Open DATA: Nutrient loading to the sea VEMALA v.3 – nutrients and elements transport and processes in rivers and Nitrogen loading lakes from forested catchments Marie Korppoo, Markus Huttunen 12/02/2015 Marie Korppoo VEMALA catchment meeting, 25/09/2012 Aim of the work ● Provide estimate of nutrient loading to the Baltic Sea: ○ For each river in Finland ○ Present loading (as daily values), short term forecast ○ Scenarios: climate change, human activities • Agriculture • Forestry • Point sources, scattered dwelling, atmospheric deposition ● Model development was needed ○ Nutrient leaching, transport and retention in watersheds ○ Biologically available fractions ● Provides also: ○ Nutrient loading for inland lakes (58 000 lakes) ○ Scenarios for nutrient loading from agriculture • Field scale, different crop, farming actions, fertilization level 2 VEMALA v.3 Water quality model developed partly under the MMEA project to model bioavailable nutrients in freshwater ecosystems. It simulates nutrient processes, leaching and transport on land, and in rivers and lakes. It simulates from the Finnish water basins to the Baltic Sea: Nutrient gross loading Retention in lakes and in the river network Nutrient net loading Nutrient species modelled: Phosphorus: Total phosphorus (TP), phosphate (PO43-), organic phosphorus (Porg) and particulate phosphorus (PP) Nitrogen: Total nitrogen (TN), nitrate (NO3-), ammonium (NH4+) and organic nitrogen (Norg) Suspended solids (SS) Total organic carbon (TOC) Phytoplankton Oxygen (O2) 3 Description of the VEMALA models Terrestrial model agricultural loading non-agricultural loading Version Substance Hydrological model VEMALA 1.1 TP, TN, SS WSFS concentration-runoff relationship concentration-runoff relationship VEMALAICECREAM TP WSFS field scale process based model concentration-runoff relationship VEMALA-N TN, NO3- WSFS semi-process based, 5 crop classes semi-process based, 1 forest class VEMALA v.3 TN, TP, SS, TOC, PO43-, PP, Porg, NO3-, NH4+, Norg, Phytoplankton, O2 WSFS VEMALA-ICECREAM (PP, Porg, PO43-, SS), VEMALA-N (NO3-, NH4+, Norg), VEMALA 1.1 (TOC) River model nutrient transport model Biogeochemical model Lake model nutrient mass balance model Biogeochemical model 4 VEMALA v.3 The aim of the VEMALA v.3 development The Water Framework Directive (WFD) requires the use of several nutrient-sensitive biological parameters (phytoplankton, phytobenthos, macro-algae, macrophytes and seagrass) to establish the good ecological status (GES). Moreover, these biological parameters are dependent on the availability of bioavailable nutrients rather than total nutrients. These bioavailable nutrients (nitrate, ammonium and phosphate) are among the most commonly monitored parameters in Europe. Therefore, there is a need to model bioavailable nutrients (phosphate, ammonium and nitrate) to better predict the algal biomass and the state of the environment. Finally, by simulating better the river processes (e.g. sedimentation and denitrification) in the VEMALA model the total nutrient loads simulations to the Sea will be improved due to a better simulation of the retention in the river basin. Moreover, future scenarios (climate, agriculture and point load changes) will be more reliable. VEMALA v.3 VEMALA v.3 is designed to model the bioavailable nutrients phosphate, nitrate and ammonium in rivers. Moreover, it simulates particulate phosphorus, organic phosphorus, organic nitrogen and the phytoplankton biomass. In this new model, the nutrients are no longer modeled separately but are linked in the aquatic ecosystem to one another through phytoplankton dynamics, organic matter degradation and sedimentation. The river and lake sub-model in VEMALA v.3 is a deterministic biogeochemical model using enzyme-catalysed reactions to simulate the interactions between nutrients and the algal biomass. It is based on the phytoplankton sub-model AQUAPHY (Lancelot et al., 1991), and the biogeochemical model RIVE (Billen et al.,1994). 