 2 k(k + 3) 2 b2 + kb3 . + 2 k k 1 We can obtain the Hjk as follows: Let h(z) = g(z) n1 Kn zn . Since z . Then h(z) = 1 + g (z) g(z) k n 1 k k−1 z = h(z) + zh(z) h (z) = 1 + 1− Knk n , g(z) z k z H4k = n1 we deduce from (I.2.7) that n Hnk−n = 1 − Knk . k (I.2.8) k Proposition. (See (1.7).) We have Fnk = − k−2n Hnk−2n and Fnn+k = −(1 + nk )Knk . f (u) Proof. h(z) = f (1/z) 1/z = u where u = 1/z. Thus k k f (z) f (z) k 1 1 ∂ 1 1−k k−1 z = z f (z)f (z) = h +z . (I.2.9) h f (z) z z k ∂z z Since [h(1/z)]k = 1 + n1 Knk zn , we replace in (I.2.9). If we put k = n in (1.7), we find again Fnn = Hn−n = Fn . Corollary. n−1 −k (n − p)Fn−p Fpn = Kn−k + Fn−k . (I.2.10) p=1 Proof. We have k u =1+ Kn−k un f (u) n1 and u f (u) k =1− j 1 Fj−k f (u)j j u . uj H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 353 j f (u)j = 1 + n1 Kn un . We identify the coefficients of equal powers of u and uj j we replace Kn by its expression (1.7) to obtain (I.2.10). If we put k = −n in (I.2.10), it n−p n n gives Knn + Fnn = n−1 p=1 n Fp Fn−p . In particular We replace 1 2 2 F , F33 + K33 = F13 F23 , 2 1 1 2 F44 + K44 = F24 + F14 F34 + · · · . 2 F22 + K22 = I.3. Homogeneous fractions of the (bi )i1 (z) (z) Let u(z) = 1 − z gg(z) = −z hh(z) , then 1 − z uu = z hh − z h" h . From (I.1.8), Zk (u) = 1 u) . Since Zk (z uu ) = z( Zku(u) ) , we obtain z( zk−1 Theorem. Let v = 1 + z uu = n1 Gn z1n , then 1 k(k − 1) Zk (v) = z k−1 v + z zk−1 and Z1 Gn = −nGn and for k > 1, Zk (Gn ) = 0 Zk (Gk−1 ) = k(k − 1) Zk (Gn ) = −nGn−k+1 if n k − 2 if n k. For n 1, the relation Z1 Gn = −nGn implies that Gn is homogeneous of degree n in the variables b1 , b2 , . . . , bn ; Gn = b1n × Qn where Qn is a homogeneous polynomial of 1 degree 2n in the variables b1 , b2 , . . . , bn , if b1 = 0. G1 = F2 b2 = b1 − 2 , b1 b1 G2 = 2F3 F22 1 + 2 = 2 −b14 + 2b2 b12 − 6b3b1 + 4b22 . b1 b1 b1 Part II In the following, f (z) is a univalent function inside the unit disc, n f (z) = z 1 + cn z . n1 Let χ(z) be a function and assume that the expansion χ(f −1 (u)) = n∈Z αn un converges, 1 χ(f −1 (u))u−n du αn is obtained with the contour integral αn = 2iπ u . We put u = f (z) in the two last expressions and we obtain the expansion of χ(z) in sum of powers of f (z), du uf (u) j 1 f (u)−j χ(u) . χ(z) = f (z) 2iπ f (u) u j ∈Z 354 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 In this formula, instead of χ(z), let zχ(z)f (z), it gives 2 2 du u f (u) 1−j 1 zχ(z)f (z) = f (z) f (u)j χ(u) = S1 + S2 2iπ f (u)2 u j ∈Z with S1 = f (z)1−j 1 2iπ 2+j 1 2iπ j 0 S2 = f (z) j 0 du u2 f (u)2 f (u)j χ(u) , 2 u f (u) du u2 f (u)2 f (u)−1−j χ(u) = Lχ [f (z)]. f (u)2 u If χ(z) = z−p , where p is a positive integer p 0, S1 reduces to a finite sum of powers of f (z) and is equal to 2 2 f (z)1−p u f (u) (f (z)p+1 − f (u)p+1 ) du = −Np f (z) . 