IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. IV (Jan - Feb. 2015), PP 01-08
www.iosrjournals.org
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological
Space on Fuzzy Sets
Assist.Prof. Dr.Munir Abdul Khalik AL-Khafaji Gazwanhaider Abdul Hussein
AL-Mustinsiryah University \ College of Education \ Department ofMathematics
Abstract: The aim of this paper to introduce and study fuzzy ๐ฟ-open set and the relations of some other class of
fuzzy open sets like (R-open set ,๐-open set , ๐พ-open set , โ-open set) , introduce and study some types of fuzzy
๐ฟ-separation axioms in fuzzy topological space on fuzzy sets and study the relations between of themand study
some properties and theorems on this subject
I. Introduction
The concept of fuzzy set was introduced by Zedeh in his classical paper [1] in 1965.The fuzzy
topological space was introduced by Chang [2] in 1968. Zahran [3] has introduced the concepts of fuzzy ฮด-open
sets, fuzzy ฮด-closed sets, fuzzy regular open sets, fuzzy regular closed sets. And LuayA.Al.Swidi,AmedS.A.Oon
[15] introduced the notion of ฮณ-open set, fuzzy ฮณ-closed set and studied some of its properties. N.V.Velicko[9]
introduced the concept of fuzzy ฮธ-open set, fuzzy ฮธ-closed set,the fuzzy separation axioms was defined
bySinha[10],And Ismail Ibedou[7]introduced anewsetting of fuzzy separation axioms. The purpose of the
present paper is to introduce and study the concepts of fuzzy ฮด-open sets and some types of fuzzy open set and
relationships between of them and study some types of fuzzy ฮด-separation axioms in fuzzy topological space on
fuzzy sets and study the relationships between of them and we examine the validity of the standard results.
1 .fuzzy topological space on fuzzy set
Definition 1.1 [4]Let X be a non empty set, a fuzzy set Aฬ in X is characterized bya function ฮผAฬ: X โ I , where
I = [ 0 ,1 ] which is written as Aฬ = {( x , ฮผA (x) ) : x โ X , 0 โค ฮผA (x)โค 1}, the collection of all fuzzy sets in
X will be denoted by I X ,that is I X = { Aฬ : Aฬ is a fuzzy sets in X} where ฮผAฬ is called the membership function .
Proposition1.2
Let Aฬ and Bฬ be two fuzzy sets in X with membership functions ฮผAฬ and ฮผBฬ respectively then for all x โ X : 1. Aฬ ๏ Bฬ โ ฮผA (x)โค ฮผBฬ (x).
2. Aฬ = Bฬ โ ฮผA (x)= ฮผBฬ (x).
3. Cฬ = Aฬ โฉBฬ โ C(x) = min{ฮผA (x) , ฮผBฬ (x) }.
4. Dฬ = Aฬ โช Bฬ โ D(x) = max{ฮผA (x), ฮผBฬ (x)}.
c
5. Bฬ the complement of Bฬ with membership function ฮผBฬ c (x)= ฮผA (x)โ ฮผBฬ (x) .
Definition1.3 [4]
A fuzzy point xr is a fuzzy set such that :
ฮผx (y)= r >0 if x = y , โ y โ X and ฮผx (y)= 0
r
r
The family of all fuzzy points of Aฬ will be denoted by FP(Aฬ) .
Remark 1.4 [6] : Let Aฬ โ I X then
[5]
if x โ y , โ y โ X
P(Aฬ) = { Bฬ : Bฬ โ I X , ฮผBฬ (x) โค ฮผA (x) } โx โ X .
Definition 1.5 [4]
A collection Tฬ of a fuzzy subsets of Aฬ , such that Tฬ ๏P(Aฬ) is said to be fuzzy topology on Aฬ if it satisfied the
following conditions
1. Aฬ ,ฯ โ Tอ
2. If Bฬ , Cฬ โ Tอ then Bฬ โฉ Cฬ โ Tอ
3. If Bฬ j โ Tอ
then โชj Bฬ j โ Tอ , j โ J
(Aฬ , Tอ) is said to be Fuzzy topological space and every member of Tอ is called fuzzy open set in Aฬ and its
complement is a fuzzy closed set .
DOI: 10.9790/5728-11140108
www.iosrjournals.org
1 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
2. On some types of fuzzy open set
Definition 2.1 [8,11,12,13,14]
A fuzzy set Bฬ in a fuzzy topological space (Aฬ ,Tอ) is said to be
1)
Fuzzy ฮด-open [resp.Fuzzyฮด-closed set ] set if ฮผInt Cl
B
x โค ฮผB x
[ฮผBฬ (x) โค ฮผCl (Int B ) (x)]The family of all fuzzy ฮด-open sets [resp. fuzzy ฮด-closed sets ]
in a fuzzy topological space (Aฬ ,Tอ) will be denoted by FฮดO(Aฬ) [resp. FฮดC(Aฬ)]
2)
Fuzzy regular open [Fuzzy regular closed ] set if :
๐๐ตฬ (๐ฅ)= ๐๐ผ๐๐ก (๐ถ๐ ๐ต ) (๐ฅ)[๐๐ตฬ (๐ฅ)= ๐๐ถ๐ ๐ผ๐๐ก ๐ต (๐ฅ)] , The family of all fuzzy regular open [fuzzy regular closed ]set
in Aฬ will be denoted by FRO(Aฬ)[ FRC(Aฬ)].