6 VEMALA v.3 Variables simulated in VEMALA v.3 Phosphate (PO43-), dissolved organic phosphorus (Porg) and particulate inorganic phosphorus (PP) Nitrate (NO3-), ammonium (NH4+) and organic nitrogen (Norg) Phytoplankton Suspended solids (SS) Total organic carbon (TOC) Oxygen (O2) 7 The variables included in the new VEMALA v.3 model are: Total organic carbon (TOC) Suspended sediments (SS) Phosphorus (particulate inorganic phosphorus (PP), phosphate (PO43-) and dissolved organic phosphorus (Porg)) Nitrogen (organic nitrogen (Norg), nitrate (NO3-) and ammonium (NH4+)) Phytoplankton (2 different species) Oxygen (O2) 8 Phosphorus cycling in the river sub-model: Variables represented: particulate inorganic phosphorus (PP), phosphate (PO43-), dissolved organic phosphorus (Porg) and phytoplankton phosphorus (Phyto_P). Total phosphorus= PP+PO43-+Porg+Phyto_P Phosphate is produced by the mineralisation of the organic matter and consumed by the phytoplankton growth. Organic phosphorus does not sediment but is mineralised or produced by phytoplankton lysis or grazing. Particulate inorganic phosphorus is a function of suspended sediments (SS) and PO43- concentrations in the water to simulate adsorption/desorption processes. PP is also affected by sedimentation/resuspension following the suspended sediments dynamics. Nitrogen cycling in the river sub-model: Variables represented: Nitrate (NO3-), ammonium (NH4+), organic nitrogen (Norg) and phytoplankton nitrogen (Phyto_N) Total nitrogen=NO3-+ NH4++Norg+Phyto_N Ammonium is produced by mineralisation (organic matter degradation) and consumed by phytoplankton growth Nitrate is consumed by phytoplankton growth and denitrification Organic nitrogen does not sediment but is mineralised or produced by phytoplankton lysis or grazing Sedimentation of nitrogen is only taken into account through phytoplankton sedimentation The modelling of bioavailable nutrients with the VEMALA v.3 model will allow the definition of: The phytoplankton growth in Finnish water bodies The proportion of biologically available fractions in the run off to the Sea The contribution of the different loading sources to the biologically available nutrients The impact of the different farming actions and loading reduction actions on the biologically available nutrient loads The effect of climate change on the biologically available nutrient fractions 11 Where can it be used? It can simulate the water quality in rivers and lakes larger than 1ha in Finland : As daily, monthly or annual loads -> e.g. Aurajoki 12 As daily concentrations -> e.g. Aurajoki Phytoplankton (µgChla L-1) Nitrate (mg L-1) Ammonium (mgN L-1) Total nitrogen (mg L-1) 13 14 It can simulate: The retention in lakes and the river network. -> Sed/denit… The phytoplankton growth in Finnish water bodies -> Phytoplankton growth in Aurajoki 15 It can simulate: The contribution of the different loading sources to the total or biologically available nutrients: Source apportionment The proportion of biologically available fractions in the run off to the sea 16 Data for MMEA ● Available now: ○ Nutrient loading (N,P) of rivers to the Baltic Sea as total nutrients ● In the model also: ○ Loading scenarios for fields ○ Loading scenarios for lakes ○ Division of loading by source 19 20 21 Basic information about loading available for each lake (58 000 lakes) Sonkajärvi 2006-2011 TP hulev. 