2 p+1 2iπ (f (z) − f (u)) f (u) u From this expression, we see that the generating function for the Np (w) is given by (1.10). In the next section, we find (1.10) through Faber polynomials. With the embedding f (z) = z(1 + n1 cn zn ) → (c1 , c2 , . . . , cn , . . .) in the submanifold M of C N , if χ(z) = z−p , S2 = L−p [f (z)], and expanding f (z)2+j in powers of z in p S2 , we find L−p = n1 An ∂n where ∂n = ∂c∂ n . II.1. The vector fields L−p Theorem. If p 0, there exists a function Np (w) such that ∞ p An zn+1 . z1−p f (z) + Np f (z) = (II.1.1) n=1 The Akn are homogeneous polynomials in the variables (cn )n1 , Np (w) is calculated with (1.10). Let φp (z) = Np (f (z)), then φp (z)ξ p = p0 f (z)2 ξ 2 f (ξ )2 2 f (ξ ) (f (ξ ) − f (z)) and f (z)2 2iπ 1 ξ 2 f (ξ )2 dξ = φp (z) + z1−p f (z). 2 f (ξ ) (f (ξ ) − f (z)) ξ p+1 p The polynomials Ak defined by (II.1.1), are given by (1.13). (II.1.2) H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 355 We have N0 (w) = −w, N1 (w) = −1 − 2c1 w, N2 (w) = − w1 − 3c1 − (4c2 − c12 )w, d N3 (w) = − w12 − 4c1 w1 − (c12 + 5c2 ) − P33 w, . . . . Let Np (w) = dw Np (w) be the derivative of Np . From (II.1.1), we deduce that for any j 1, dz f "(z) dz + Nj f (z) = 0 and z f (z) zj (II.1.3) Nj (f (z)) dz f (z) dz + = 0. f (z) z f (z) zj Proof of (II.1.1)–(1.10)–(II.1.2). Consider the function h(z) = 1 1 2 + 2c1 c2 − c3 − c13 2 = z − c + c − c 1 2 1 1 z z f (z) 1 1 + 2c1 c3 − c4 + c22 − 3c12c2 + c14 3 + · · · z ∞ = z+ bn+1 n=0 1 zn (II.1.4) ∞ ξ h (ξ ) −n where F (w) are the Faber we have (see [5] and [6]) h(ξ n n=0 Fn (w)ξ )−w = polynomials associated to the function h. In terms of f , ψ(z, w) = zf (z) = 1 + Fn (w)zn , f (z) − wf (z)2 (II.1.5) n1 F1 (w) = w + c1 , F2 (w) = w2 + 2c1 w + 2c2 − c12 , F3 (w) = w3 + 3c1 w2 + 3c2 w + c13 − 3c1 c2 + 3c3 . If we take the derivative of (II.1.5) with respect to w and then integrate with respect to z, we obtain f (z) zn = Fn (w) , (1 − wf (z)) n (II.1.6) n1 F1 (w) = 1, 12 F2 (w) = w + c1 , 13 F3 (w) = (w + c1 )2 − (c12 − c2 )(w + c1 ), (w + c1 )3 − 2(c12 − c2 )(w + c1 ) − (2c1 c3 − c4 + c22 − 3c12c2 + c14 ). Moreover Fn h(z) = z + n ∞ βnk z−k , 1 4 F4 (w) = (II.1.7) k=1 where the βnk are the Grunsky coefficients of h. Thus Fn ∞ 1 βnk zk . = z−n + f (z) k=1 (II.1.8) 356 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 1 We rewrite (II.1.8) as z−n = Fn ( f (z) )− ∞ k=1 βnk z k. On the other hand, if p > 1, z1−p f (z) = z1−p (1 + 2c1 z + 3c2 z2 + · · · + (n + 1)cn zn + · · · (p − 1)cp−2 1 2c1 3c2 = p−1 + p−2 + p−3 + · · · + + pcp−1 z z z z + (p + 1)cp z + (p + k + 1)cp+k zk+1 . (II.1.9) k1 We replace the negative powers of z by their expressions given by (II.1.8). We obtain 1 1 1 z1−p f (z) = Fp−1 + 2c1 Fp−2 + 3c2 Fp−3 + ··· f (z) f (z) f (z) 1 + pcp−1 + (p + 1)cp z + (p − 1)cp−2 F1 f (z) (II.1.10) − βp−1,1 + 2c1 βp−2,1 + · · · + (p − 1)cp−2 β1,1 z (p + k + 1)cp+k − [βp−1,k+1 + 2c1 βp−2,k+1 + · · · + k1 + (p − 1)cp−2 β1,k+1 ] zk+1 . For p 2, we consider Tp−1 (w) = Fp−1 (w) + 2c1 Fp−2 (w) + 3c2 Fp−3 (w) + · · · + (p − 1)cp−2 F1 (w) + pcp−1 . (II.1.11) From the expansion of f (z) and (II.1.5), we obtain the generating function zf (z)2 = 1 + Tn (w)zn , f (z) − wf (z)2 (II.1.12) n1 T0 (w) = 1, T1 (w) = w + 3c1 , T2 (w) = w2 + 4c1 w + (c12 + 5c2 ), T3 (w) = w3 + 5c1 w2 + (4c12 + 6c2 )w + P34 + · · · . With (1.12), we obtain Tp (w) = p p+1 Pp−j wj . j =0 We write (II.1.10) as z1−p f (z) − Tp−1 1 f (z) = p Bk−1 zk k1 = (p + 1)cp z − βp−1,1 + 2c1 βp−2,1 + · · · p + (p − 1)cp−2 β1,1 z + Bk zk+1 (II.1.13) k1 with p Bk = (p + k + 1)cp+k − βp−1,k+1 + 2c1 βp−2,k+1 + · · · + (p − 1)cp−2 β1,k+1 . (II.1.14) H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 This gives, for p 1, z1−p f (z) − Tp−1 p 1 p − Pp f (z) = Ak zk+1 , f (z) 357 (II.1.15) k1 where P11 = 2c1 and if p > 1, p Pp = − βp−1,1 + 2c1 βp−2,1 + · · · + (p − 1)cp−2 β1,1 + (p + 1)cp p Ak p Bk p Pp ck . (II.1.16)1 p p and for p 1, k 1, we put = − With the convention c0 = 1, B0 = Pp , p p we have A0 = 0. In [1], we obtained the generating function of the (Pp ), p z2 f (z)2 =1+ Pp zp . 2 f (z) (II.1.16)2 p1 1 n In fact, since f 1(z) = 1z + ∞ n=0 bn+1 z and bn+1 = β1n = n βn1 , by taking the derivative with respect to z, we obtain ∞ f (z) 1 = − βn1 zn−1 f (z)2 z2 n=1 n−1 )f (z) and (II.1.16) implies (II.1.16) . From thus = f (z) − ( ∞ 2 1 n=1 βn1 z (II.1.11)–(II.1.15)–(II.1.16), we obtain the generating function of (z)2 z2 ff (z) 2 p Mp (w) = −Tp−1 (w) − Pp 1 . w (II.1.17)1 We put M0 (w) = − w1 , then Mp (w)ξ p = − p0 1 ξ 2 f (ξ )2 2 f (ξ ) w(1 − wf (ξ )) (II.1.17)2 and from (II.1.14), we see that ∞ 1 p 1−p f (z) + Mp An zn+1 . z = f (z) n=1 We obtain (II.1.1)–(II.1.10) with Np (w) = Mp ( w1 ). Since φp (z) is the coefficient of ξ p in the asymptotic expansion of the function ξ 2 f (ξ )2 f (z)2 , f (ξ )2 (f (ξ )−f (z)) we obtain (II.1.2). We deduce (1.13) from (II.1.1) and (1.10). This ends the proof of the theorem. If we divide (II.1.12) by (II.1.17)2, we obtain ξ f (ξ ) p n n p0 Tp (w)ξ = − n0 wMn (w)ξ . Since ξ = 1 + n1 cn ξ , this yields a f (ξ ) relation between the polynomials Mp and Tp . Combining with (II.1.17)1, it gives Tp (w) = w Tp−1 (w) + c1 Tp−2 (w) + · · · + cp−1 T0 (w) p p−1 + Pp + c1 Pp−1 + · · · + cp . In Section 2, we give a direct proof of (1.13). (II.1.18) 358 