3)
Fuzzy โ-open set if for every point ๐ฅ๐ โ Bฬ there exist a fuzzy regular semi -open set ๐ in Aฬ such that
๐๐ฅ ๐ (๐ฅ) โค ๐๐ (๐ฅ) โค ๐๐ตฬ (๐ฅ) , Bฬ is called [Fuzzy โ-closed ] set if its complement is Fuzzโ-open set the family of
all Fuzzy โ-open [Fuzzy โ-closed ] sets in Aฬ will be denoted by FโO(Aฬ)[ FโC(Aฬ)].
4)
Fuzzy ๐พ โ ๐๐๐๐ [ ๐พ โ ๐๐๐๐ ๐๐ ] set if
๐๐ตฬ (๐ฅ) โคmax {๐๐ผ๐๐ก (๐ถ๐ ๐ตฬ ) (๐ฅ), ๐๐ถ๐(๐๐๐ก ๐ต ) ๐ฅ } , [๐๐ตฬ (๐ฅ) โฅ min {๐๐ผ๐๐ก (๐ถ๐
๐ตฬ ) (๐ฅ),
๐๐ถ๐(๐๐๐ก
๐ต )
๐ฅ }] The family
of all
fuzzy ๐พ โ open [fuzzy ๐พ โ closed] sets in Aฬ will be denoted by F๐พ๐(Aฬ) [ F๐พ๐ถ(Aฬ)].
5)
Fuzzy ๐-open [ ๐-closed ] set if ๐๐ต ๐ฅ =๐ ๐๐ผ๐๐ก ๐ต (๐ฅ) , [ ๐๐ต ๐ฅ = ๐๐๐ถ๐(๐ต ) (๐ฅ)]
The family of all fuzzy ๐-open (fuzzy ๐-closed ) sets in Aฬ will be denoted by F๐๐(Aฬ) [F๐C(Aฬ)].
Proposition 2.2
Let (Aฬ , Tฬ ) be a fuzzy topological space then :
1)
Every fuzzy ๐ฟ-open set (resp. fuzzy ๐ฟ-closed set) is fuzzy โ-open set (resp.fuzzy โ-closed set) [fuzzy
๐พ-open set (resp.fuzzy ๐พ-closed set ) ].
2)
Every fuzzy๐-open set (resp. fuzzy ๐-closed set) is fuzzy ๐พ-open set (resp. fuzzy ๐พ-closed set) [fuzzy
๐ฟ-open set (resp. fuzzy ๐ฟ-closed set , fuzzy โ-open set (resp.fuzzy โ-closed set) ]
3)
Every fuzzy regular open set (fuzzy regular closed set ) is fuzzy ๐ฟ-open set (resp. fuzzy ๐ฟ-closed set)
[fuzzy ๐พ-open set(resp. fuzzy ๐พ-closed set) , fuzzyโ-open set(resp.fuzzy โ-closed set )]
Proof : Obvious .
Remark 2.3
The converse of proposition (2.2) is not true in general as following examples shows
Examples 2.4
1)
Let X = { a , b } and ๐ต , ๐ถ , ๐ท are fuzzy subset in ๐ด where
๐ด = {( a , 0.9 ) , ( b , 0.9 ) } , ๐ต= { ( a , 0.0 ) , ( b , 0.7 ) } ,๐ถ = { ( a , 0.8 ) , ( b , 0.0 ) },๐ท = { ( a , 0.8 ) , ( b , 0.7
) , The fuzzy topology defined on ๐ด is Tอ = { โ
, ๐ด , ๐ต , ๐ถ , ๐ท }
๏ท
The fuzzy set ๐ท is a fuzzy โ-open set but not fuzzy๐ฟ โ open set (fuzzy regular open set , fuzzy ๐ โ
open set).
๏ท
let X = { a , b , c } and ๐ต , ๐ถ , ๐ท , ๐ธ are fuzzy subset in ๐ด where
๐ด = {( a , 0.9 ) , ( b , 0.9 ) , ( c , 0.9 ) } , ๐ต= { ( a , 0.3 ) , ( b , 0.3 ) , ( c , 0.4 ) }๐ถ = { ( a , 0.4 ) , ( b , 0.3
) , ( c , 0.4 ) } , ๐ท = { ( a , 0.5 ) , ( b , 0.5 ) , ( c , 0.4 ) }๐ธ = { ( a , 0.6 ) , ( b , 0.6 ) , ( c , 0.7 ), The
fuzzy topology defined on ๐ด is Tอ = { โ
, ๐ด , ๐ต , ๐ถ , ๐ท , ๐ธ }
๏ท
The fuzzy set ๐ต is a fuzzy ๐พ โ open set but not fuzzy ๐ฟ โ open set (fuzzy regular open set , fuzzy ๐ โ
open set).