0% TP haja-asutus 3% TP pistek 2% TP laskeuma 3% TP peltoviljely 39% TP metsä luonnonh. 42% TP metsätalous 9% TP pelto luonnonh. 2% 22 Basic loading scenarios for each lake Sonkajärvi Fosforikuorma kg/a 18000 16000 14000 12000 TP laskeuma 10000 TP pistek TP hulev. 8000 TP haja-asutus TP metsä luonnonh. 6000 TP metsätalous TP pelto luonnonh. 4000 TP peltoviljely 2000 0 23 Lohko 7620520262 Nivonniska. Keskikaltevuus 4,0%. Pinta-ala 3,47 ha. Maalaji AS. pH 6,4. Multavuus rm. P-luku 12,5. Kasvi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Ohra Ohra Ohra Ohra Muokkausmenetelmä Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Suorakylvö Suorakylvö Suorakylvö Suorakylvö Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Suorakylvö Suorakylvö Suorakylvö Suorakylvö Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus Kevytmuokkaus keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä keväällä Maan fosforipitoisuus FosforiTämänlannoitus hetkinen kg/ha/v P mg/l 0 5 10 5 20 5 30 5 0 5 10 5 20 5 30 5 0 5 10 5 20 5 30 5 0 5 10 5 20 5 30 5 0 5 10 5 20 5 30 5 0 10 10 10 20 10 30 10 0 10 10 10 20 10 30 10 0 10 10 10 20 10 30 10 0 10 10 10 20 10 30 10 0 10 10 10 20 10 30 10 0 12.5 10 12.5 20 12.5 30 12.5 0 12.5 10 12.5 20 12.5 30 12.5 0 12.5 10 12.5 20 12.5 30 12.5 Fosforihuuhtouma 10 v jaksolla Eroosio 10 v jaksolla 10 v viljelyn keskiliukoinen keskijälkeen määrin minimi maksimi fosfori määrin minimi maksimi P mg/l kg/ha/v kg/ha/v kg/ha/v kg/ha/v kg/ha/v kg/ha/v kg/ha/v 3.8 0.36 0.08 0.59 0.09 189 36 310 4.4 0.43 0.12 0.64 0.13 189 36 310 5.3 0.51 0.16 0.9 0.17 189 36 310 6.5 0.59 0.2 1.18 0.21 189 36 310 3.8 0.65 0.08 1.29 0.13 532 36 1384 4.2 0.72 0.11 1.48 0.14 532 36 1384 5 0.81 0.15 1.71 0.17 532 36 1384 6.2 0.9 0.19 1.95 0.2 532 36 1384 4.1 0.35 0.07 1.31 0.1 206 26 1064 4.7 0.36 0.07 1.31 0.1 206 26 1064 5.5 0.37 0.08 1.32 0.11 206 26 1064 6.5 0.39 0.09 1.32 0.12 206 26 1064 4.2 0.47 0.13 1.31 0.12 262 56 1064 4.9 0.48 0.14 1.32 0.12 262 56 1064 5.7 0.49 0.15 1.32 0.13 262 56 1064 6.7 0.5 0.15 1.32 0.14 262 56 1064 4 1.3 0.26 2.18 0.1 1560 315 2965 4.6 1.34 0.28 2.3 0.12 1560 315 2965 5.3 1.39 0.3 2.42 0.13 1560 315 2965 6.1 1.43 0.32 2.54 0.15 1560 315 2965 8.6 0.46 0.11 0.72 0.16 189 36 310 10.1 0.54 0.15 0.81 0.2 189 36 310 12.4 0.63 0.2 1.08 0.25 189 36 310 15.8 0.71 0.24 1.37 0.3 189 36 310 8.4 0.79 0.11 1.52 0.19 532 36 1384 9.8 0.88 0.15 1.75 0.22 532 36 1384 11.9 0.97 0.19 1.98 0.25 532 36 1384 15 1.06 0.23 2.22 0.28 532 36 1384 9.9 0.45 0.1 1.62 0.16 206 26 1064 11.7 0.46 0.1 1.62 0.17 206 26 1064 14.2 0.48 0.11 1.62 0.18 206 26 1064 17.3 0.49 0.12 1.62 0.19 206 26 1064 10.1 0.6 0.17 1.62 0.19 262 56 1064 12.1 0.61 0.18 1.62 0.2 262 56 1064 14.6 0.62 0.19 1.62 0.21 262 56 1064 17.8 0.63 0.19 1.62 0.22 262 56 1064 9.3 1.65 0.36 2.72 0.26 1560 315 2965 10.8 1.69 0.37 2.84 0.27 1560 315 2965 12.8 1.74 0.39 2.96 0.29 1560 315 2965 15.3 1.78 0.41 3.09 0.3 1560 315 2965 10.6 0.49 0.12 0.76 0.17 189 36 310 12.6 0.57 0.16 0.85 0.22 189 36 310 15.4 0.66 0.21 1.12 0.27 189 36 310 19.5 0.75 0.25 1.41 0.31 189 36 310 10.3 0.84 0.12 1.6 0.2 532 36 1384 12.1 0.93 0.16 1.83 0.23 532 36 1384 14.7 1.02 0.2 2.06 0.27 532 36 1384 18.4 1.11 0.24 2.3 0.3 532 36 1384 12.3 0.48 0.1 1.71 0.18 206 26 1064 14.6 0.49 0.11 1.71 0.19 206 26 1064 17.7 0.51 0.12 1.72 0.2 206 