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 p II.2. The generating function for the (An ) p The polynomials Ak defined by (II.1.1) can be calculated with (1.13). Proof. Taking the derivative of (1.14) with respect to u yields uf (u) f (v) v 1 v = − ψ u, − f (v) v−u f (u) f (v) − f (u) v − u = βnk un v k . (II.2.1) n1 k1 We multiply (II.2.1) by f (u), vf (u) uf (u)2 f (v) − f (u) f (v) − f (u) v−u βnk + 2c1 βn−1,k + · · · + ncn−1 β1,k un v k . = (II.2.2) n1 k1 p The (Bk ) are given by (II.1.14) for p > 1 and Bk1 = (k + 2)ck+1 . We rewrite (II.2.2) as p Bk − (p + k + 1)cp+k up−1 v k+1 k0 p2 =− f (v) vf (u) uf (u)2 + . f (u) f (v) − f (u) v−u (II.2.3) Since Bk1 = (k + 2)ck+1 , we can write the sum in (II.2.3), starting from p = 1. On the other hand, vf (u) vf (v) + . (p + k + 1)cp+k up−1 v k+1 = − v−u v−u k0 p1 Thus γ (u, v) = p Bk up v k+1 = − k0 p1 uvf (v) u2 f (u)2 f (v) + . f (u) f (v) − f (u) v−u (II.2.4) Since p p p Ak = Bk − Pp ck (II.2.5) p and A0 = 0, we have k1 p1 p Ak up v k+1 = uv f (v)2 u2 f (u)2 + f (v) + f (v). v−u f (u)2 f (u) − f (v) We divide by v. Since p p A k up v k = A k up v k + A0k v k k1 p0 k1 p1 k1 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 359 and A0k v k = k1 kck v k = f (v) − k0 f (v) , v we obtain (1.13). II.3. Identities between polynomials From (1.12), we obtain that for any p = 0, and k = 0, n+p+k Pn = n (j + p)(n − j + k) p k Kj Kn−j . kp (II.3.1) j =0 In the following, we prove more identities between the polynomials. (w) = (k + 1) Proof of (1.15). With (II.1.6), Fk+1 Fk (w) = Fk (0) + k k n=1 n k n+1 n n=0 Kk−n w . Thus n Kk−n wn . (II.3.2) We replace w by f 1(z) , with (II.1.7), we obtain (1.15). The factorization can also be obtained from (II.2.1). We have K21 = c2 , K3−1 = 2c1 c2 − c3 − c13 , K1−2 = 2c1 , K4−2 = 6c1 c3 − 2c4 + 3c22 − 12c12c2 + 5c14, K5−3 = 12c2 c3 + 12c1 c4 − 3c5 − 30c1c22 − 30c12c3 + 60c13 c2 − 21c15 and with (1.15), it gives β3,2 = 3K21 K3−1 + 32 K1−2 K4−2 + K5−3 . In the same way, K11 = c1 , K4−1 = 2c1 c3 − c4 + c22 − 3c12 c2 + c14 , K5−2 = 6c2 c3 + 6c1 c4 − 2c5 − 12c1c22 − 12c12c3 + 20c13 c2 − 6c15 and β2,3 = 2K11 K4−1 + K5−2 . Proof of (1.17). We deduce (1.17) from (II.2.5)–(II.1.14) and (A.4.8) in [1]. It can also be proved as follows. Let Sf (z) = (f "/f ) − 12 (f "/f )2 and φ(u) = 1/f (u), then φ (u)φ (v) f (u)f (v) = 2 (f (u) − f (v)) (φ(u) − φ(v))2 and Sφ (u) = Sf (u). Thus (see [3], p. 64), 1 ∂2 f (u)f (v) log − = 2 2 ∂u∂v (f (u) − f (v)) (u − v) 1 f (u) − 1 f (v) u−v 360 and H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 ∂ 2 log ∂u∂v u=v 1 f (u) − 1 f (v) u−v 1 = − Sf (u) = − 6 kβnk un+k−2 . (II.3.3) n1,k1 Theorem. Let z2 Sf (z) = 6 n0 Pn zn be the expansion of the Schwarzian