2)
Let X ={ a , b , c } and Bฬ , Cฬ , Dฬ , Eฬ , ๐น be fuzzy subsets of Aฬ where:
Aฬ = {( a ,0.8 ) ,( b ,0.8 ) , ( c ,0.8 )} , Bฬ = {( a ,0.1 ) , ( b ,0.1 ) , ( c ,0.2)} , Cฬ = {( a ,0.2 ) , ( b , 0.1) , ( c
,0.2)}๐ท= {( a ,0.3 ) , ( b ,0.3 ) , ( c ,0.2 )} ,Eฬ ={( a ,0.4 ) , ( b ,0.4 ) , ( c ,0.5 )} ,๐น = {( a ,0.3 ) , ( b ,0.3 ) , ( c ,0.3 )}
The fuzzy topologies defined on Aฬ are Tอ = { ๐ , Aฬ , Bฬ , Cฬ , Dฬ }The fuzzy set ๐ธ is a fuzzy ๐ฟ-open set but not
fuzzy regular open set (fuzzy ๐-open set ).
Remark 2.5
Figure - 1 โ illustrates the relation between fuzzy ๐ฟ-open set and some types of fuzzy open sets.
DOI: 10.9790/5728-11140108
www.iosrjournals.org
2 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
III. Some Types Of Fuzzy Separation Axioms
Definition 3.1
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น ๐ป๐ โ space(F๐น๐ป๐ ) if for every pair of distinct fuzzy
points ๐ฅ๐ , ๐ฆ๐ก in Aฬ there exist Bฬ โ F๐ฟO(Aฬ) such that either
๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) , ๐ฆ๐ก ๐ Bฬ or ๐๐ฆ๐ก (๐ฆ) <
๐๐ตฬ (๐ฆ), ๐ฅ๐ ๐ Bฬ .
Theorem 3.2
If (Aฬ , Tฬ ) is a fuzzy๐ฟ๐0 - space then for every pair of distinct fuzzy points ๐ฅ๐ ,๐ฆ๐ก where ๐๐ฅ ๐ (๐ฅ) < ๐๐ดฬ (๐ฅ) ,
๐๐ฆ๐ก (๐ฅ) < ๐๐ดฬ (๐ฅ) then either ๐ฟ- cl(๐ฅ๐ ) ๐ ๐ฆ๐ก or ๐ฟ- cl(๐ฆ๐ก ) ๐ ๐ฅ๐ .
Proof: Let ๐ฅ๐ ,๐ฆ๐ก be two distinct fuzzy points such that
๐๐ฅ ๐ (๐ฅ) < ๐๐ดฬ (๐ฅ) , ๐๐ฆ๐ก (๐ฅ) < ๐๐ดฬ (๐ฅ) then there exist a fuzzy ๐ฟ- open set Bฬ such that either ๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) , Bฬ
๐ ๐ฆ๐ก or ๐๐ฆ๐ก (๐ฅ) < ๐๐ตฬ (๐ฅ) , Bฬ ๐ ๐ฅ๐
If ๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) , ๐ตฬ ๐ ๐ฆ๐ก then ๐ต ๐ ๐ ๐ฅ๐ , ๐๐ฆ๐ก (๐ฅ) โค ๐๐ต ๐ (๐ฅ)
Since ๐ต ๐ is a fuzzy ๐ฟ- closed set therefore ๐๐ฟ๐๐ (๐ฆ๐ก ) (๐ฅ) โค ๐๐ต ๐ (๐ฅ)
Hence ๐ฟ- cl(๐ฆ๐ก ) ๐ ๐ฅ๐
Similarly if ๐๐ฆ๐ก (๐ฅ) < ๐๐ตฬ (๐ฅ), Bฬ ๐ ๐ฅ๐ โ
Definition 3.3 :
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น ๐ป๐ โ space (F๐น๐ป๐ ) if for every pair of distinct fuzzy
points ๐ฅ๐ , ๐ฆ๐ก in Aฬ there exist two Bฬ , ๐ถ โ F๐ฟO(Aฬ) such that ๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) , ๐ฆ๐ก ๐ Bฬ and ๐๐ฆ๐ก (๐ฆ) < ๐๐ถ (๐ฆ),
๐ฅ๐ ๐ ๐ถ .
Proposition 3.4 :
Every fuzzy ๐ฟ๐1 โ space is a fuzzy ๐ฟ๐0 โ space .
Proof : Obvious .
Remark 3.5 :
The converse of proposition (3.4) is not true in general as shown in the following example .
Example 3.6 :
Let X={ a , b } and
๐ต , ๐ถ , ๐ท
are
fuzzy subset of ๐ด
where:
๐ด = {( a , 0.4 ) , ( b , 0.4 )} , ๐ต = {( a , 0.4) , ( b , 0.1)} ,๐ถ = {( a , 0.1 ) , ( b , 0.1 )} , ๐ท = {( a , 0.4 ) , ( b , 0.2
)} ,๐ธ = {( a , 0.3 ) , ( b , 0.1)}, ๐ = { โ
, ๐ด , ๐ต , ๐ถ , ๐ท } be a fuzzy topology on ๐ด and the F๐ฟO(๐ด) = {โ
, ๐ด , ๐ถ ,
๐ธ } Then the space (๐ด , ๐ ) is a fuzzy ๐ฟ๐0 - space but notfuzzy ๐ฟ๐1 โ space
Theorem 3.7:
If ( Aฬ , Tฬ ) is a fuzzy Topological space then the following statements are equivalents :
1)
( Aฬ , Tฬ ) is a fuzzy ๐ฟ๐1 - space.