26 1064 21.7 0.52 0.13 1.72 0.21 206 26 1064 Ohra Ohra Ohra Ohra Ohra Ohra Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Nurmi Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Ohra Suorakylvö Suorakylvö Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Suorakylvö Suorakylvö Suorakylvö Suorakylvö Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Syyskyntö Syyskyntö Syyskyntö Syyskyntö Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Kevytmuokkaus keväällä Suorakylvö Suorakylvö Suorakylvö Suorakylvö Syyskyntö Syyskyntö Syyskyntö Syyskyntö 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 10 10 10 10 10 10 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 14.6 17.8 9.3 10.8 12.8 15.3 10.6 12.6 15.4 19.5 10.3 12.1 14.7 18.4 12.3 14.6 17.7 21.7 12.6 15 18.2 22.3 11.5 13.4 15.8 18.9 16.2 19.2 23.4 29.6 15.7 18.4 22.2 27.7 18.8 22.4 27.1 33.2 19.2 22.9 27.7 34.1 17.3 20.2 23.8 28.5 Alueen vesienhoitotavotteiden kannalta ei-toivottava viljelytapa tällä lohkolla. 0.62 0.63 1.65 1.69 1.74 1.78 0.49 0.57 0.66 0.75 0.84 0.93 1.02 1.11 0.48 0.49 0.51 0.52 0.63 0.64 0.65 0.66 1.75 1.79 1.83 1.88 0.55 0.64 0.72 0.81 0.93 1.02 1.11 1.2 0.54 0.56 0.57 0.58 0.71 0.72 0.73 0.74 1.96 2 2.04 2.08 0.19 0.19 0.36 0.37 0.39 0.41 0.12 0.16 0.21 0.25 0.12 0.16 0.2 0.24 0.1 0.11 0.12 0.13 0.18 0.19 0.2 0.2 0.38 0.4 0.42 0.44 0.14 0.18 0.23 0.27 0.14 0.17 0.21 0.26 0.12 0.12 0.13 0.14 0.21 0.21 0.22 0.23 0.43 0.45 0.46 0.48 1.62 1.62 2.72 2.84 2.96 3.09 0.76 0.85 1.12 1.41 1.6 1.83 2.06 2.3 1.71 1.71 1.72 1.72 1.71 1.72 1.72 1.72 2.88 3 3.12 3.25 0.85 0.93 1.21 1.49 1.78 1.99 2.22 2.46 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 3.21 3.33 3.45 3.58 0.21 0.22 0.26 0.27 0.29 0.3 0.17 0.22 0.27 0.31 0.2 0.23 0.27 0.3 0.18 0.19 0.2 0.21 0.21 0.22 0.23 0.24 0.29 0.31 0.32 0.33 0.21 0.25 0.3 0.35 0.24 0.27 0.3 0.34 0.21 0.22 0.23 0.24 0.25 0.26 0.26 0.27 0.36 0.37 0.39 0.4 262 262 1560 1560 1560 1560 189 189 189 189 532 532 532 532 206 206 206 206 262 262 262 262 1560 1560 1560 1560 189 189 189 189 532 532 532 532 206 206 206 206 262 262 262 262 1560 1560 1560 1560 56 56 315 315 315 315 36 36 36 36 36 36 36 36 26 26 26 26 56 56 56 56 315 315 315 315 36 36 36 36 36 36 36 36 26 26 26 26 56 56 56 56 315 315 315 315 1064 1064 2965 2965 2965 2965 310 310 310 310 1384 1384 1384 1384 1064 1064 1064 1064 1064 1064 1064 1064 2965 2965 2965 2965 310 310 310 310 1384 1384 1384 1384 1064 1064 1064 1064 1064 1064 1064 1064 2965 2965 2965 2965 Examples how the data can be used ● River loading to the Baltic Sea: ○ Real time data and forecast for explaning the state of the sea, however river loading explains only partly ○ As input for all kind of sea models ○ Scenarios show possible future pathways and variation for loading to the sea: • Climate change, human activities, nutrient load reduction actions ● Nutrient loading data for lakes: ○ Basic information for local people and water protection assosities: where is the loading coming from ○ Scenarios: possible future pathways, limits for the effect of nutrient loading actions ● Nutrient loading data for fields: ○ Limits for possibilities to effect on nutrient loading by farming actions ○ Background data for planning farming actions: • If farmer has possibility to select, he has infromation which actions are favorable 26 for erosion and nutrient leaching: benefit for farmer and waters Article under preparation 27 Thank you for your attention [email protected] Nitrogen loading from forested catchments Marie Korppoo VEMALA catchment meeting, 25/09/2012
© Copyright 2025 Paperzz