derivative. We have P0 = 0, P1 = 0, and the (Pn )n2 are given by (1.17) in terms of the coefficients in (1.14), P2 = β11 = c12 − c2 , P3 = β21 + 2β12 = 8c1 c2 − 4c3 − 4c13 , P4 = β31 + 2β22 + 3β13 = 12c14 − 34c12c2 + 12c22 + 20c1 c3 − 10c4 , . . . . Let bnk = kβnk , then (bnk ) is a symmetric matrix, moreover Pn = trace(An Bn ) where An is the square matrix of order n − 1 such that an−1,1 = an−2,2 = an−j,j = 1 and all the other coefficients are zero and Bn = (bij )1in−1,1j n−1 . II.4. The operators (∂k )k1 and (L−k )k0 in terms of (Lk )k>0 We identify the set of univalent functions with the submanifold M in C N via the map z(1 + n1 cn zn ) → (c1 , c2 , . . . , cn , . . .). For k 1, Lk is given by (1.8) and (Akn ) by (II.1.1) or (1.13). We put ncn ∂n and for k 1 L−k = Akn ∂n . (II.4.1) L0 = n1 n1 In the following, we relate the (∂k )k1 and (L−k )k0 to the (Lk )k>0 and study the action of these operators on some of the generating functions. Proposition. For k 1, ∂k = Lk − 2c1 Lk+1 + (4c12 − 3c2 )Lk+2 + · · · + Bn Lk+n + · · · where the (Bn )n1 are independent of k. 1 = 1 + Bn zn . f (z) (II.4.2) (II.4.3) n1 Proof. We verify (II.4.3) on f (z). We have Lk [f (z)] = zk+1 f (z). Since ∂k [f (z)] = zk+1 and ∂k [f (z)] = (k + 1)zk zk+1 f (z) zk+2 f (z) = − 2c1 + · · · + Bn we have to prove zk+1 and we obtain (II.4.3). Consider the generating functions (see (II.1.12) and (II.1.5)), zf (z) = 1 + Fn (w)zn ψ(z, w) = f (z) − wf (z)2 zk+1 n1 and zf (z)2 = 1 + Tn (w)zn . f (z) − wf (z)2 n1 (II.4.4) zk+n f (z). We divide by H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 361 The polynomials (Tp )p0 are expressed in (II.1.11) in terms of the (Fp )p0 . Conversely, with (II.4.3), we have F1 = T1 − 2c1 T0 , F2 = T2 − 2c1 T1 + 4c12 − 3c2 T0 , . . . , F0 = T0 , Fp = Tp − 2c1 Tp−1 + 4c12 − 3c2 Tp−2 + · · · + Bk Tp−k + · · · + Bp T0 . (II.4.5) From the generating functions, we obtain the action of (Lk ) on the polynomials. Let k 1, we have Lk (Tp ) = (k + p + 1)Tp−k if p k and Lk (Tp ) = 0 if p < k. From 1 1 1 k+1 Lk − (k + 1)zk , =z f (z) f (z) f (z) we obtain Lk (Bp ) = (p − 2k − 1)Bp−k if k p and Lk (Bp ) = 0 if k > p. From (II.1.5), we deduce that ψ(z, w) satisfies ∂ψ ψ(z, w) + kzk ψ(z, w), (II.4.6) Lk [ψ(z, w)] = zk+1 ∂z Lk (Fn ) = nFn−k if n k and Lk (Fn ) = 0 if n < k. We obtain Lk (βn,p ) with (II.4.1) and (II.1.5). From 1 Lk ψ z, f (v) 1 ∂ ∂ψ 1 ) + v p+1 + kzk ψ z, = zk+1 ψ z, , (II.4.7) ∂z f (v) ∂v f (v) we deduce Lk (βn,p ) = nβn−k,p + (p − k)βn,p−k if k p − 1, k n − 1 and the formula extends for any n 1, p 1 with the convention βmn = 0 if m 0 or n 0. Lemma. Let (see (1.10)) φf (u, w) = u2 f (u)2 w2 = × Np (w)up , 2 f (u) − w f (u) (II.4.8) p0 then for k 1, ∂φf