DOI: 10.9790/5728-11140108
www.iosrjournals.org
3 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
2)
For every maximal fuzzy points ๐ฅ๐ , ๐ฆ๐ก in Aฬ , there exists a fuzzy open nbhds sets Uฬ and Vฬ o f ๐ฅ๐
and ๐ฆ๐ก respectively in Aฬ such that ๐๐ฅ ๐ (๐ฅ)= min {{ ๐๐ฬ (๐ฅ),๐๐ฬ (๐ฆ)}, { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ)}} and ๐๐ฆ๐ก (๐ฆ)= min {{
๐(๐ ) (๐ฅ), ๐(๐ ) (๐ฆ) } , { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ) }}.
3)
For every maximal fuzzy points ๐ฅ๐ , ๐ฆ๐ก in Aฬ , there exists a fuzzy ๐ฟ-open nbhds sets Uฬ and Vฬ of ๐ฅ๐
and ๐ฆ๐ก respectively in Aฬ such that ๐๐ฅ ๐ (๐ฅ)= min {{ ๐๐ฬ (๐ฅ),๐๐ฬ (๐ฆ)}, { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ)}} and ๐๐ฆ๐ก (๐ฆ)= min {{
๐(๐ ) (๐ฅ), ๐(๐ ) (๐ฆ) } , { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ) }}.
Proof:
( 1โน 2 ) :- Let ๐ฅ๐ , ๐ฆ๐ก โ MFP(Aฬ) , โ Uฬ , Vฬ โ F๐ฟO(Aฬ)
such that ๐๐ฅ ๐ (๐ฅ) < ๐๐ฬ (๐ฅ) , ๐ฆ๐ก ๐ Uฬ and
๐๐ฆ๐ก (๐ฆ) < ๐(๐ ) (๐ฆ), ๐ฅ๐ ๐ Vฬ.then๐๐ฅ ๐ (๐ฅ)=๐๐ฬ (๐ฅ)=๐๐ด (๐ฅ) ,
๐๐ฆ๐ก (๐ฆ)+๐๐ฬ (๐ฆ) โค ๐๐ด (๐ฆ) and
๐๐ฆ๐ก (๐ฆ)=๐(๐ ) (๐ฆ)=๐๐ด (๐ฆ) , ๐๐ฅ ๐ (๐ฅ)+ ๐(๐ ) (๐ฅ) โค ๐๐ด (๐ฅ)then ๐๐ฬ (๐ฆ)= 0 , ๐(๐ ) (๐ฅ)= 0 , and since Uฬ , Vฬ โ
F๐ฟO(Aฬ) then Uฬ , Vฬ โ Tฬ
Therefore ๐๐ฅ ๐ (๐ฅ)= min {{ ๐๐ฬ (๐ฅ),๐๐ฬ (๐ฆ)}, { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ)}}
and๐๐ฆ๐ก (๐ฆ)= min {{ ๐(๐ ) (๐ฅ), ๐(๐ ) (๐ฆ) } , { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ) }}.
( 2โน 3 ) :- Obvious.
( 3 โน 1 ) :- Let ๐ฅ๐ , ๐ฆ๐ โ FP(Aฬ) , then every ๐ฅ๐ , ๐ฆ๐ก โ MFP(Aฬ) , there exist Uฬ , Vฬ โ F๐ฟO(Aฬ) such
that
๐๐ฅ ๐ (๐ฅ)= min {{ ๐๐ฬ (๐ฅ),๐๐ฬ (๐ฆ)}, { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ)}} and
๐๐ฆ๐ก (๐ฆ)= min {{ ๐(๐ ) (๐ฅ), ๐(๐ ) (๐ฆ) } , { ๐๐ฅ ๐ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ) }}.
then๐๐ฅ ๐ (๐ฅ)=๐๐ฬ (๐ฅ)=๐๐ด (๐ฅ) , ๐๐ฬ (๐ฆ)= 0 and
๐๐ฆ๐ก (๐ฆ)=๐(๐ ) (๐ฆ)= ๐๐ด (๐ฆ) , ๐(๐ ) (๐ฅ)= 0
then๐ฆ๐ก ๐ Uฬ and ๐ฅ๐ ๐ Vฬ, Since ๐๐ฅ ๐ (๐ฅ) < ๐๐ฅ ๐ (๐ฅ) and ๐๐ฆ๐ (๐ฆ) < ๐๐ฆ๐ก (๐ฆ) , โ n , m โ I
then๐๐ฅ ๐ (๐ฅ) < ๐๐ฬ (๐ฅ), ๐ฆ๐ ๐ Uฬ and ๐๐ฆ๐ (๐ฆ) < ๐(๐ ) (๐ฆ) , ๐ฅ๐ ๐ Vฬ Hence the space ( Aฬ , Tฬ ) is a fuzzy ๐ฟ๐1 - space.
โ
Definition 3.8:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น ๐ป๐ โ space (F๐น๐ป๐ ) if for every pair of distinct fuzzy
points ๐ฅ๐ , ๐ฆ๐ก in Aฬ there exist two Bฬ , ๐ถ โ F๐ฟO(Aฬ) such that
๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) , ๐๐ฆ๐ก (๐ฆ) < ๐๐ถ (๐ฆ) and
๐ตฬ ๐ ๐ถ .
Theorem 3.9 :
A fuzzy topological space (๐ด, ๐) is a fuzzy ๐ฟ-๐2 โspace if and only if min{๐๐น๐๐
,๐๐ฅ ๐ (๐ฅ) < ๐๐ฬ (๐ฅ) } < ๐๐ฆ๐ก (๐ฅ) any fuzzy point such that ๐๐ฆ๐ก (๐ฅ) < ๐๐ด (๐ฅ) .
๐
(x) : ๐ is a fuzzy ๐ฟ-open set
Proof :
(โน) Let (๐ด, ๐) be a fuzzy ๐ฟ-๐2 โspace and ๐ฅ๐ , ๐ฆ๐ก be a distinct fuzzy points in ๐ด such that ๐๐ฅ ๐ (๐ฅ) < ๐๐ด (๐ฅ) ,
๐๐ฆ๐ก (๐ฅ) < ๐๐ด (๐ฅ) and
๐๐ฆ๐ (๐ฅ) = ๐๐ด (๐ฅ) - ๐๐ฆ๐ก (๐ฅ)then๐๐ฆ๐ (๐ฅ) < ๐๐ด (๐ฅ) and there exists two fuzzy ๐ฟ-open set ๐ , ๐บ in ๐ด such that
๐๐ฅ ๐ (๐ฅ) < ๐๐ฬ (๐ฅ) , ๐๐ฆ๐ (๐ฅ) < ๐๐บ (๐ฅ) , ๐ ๐ ๐บ , ๐๐ฬ (๐ฅ) โค ๐๐บ ๐ (๐ฅ) and
๐๐ฟ๐๐ (๐ ) (๐ฅ) โค ๐๐ฟ๐๐ (๐บ ๐ ) (๐ฅ) = ๐๐บ ๐ (๐ฅ)
Since ๐๐ฆ๐ (๐ฅ) < ๐๐บ (๐ฅ) and ๐๐ฆ๐ (๐ฅ) = ๐๐ด (๐ฅ) - ๐๐ฆ๐ก (๐ฅ),Then
๐๐ด (๐ฅ) - ๐๐ฆ๐ก (๐ฅ) < ๐๐บ (๐ฅ) ,๐๐บ ๐ (๐ฅ) < ๐๐ด (๐ฅ) - ๐๐ฆ๐ (๐ฅ) and ๐๐บ ๐ (๐ฅ) < ๐๐ฆ๐ก (๐ฅ)
Since ๐๐ฟ๐๐ (๐ ) (๐ฅ) โค ๐๐บ ๐ (๐ฅ) < ๐๐ฆ๐ก (๐ฅ) then ๐๐ฟ๐๐ (๐ ) (๐ฅ) < ๐๐ฆ๐ก (๐ฅ)
Hence min{๐๐น๐๐ ๐ ๐ (x) : ๐ = 1,โฆโฆ, n }< ๐๐ฆ๐ก (๐ฅ)
(โธ) Suppose that given condition hold ,๐ฅ๐ , ๐ฆ๐ก are distinct fuzzy points in ๐ด such that ๐๐ฅ ๐ (๐ฅ) < ๐๐ด (๐ฅ) ,
๐๐ฆ๐ก (๐ฅ) < ๐๐ด (๐ฅ) and
Let ๐๐ฆ๐ (๐ฅ) = ๐๐ด (๐ฅ) - ๐๐ฆ๐ก (๐ฅ) then ๐๐ฆ๐ (๐ฅ) < ๐๐ด (๐ฅ)
And ๐๐ฟ๐๐ (๐ ) (๐ฅ) < ๐๐ฆ๐ (๐ฅ) for every ๐๐ฅ ๐ (๐ฅ) < ๐๐ฬ (๐ฅ) โค ๐๐ฟ๐๐ (๐ ) (๐ฅ)
, since ๐๐ฆ๐ (๐ฅ) = ๐๐ด (๐ฅ) - ๐๐ฆ๐ก (๐ฅ)
Then ๐๐ฟ๐๐ (๐ ) (๐ฅ) < ๐๐ด (๐ฅ) - ๐๐ฆ๐ก (๐ฅ) and ๐๐ด (๐ฅ) - ๐๐ฆ๐ (๐ฅ) < ๐๐ฟ๐๐๐ก (๐ ๐ ) (๐ฅ)hence ๐๐ฆ๐ก (๐ฅ) < ๐๐ฟ๐๐๐ก (๐ ๐ ) (๐ฅ)
let๐๐บ (๐ฅ) = ๐๐ฟ๐๐๐ก (๐ ๐ ) (๐ฅ) and since ๐๐ฟ๐๐๐ก (๐ ๐ ) (๐ฅ) โค ๐(๐ ๐ ) (๐ฅ),Then
๐๐ฆ๐ก (๐ฅ) < ๐๐บ (๐ฅ)and๐๐บ (๐ฅ) โค ๐(๐ ๐ ) (๐ฅ) we get ๐ ๐ ๐บ
Hence the space (๐ด, ๐) is a fuzzy ๐ฟ-๐2 โspace โ
DOI: 10.9790/5728-11140108
www.iosrjournals.org
4 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
Proposition 3.10 :
Every fuzzy ๐ฟ๐2 โ space is a fuzzy ๐ฟ๐1 โ space .
Proof : Obvious .
Remark 3.11 :
The converse of proposition (3.10) is not true in general as shown in the following example .