Lk [φf (u, w)] = 2kuk φf (u, w) + uk+1 (u, w), ∂u k ∂ uk+1 ∂φf u ∂k [φf (u, w)] = 2u (u, w). (u, w) + φ f ∂u f (u) f (u) ∂u (II.4.9) (II.4.10) Proof. The proof of (II.4.9) is straightforward, then (II.4.9) and (II.4.2) imply that uk+1 ∂φf 1 k 1 k+1 + 2u (u, w). (u, w) + ∂k [φf (u, w)] = 2ku φ f f (u) f (u) f (u) ∂u Corollary. Lk (Np ) = (k + p)Np−k if p k and Lk (Np ) = 0 if p < k. Let Bn as in (II.2.3), then if p k, ∂k Np = p−k j =0 (2p − j )Bp−k−j Nj (w). (II.4.11) 362 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 Remark. Let (see (1.13)) k1 p0 v 2 f (v) p Ak up v k+1 = φf u, f (v) + = θf (u, v), v−u then f u)2 3 θf (u, v)|v=u = u2 f (u) − 2u2 + 2uf (u), 2 f (u) ∂θf 1 2 u2 f (u)2 1 = u Sf (u) − f (u) + u2 f (u) , 2 ∂v v=u 6 f (u) 2 (II.4.12) (II.4.13) ∂θf 1 2 3v 2 f (v)2 = − v Sf (v) + f (v) + v 2 f (v) 2 ∂u u=v 6 f (v) f (v) − 1 + 4v × vf (v) . f (v) In the same manner, consider (see (II.4.4)) γf (u, v) = f (v) uvf (v) p p k+1 u2 f (u)2 × + = Bk u v f (u) f (u) − f (v) v−u k0 p1 then f u)2 3 + uf (u), γf (u, v)|v=u = u2 f (u) − u2 2 f (u) ∂γf 1 u = u2 Sf (u)f (u) + uf (u) . ∂v v=u 6 2 (II.4.14) (II.4.15) p Lemma. If p 1, for any k such that k > p, ∂k Ak is independent of k and we have 1 f dz p ∂k Ak = − . (II.4.16) 2iπ f zp If k p, p ∂k Ak = − 1 2iπ 1 f (z) dz + f (z) zp 2iπ dz (∂k Np ) f (z) k+2 . z Proof. From (II.1.1), we have ∞ p (∂k An )zn+1 . (1 + k)z1−p+k + Np f (z) zk+1 + (∂k Np ) f (z) = n=1 With (II.1.3), it gives (II.4.17). Since ∂k Np = 0 if k > p, we obtain (II.4.16). (II.4.17) H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 363 With (II.4.2), we obtain L−k , k > 0, in terms of the (Lj )j 1 . Proposition. Let L−k = gk (z) = k j 1 Dj Lj , then gk (z) = k j +1 j 1 Dj z satisfies L−k [f (z)] φk (z) = z1−k + , f (z) f (z) f (z) f (z) f (z) , = gk (z) + gk (z) + gk (z) L−k f (z) f (z) f (z) L−k S(f )(z) = gk (z) + 2gk (z)S(f )(z) + gk (z) S(f )(z) . Part III III.1. The vector fields Rp (z) 2 f (z) k In [1], we related the asymptotic expansion of z2 ( ff (z) ) ( z ) in sum of powers of z (z) f (z) k ( z ) in sum of powers of f (z). In the same way, for g(z) with expansion to that of z ff (z) (1.1), we have g (z) g(z) k 1 z =1+ Vjk and g(z) z g(z)j j 1 (III.1.1) 2 k−j 1 g(z) k g (z) =1+ Vj . z g(z) z zj j 1 The coefficients Vjk are obtained with contour integrals. The first equation in (III.1.1) gives z1+k g (z) = g(z)1+k + Vj−k g(z)1+k−j + Vj−k g(z)1+k−j . (III.1.2) 1j k−1 j k Let g(z) be a univalent function outside the unit disc bn b2 g(z) = b0 z + b1 + + · · · + n−1 + · · · . z z (III.1.3) We assume b0 = 0. To g, it corresponds the sequence (b0 , b1 , . . . , bn , . . .) ∈ C N . ∂ ∂ 1 ∂ [g(z)] = z, [g(z)] = 1, . . . [g(z)] = n−1 , . . . . (III.1.4) ∂b0 ∂b1 ∂bn z Thus, if k 0, we have z1−k g (z) = R−k [g(z)] where ∂ ∂ ∂ R−k = b0 − b2 − · · · − (n − 1)bn . ∂bk ∂bk+2 ∂bn+k Consider the expansion du ug (u) j 1 g(u)−j χ(u) g(z) χ(z) = 2iπ g(u) u j ∈Z (III.1.5) 364 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 and then replace χ(z) by zχ(z)g (z), compare with Part II, 2 2 du u g (u) 1 zχ(z)g (z) = g(z)1−j g(u)j χ(u) 2 2iπ u g(u) j 0 1 du u2 g (u)2 = S1 + S2 . + g(z)1+j g(u)−j χ(u) 2 2iπ u g(u) (III.1.6) j 1 The first sum, 1 S1 = Rχ g(z) = g(z)1−j 2iπ j 0 du u2 g (u)2 g(u)j χ(u) g(u)2 u can be expanded in powers of zk , k 1. Assume that χ(z) = zp , where p ∈ Z, in that case, there exists a unique holomorphic vector field Rp on M ⊂ C N , satisfying Rp [g(z)] = Rχ (g(z)) where 2 2 du up g(z)2 u g (u) . S1 = Rp (g(z)) = 2iπ g(u)2 g(z) − g(u) u If χ(z) = z−k , with k 0, then S2 vanishes R−k [g(z)] = z1−k g (z). and k k If χ(z) = z with k 1, S2 = Jk (g(z)) = j =1 αj g(z)1+j and Jk is a polynomial. k En+1 Rk g(z) = z1+k g (z) − Jk g(z) = E0k z + E1k + . zn (III.1.7) n1 Thus Rk (g(z)) = Rk [g(z)] with the partial differential operator Rk = k ∂ n0 En ∂bn . Proposition. The polynomials Jk are given by 1 w2 u2 g (u)2 = Jk (w) k . 2 g(u) (g(u) − w) u (III.1.8) k1 The (Enk ) are given by Enk z−n u−k = − k1 n0 zg (z) u2 g (u)2 g(z)2 − . × 2 z−u z(g(u) − g(z)) g(u) Compare (III.1.9) with (1.13). With (III.1.8), we obtain w2 , b0 w3 3b1 J2 (w) = 2 − 2 w2 , b0 b0 J1 (w) = J3 (w) = w4 b03 − 4b1 b03 w3 + (6b12 − 5b0 b2 ) b03 w2 , . . . . (III.1.9) H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 365 Proposition. Let (Zk )k1 the operators defined by (1.3). For k 1, R1−k − Zk = b0 ∂ ∂ ∂ + b1 + · · · + bn . ∂bk−1 ∂bk ∂bn+k−1 For any k ∈ Z, let 2 k (g(z)) = g(z) Z 2iπ uk du ug (u) . g(u) (g(z) − g(u)) u (III.1.10) (III.1.11) k = j 0 W k ∂ on M such that There exists a unique holomorphic vector field Z j ∂bj −k where Zk [g(z)] = Zk (g(z)) is given by (II.1.11). For k 0, we have Z1+k = R−k − Z −k Z−k satisfies Z−k (g(z)) = z g(z). If k 1, then k [g(z)] = zk g(z) − νk g(z) Z (III.1.11)1 νk is a polynomial function, 1 ξg (ξ ) 1 × . νk (w) k = w2 ξ g(ξ ) g(ξ ) − w (III.1.12) k1 g(z) z Proof. Let h(z) = ∂ h(z) = 1, ∂b0 = b0 + b1 z +··· + ∂ 1 h(z) = , ∂b1 z ... bn zn + · · ·, we assume that b0 = 0. Then ∂ 1 h(z) = n . ∂bn z For k 1, z2−k h (z) = Zk [h(z)] = 1z Zk [g(z)], where Zk is given by (1.3). On the other hand, we have R−k [g(z)] = z1−k g (z) and h (z) = g z(z) − g(z) , we deduce [R1−k − z2 1−k Zk ](g(z)) = z g(z), this proves (III.1.10). For (III.1.11), let du 1 ug (u) g(u)−j u2+k h (u) . z2+k h (z) = g(z)j 2iπ g(u) u j ∈Z Since h (u) = g (u) we obtain z2+k h (z) = Rk [g(z)] + Jk (g(z)) − S