Example 3.12 :
Let X={ a , b } and
๐ต , ๐ถ , ๐ท ,๐ธ
are fuzzy subset of ๐ด
where:
๐ด = {( a , 0.7 ) , ( b , 0.9 )},๐ต = {( a , 0.5) , ( b , 0.0)} ,๐ถ = {( a , 0.0 ) , ( b , 0.7 )} ,๐ท = {( a , 0.5 ) , ( b , 0.7 )},๐ธ =
{( a , 0.1 ) , ( b , 0.8 )} , ๐น = {( a , 0.6 ) , ( b , 0.1 )} , ๐ = { โ
, ๐ด , ๐ต , ๐ถ ,๐ท} be a fuzzy topology on ๐ด and the
F๐ฟO(๐ด) = {โ
, ๐ด , ๐ต , ๐ถ , ๐ท, ๐ธ ,๐น } then the space (๐ด , ๐ ) is a fuzzy ๐ฟ๐1 - space but not fuzzy๐ฟ๐2 โ space
Definition 3.13:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น ๐ป๐๐ โ space (F๐น๐ป๐๐) if for every pair of distinct fuzzy
๐
points ๐ฅ๐ , ๐ฆ๐ก in Aฬ there exist two Bฬ , ๐ถ โ F๐ฟO(Aฬ) such that
๐ฟ๐๐(๐ต ) ๐ ๐ฟ๐๐(๐ถ ).
๐
๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) ,
๐๐ฆ๐ก (๐ฅ) < ๐๐ถ (๐ฅ)
and
Proposition 3.14 :
Every fuzzy ๐ฟ๐21 - space is a fuzzy ๐ฟ๐2 - space .
2
Proof :
Let (๐ด , ๐ ) be a fuzzy ๐ฟ๐21 - space , then every pair of distinct fuzzy points ๐ฅ๐ , ๐ฆ๐ก in Aฬ there exist two Bฬ , ๐ถ โ
2
F๐ฟO(Aฬ) such that ๐๐ฅ ๐ (๐ฅ) < ๐๐ตฬ (๐ฅ) ,๐๐ฆ๐ก (๐ฅ) < ๐๐ถ (๐ฅ) and ๐ฟ๐๐(๐ต ) ๐ ๐ฟ๐๐(๐ถ )
Since ๐๐ตฬ (๐ฅ) โค ๐ฟ๐๐(๐ต ) , ๐๐ถ (๐ฅ) โค ๐ฟ๐๐(๐ถ )
Then We get ๐ตฬ ๐ ๐ถ , hence (๐ด , ๐ ) is a fuzzy ๐ฟ๐2 - space
Remark 3.15 :
The converse of proposition (3.14) is not true in general as shown in the following example
.Example 3.16 :
Let X={ a , b } and , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4 ,๐ต5 , ๐ต6 , ๐ต7 , ๐ต8 , are fuzzy subset of ๐ด where:
๐ด = {( a , 0.9 ) , ( b , 0.9 )} , ๐ต1 = {( a , 0.8) , ( b , 0.1)} , ๐ต2 = {( a , 0.0) , ( b , 0.7)} ,
๐ต3 = {( a , 0.8) , ( b , 0.7)}, ๐ต4 = {( a , 0.0) , ( b , 0.1)} , ๐ต5 = {( a , 0.0) , ( b , 0.9)} ,
๐ต6 = {(
a , 0.8) , ( b , 0.9)} , ๐ต7 = {( a , 0.0) , ( b , 0.8)} ๐ต8 = {( a , 0.8) , ( b , 0.0)} , ๐ = { โ
, ๐ด , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4
,๐ต5 , ๐ต6 } be a fuzzy topology on ๐ด and the F๐ฟO(๐ด) = {โ
, ๐ด , ๐ต1 , ๐ต2 , ๐ต4 , ๐ต7 , ๐ต8 }, then the space (๐ด , ๐ ) is
a fuzzy ๐ฟ๐2 - space but not fuzzy ๐ฟ๐21 โspace
2
Definition 3.17: A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น- regular space ( F๐นR) if for each
fuzzy point ๐ฅ๐ in Aฬ and each fuzzy closed set ๐น with ๐ฅ๐ ๐ ๐น there exists ๐ต , ๐ถ โF๐ฟO(Aฬ) such that ๐๐ฅ ๐ (๐ฅ) โค
๐๐ตฬ (๐ฅ), ๐๐น (๐ฅ) โค ๐๐ถ (๐ฅ)โ x โ X and ๐ต ๐ ๐ถ
Definition 3.18 :
A fuzzy topological space ( Aฬ , Tฬ ) is said to be fuzzy ๐นโ - regular space (F๐นโ R) if for each fuzzy point ๐ฅ๐ in Aฬ
and each fuzzy ๐ฟ- closed set ๐น with ๐ฅ๐ ๐ ๐น there exists๐ต , ๐ถ โF๐ฟO(Aฬ) such that ๐๐ฅ ๐ (๐ฅ) โค ๐๐ตฬ (๐ฅ) , ๐๐น (๐ฅ) โค
๐๐ถ (๐ฅ)โ x โ X and ๐ต ๐ ๐ถ
Proposition 3.19 :
Every fuzzy ๐ฟ- regular space is a fuzzy ๐ฟ โ - regular space.
Proof: Obvious .
Remark 3.20 :
The converse of proposition (3.19) is not true in general as shown in the following example
Example 3.21 :
Let X={ a , b } and ๐ต , ๐ถ , ๐ท ,๐ธ , ๐น is a fuzzy subset of ๐ด where:
๐ด = {( a , 0.7 ) , ( b , 0.8 )} , ๐ต = {( a , 0.0 ) , ( b , 0.7)} ,๐ถ = {( a , 0.6 ) , ( b , 0.0)} , ๐ท = {( a , 0.6 ) , ( b , 0.7
)}, ๐ธ = {( a , 0.7 ) , ( b , 0.0 )} , ๐น = {( a , 0.0 ) , ( b , 0.8 )}
DOI: 10.9790/5728-11140108
www.iosrjournals.org
5 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
๐ = {โ
, ๐ด , ๐ต , ๐ถ , ๐ท }be a fuzzy topology on ๐ด and the F๐ฟO(๐ด) = {โ
, ๐ด ,๐ต , ๐ถ , ๐ท ,๐ธ , ๐น } Then the space
(๐ด , ๐ ) is a fuzzy๐ฟ โ- regular space but not fuzzy ๐ฟ- regular space.
Definition 3.22:A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น ๐ป๐ โ space (F๐น๐ป๐ ) if it is๐ฟ- regular
space ( F๐ฟR)as well as fuzzy ๐ฟ ๐1 โ space (F๐ฟ๐1 ) .
Proposition 3.23 :
Every fuzzy ๐ฟ๐3 - space is a fuzzy ๐ฟ๐21 - space .Proof :
2
Let (๐ด, ๐ ) be a fuzzy ๐ฟ๐3 - space ,
Then (๐ด, ๐ ) be a fuzzy ๐ฟ - regular space, for every fuzzy point ๐ฅ๐ โ FP(Aฬ) and ๐น โ FC(Aฬ)
Such that ๐ฅ๐ ๐ ๐น , ๐น = ๐ฟ๐๐(๐น )
And since (๐ด, ๐ ) be a fuzzy ๐ฟ๐1 - space then We get {๐ฅ๐ } is a fuzzy ๐ฟ-closed set
Let {๐ฅ๐ } = ๐ตis a fuzzy ๐ฟ-closed set
Then ๐ฟ๐๐(๐ต ) ๐ ๐ฟ๐๐(๐น ) , hence (๐ด, ๐ ) is a fuzzy ๐ฟ๐21 - spaceโ
2
Remark 3.24 :The converse of proposition (3.23) is not true in general as shown in the following example .
Example 3.25 :Let X={ a , b } and , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4 ,๐ต5 , ๐ต6 , ๐ต7 , ๐ต8 , ๐ต9 , ๐ต10 , ๐ต11 , are fuzzy subset of ๐ด
where:๐ด = {( a , 0.8 ) , ( b , 0.9 )} , ๐ต1 = {( a , 0.8) , ( b , 0.0)} ,
๐ต2 = {( a , 0.0) , ( b , 0.7)} , ๐ต3 = {( a
, 0.8) , ( b , 0.7)}, ๐ต4 = {( a , 0.1) , ( b , 0.9)} , ๐ต5 = {( a , 0.6) , ( b , 0.0)} , ๐ต6 = {( a , 0.1) , ( b , 0.0)} , ๐ต7 =
{( a , 0.6) , ( b , 0.9)}
๐ต8 = {( a , 0.1) , ( b , 0.7)} , ๐ต9 = {( a , 0.6) , ( b , 0.7)} , ๐ต10 = {( a , 0.0) ,
( b , 0.8)} , ๐ต11 = {( a , 0.7) , ( b , 0.0)} ,๐ = { โ
, ๐ด , ๐ต1 , ๐ต2 , ๐ต3 , ๐ต4 ,๐ต5 , ๐ต6 , ๐ต7 , ๐ต8 , ๐ต9 } be a fuzzy
topology on ๐ด and the F๐ฟO(๐ด) = {โ
, ๐ด , ๐ต1 , ๐ต2 , ๐ต4 , ๐ต5 , ๐ต6 , ๐ต7 , ๐ต10 , ๐ต11 }, then the space (๐ด , ๐ ) is a
fuzzy ๐ฟ๐21 - space but not fuzzyfuzzy ๐ฟ๐3 โ space .
2
Definition 3.26 :A fuzzy topological space ( Aฬ , Tฬ ) is said to be fuzzy ๐นโ ๐ป๐ โ space(F๐นโ ๐ป๐ ) if it is๐ฟ โ- regular
space ( F๐ฟ โR) as well as fuzzy ๐ฟ ๐1 โ space (F๐ฟ๐1 )
Proposition 3.27 :Every fuzzy ๐ฟ๐3 - space is a fuzzy ๐ฟ โ๐3 โ space.
Proof: Obvious
Proposition 3.28 :Every fuzzy ๐ฟ โ ๐3 - space is a fuzzy ๐ฟ๐21 - space .
2
Proof: Obvious
Remark 3.29: The converse of proposition (3.27)and (2.28) is not true in general
Definition 3.30:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐น- normal space ( F๐นN) if for each two fuzzy closed sets
๐น1 and ๐น2 in Aฬ such that ๐น1 ๐ ๐น2 , there exists
๐1 , ๐2 โF๐ฟO(Aฬ) such that ๐๐น1 (๐ฅ) โค ๐๐1 (๐ฅ) , ๐๐น2 (๐ฅ) โค ๐๐2 (๐ฅ) and ๐1 ๐ ๐2 .