with 1 du ug (u) g(u)j uk S = g(z)1−j 2iπ g(u) u j 0 1 du ug (u) g(u)−j uk . g(z)1+j + 2iπ g(u) u u j 1 − g(u) , u2 k (g(z)) = j 0 W k z1−j is given by (III.1.11). Let S = S1 + S2 . For any k ∈ Z, S1 = Z j k = j 0 W k ∂ . We put Z j ∂bj If k 0, S2 vanishes and the integrand (III.1.11) has a pole only at u = z, we have 1−k = R1−k − Zk and Z 1−k is given by k (g(z)) = zk g(z). Thus, for k 1, we have Z Z 366 H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 (III.1.10). If k 1, the integrand (III.1.11) has a pole at u = z and a pole at u = 0, the residue at u = 0 is given by S2 = g(z)2 2iπ g(u)k − g(z)k du ug (u) uk = × αj g(z)1+j = νk g(z) k g(u) g(u) g(u) − g(z) u k j =1 and the polynomials νk are obtained with (III.1.12). k satisfy Remark. With (III.1.12) and (III.1.11)1, it is easy to verify that the (Wjk )k1 in Z λ(ξ, z) = Wjk z1−j ξ −k = j 0 k1 g(z)2 zg(z) ξg (ξ ) − × . ξ −z g(ξ ) g(ξ ) − g(z) Moreover, let Sg (ξ ) the Schwarzian derivative of g, then ∂λ 1 g (ξ )2 1 S = −ξg(ξ ) (ξ ) − − ξg (ξ ) − g (ξ ). g 2 ∂z z=ξ 6 g(ξ ) 2 III.2. The Faber polynomials (Gn )n0 of g(z). The Gn (f (z))n0 Let g(z) be given by (III.1.3), its derivative g (z) = b0 − b2 z2 − ···− nbn+1 zn+1 − · · · and 1 zg (z) Gn (w) n , =1+ g(z) − w z n1 then 1 Gn g(z) = zn + γnk k . z (III.2.1) k1 Let f (z) = z(1 + n1 cn zn ), we have Gn (f (z)) = Gn (0) + k1 pkn zk . The matrix P = (pkn ) is given by the generating function ξg (ξ ) =1+ Gn (0)ξ −n + pin zi ξ −n . g(ξ ) − f (z) n1 (III.2.2) n1 i1 Let P the matrix complex conjugated of P and P t the transposed matrix, then the coefficients of the matrix P P t are given by ξg (ξ ) 2 dξ 1 = P P t ki zi zk . 2iπ g(ξ ) − f (z) ξ ∂D The proof is straightforward. i,k H. Airault, J. Ren / Bull. Sci. math. 126 (2002) 343–367 367 Acknowledgements This work was completed while J. Ren visited in July 2001 the INSSET at SaintQuentin (Université de Picardie). J. Ren is very grateful to the University of Picardie for his enjoyable stay. References [1] H. Airault, P. Malliavin, Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl. 80 (6) (2001) 627–667. [2] S. Bergman, The Kernel Function and Conformal Mapping, 2nd edn., Amer. Math. Soc. Math. Surveys, Vol. 5, American Mathematical Society, Providence, RI, 1970, p. 64. [3] S. Gong, The Bieberbach Conjecture, AMS/IP Studies in Advanced Mathematics, Vol. 12, 1999. [4] A.A. Kirillov, Geometric approach to discrete series of unirreps for Vir., J. Math. Pures Appl. 77 (1998) 735–746. [5] A.A. Kirillov, D.V. Yuriev, Representations of the Virasoro algebra by the orbit method, JGP 5 (3) (1988). [6] M. Schiffer, Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc. 54 (1948) 503– 517.
© Copyright 2025 Paperzz