Definition 3.31:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐
โ - normal space ( F๐
โ N) if for each two fuzzy ฮด-closed
sets F1 and F2 in Aฬ such that F1 q F2 , there exists U1 , U2 โFฮดO(Aฬ) such that ฮผF 1 (x) โค ฮผU 1 (x) , ฮผF 2 (x) โค
ฮผU 2 (x) and U1 q U2 .
Proposition 3.32:
Every fuzzy ฮด- normal space is a fuzzy ฮดโ - normal space
Proof: Obvious .
Definition 3.33:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐
๐๐ โ space (F๐
๐๐ ) if it is
ฮด-normal space ( FฮดN)as well as fuzzy ฮด T1 โ space (FฮดT1 ) .
DOI: 10.9790/5728-11140108
www.iosrjournals.org
6 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
Definition 3.34:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be fuzzy ๐
โ ๐๐ โ space (F๐
โ ๐๐ ) if it isฮดโ - normal space ( Fฮดโ N) as
well as fuzzy ฮด T1 โ space (FฮดT1 )
Proposition 3.35:
Every fuzzy ฮดT4 โ space is a fuzzy ฮดโ T4 โ space
Proof: Obvious
Proposition 3.36 :
Every fuzzy ฮดT4 โ space is a fuzzy ฮดT3 โ space
Proof: Obvious
Remark 3.37:
The converse of proposition (3.35) and (3.36) is not true in general
Definition 3.38:
A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐
-completely normal if for any two fuzzy ฮด-separated
sets B , C in Aฬ there exist D , E โFฮดO(Aฬ) such that ฮผB (x) โค ฮผD (x) ,
ฮผC (x) โค ฮผE x and D q E
Definition 3.39: A fuzzy topological space ( Aฬ , Tฬ ) is said to be Fuzzy ๐
๐๐ โ space (F๐
๐๐ ) if it isฮดcompletely normal space as well as fuzzy ฮด T1 โ space (FฮดT1 ) .
Proposition 3.40:
Every fuzzy ฮดT5 โ space is a fuzzy ฮดT4 โ space
Proof: Obvious
Remark 3.41 :
The converse of proposition (3.40) is not true in general
Remark 3.42 :
Figure (2) illustrate the relations among a certain types of fuzzy
1
ฮดTi โ space , i = 0 , 1 , 2 , 2 2,3,4,5.
References
[1].
[2].
[3].
[4].
[5].
[6].
Zadeh L. A."Fuzzy sets", Inform.Control 8, 338-353 (1965).
Chang, C. L. "Fuzzy Topological Spaces", J. Math. Anal.Appl., Vol.24, pp.182-190,
(1968).
A.M.Zahran "fuzzy ฮด-continuous , fuzzy almost Regularity (normality) on fuzzy
topology No fuzzy set"fuzzy
mathematics,Vol.3,No.1,1995,pp.89-96
Kandil1 A. , S. Saleh2 and M.M Yakout3 โFuzzy Topology On Fuzzy Sets: Regularity and Separation Axiomsโ American
Academic & Scholarly Research Journal Vol. 4, No. 2, March (2012).
Mashhour A.S. and Ghanim M.H.โFuzzy closure spacesโJ.Math.Anal.And Appl.106,pp.145-170(1985).
Chakraborty M. K. and T. M. G. AhsanullahโFuzzy topology on fuzzy sets and tolerance topology โ Fuzzy Sets and Systems,
45103-108(1992).
DOI: 10.9790/5728-11140108
www.iosrjournals.org
7 |Page
On some types of fuzzy separation axioms in fuzzy topological space on fuzzy sets
[7].
[8].
[9].
[10].
[11].
[12].
[13].
[14].
[15].
Ismail Ibedou," A New Setting of fuzzy separation axioms"Department of Mathematics, Faculty of Science, Benha University,
Benha, (13518), Egypt
ShymaaAbdAlhassan A " On fuzzy semi-separation Axioms in fuzzy topological space on fuzzy sets"M.Sc Thesis , College of
Eduction , Al-Mustansiritah University (2013).
N.V.Velicko" H-closed topological space"Amer.math.soc.Transl.(2),78(1968), 103-118.
Sinha,S.P." separation axioms in fuzzy topological spaces"suzzy sets and system,45:261-270(1992).
S.S.Benchalli,R.S.Wali and BasavarajM.Ittanagi " On fuzzy rw-closed sets And fuzzy rw-open sets in fuzzy topological
spaces"Int.J.mathematical sciences and Applications , Vol.1,No.2,May 2011.
Shahla H. K. โOn fuzzy โ - open sets in fuzzy topological spacesโ M. Sc. Thesis , college of science , Salahddin Univ. (2004).
R.UshaParameswari and K.Bageerathi" On fuzzy ฮณ-semi open sets and fuzzy ฮณ-semi closed sets in fuzzy topological spaces" IOSR
Journal of mathematics ,Vol 7, pp 63-70, (May-Jun. 2013).
M.E. El-shafei and A. Zakari," ฮธ-generalized closed sets in fuzzy topological spaces " The Arabian Journal for science and
Engineering 31(2A) (2006), 197-206.
LuayA.Al.Swidi,AmedS.A.Oon, Fuzzy ฮณ-open sets and fuzzy ฮณ-closed sets " Americal Journal of Scientific research,27(2011),6267.
DOI: 10.9790/5728-11140108
www.iosrjournals.org
8 |Page
© Copyright 2025 Paperzz