Open DATA: Nutrient loading to the sea VEMALA v.3

Open DATA: Nutrient loading to the sea
VEMALA v.3 – nutrients and elements
transport and processes in rivers and
Nitrogen loading
lakes from
forested catchments
Marie Korppoo, Markus Huttunen
12/02/2015
Marie Korppoo
VEMALA catchment meeting, 25/09/2012
Aim of the work
● Provide estimate of nutrient loading to the Baltic Sea:
○ For each river in Finland
○ Present loading (as daily values), short term forecast
○ Scenarios: climate change, human activities
• Agriculture
• Forestry
• Point sources, scattered dwelling, atmospheric deposition
● Model development was needed
○ Nutrient leaching, transport and retention in watersheds
○ Biologically available fractions
● Provides also:
○ Nutrient loading for inland lakes (58 000 lakes)
○ Scenarios for nutrient loading from agriculture
• Field scale, different crop, farming actions, fertilization level
2
VEMALA v.3
 Water quality model developed partly under the MMEA project to model
bioavailable nutrients in freshwater ecosystems.
 It simulates nutrient processes, leaching and transport on land, and in
rivers and lakes.
 It simulates from the Finnish water basins to the Baltic Sea:
 Nutrient gross loading
 Retention in lakes and in the river network
 Nutrient net loading
 Nutrient species modelled:
 Phosphorus: Total phosphorus (TP), phosphate (PO43-), organic
phosphorus (Porg) and particulate phosphorus (PP)
 Nitrogen: Total nitrogen (TN), nitrate (NO3-), ammonium (NH4+) and organic
nitrogen (Norg)
 Suspended solids (SS)
 Total organic carbon (TOC)
 Phytoplankton
 Oxygen (O2)
3
Description of the VEMALA models
Terrestrial model
agricultural loading
non-agricultural loading
Version
Substance
Hydrological
model
VEMALA 1.1
TP, TN, SS
WSFS
concentration-runoff
relationship
concentration-runoff
relationship
VEMALAICECREAM
TP
WSFS
field scale process based
model
concentration-runoff
relationship
VEMALA-N
TN, NO3-
WSFS
semi-process based, 5
crop classes
semi-process based, 1
forest class
VEMALA v.3
TN, TP, SS, TOC, PO43-, PP,
Porg, NO3-, NH4+, Norg,
Phytoplankton, O2
WSFS
VEMALA-ICECREAM (PP, Porg, PO43-, SS),
VEMALA-N (NO3-, NH4+, Norg), VEMALA 1.1 (TOC)
River model
nutrient transport
model
Biogeochemical
model
Lake model
nutrient mass
balance model
Biogeochemical
model
4
VEMALA v.3
The aim of the VEMALA v.3 development
 The Water Framework Directive (WFD) requires the use of several
nutrient-sensitive biological parameters (phytoplankton, phytobenthos,
macro-algae, macrophytes and seagrass) to establish the good ecological
status (GES).
 Moreover, these biological parameters are dependent on the availability of
bioavailable nutrients rather than total nutrients. These bioavailable
nutrients (nitrate, ammonium and phosphate) are among the most
commonly monitored parameters in Europe.
 Therefore, there is a need to model bioavailable nutrients (phosphate,
ammonium and nitrate) to better predict the algal biomass and the state of
the environment.
 Finally, by simulating better the river processes (e.g. sedimentation and
denitrification) in the VEMALA model the total nutrient loads simulations to
the Sea will be improved due to a better simulation of the retention in the
river basin.
 Moreover, future scenarios (climate, agriculture and point load changes)
will be more reliable.
VEMALA v.3

VEMALA v.3 is designed to model the bioavailable nutrients phosphate, nitrate and
ammonium in rivers. Moreover, it simulates particulate phosphorus, organic
phosphorus, organic nitrogen and the phytoplankton biomass.

In this new model, the nutrients are no longer modeled separately but are linked in the
aquatic ecosystem to one another through phytoplankton dynamics, organic matter
degradation and sedimentation.

The river and lake sub-model in VEMALA v.3 is a deterministic biogeochemical model
using enzyme-catalysed reactions to simulate the interactions between nutrients and
the algal biomass. It is based on the phytoplankton sub-model AQUAPHY (Lancelot et
al., 1991), and the biogeochemical model RIVE (Billen et al.,1994).
6
VEMALA v.3
 Variables simulated in VEMALA v.3
 Phosphate (PO43-), dissolved organic phosphorus (Porg) and
particulate inorganic phosphorus (PP)
 Nitrate (NO3-), ammonium (NH4+) and organic nitrogen (Norg)
 Phytoplankton
 Suspended solids (SS)
 Total organic carbon (TOC)
 Oxygen (O2)
7
 The variables included in the new VEMALA v.3 model are:
 Total organic carbon (TOC)
 Suspended sediments (SS)
 Phosphorus (particulate inorganic phosphorus (PP), phosphate (PO43-) and
dissolved organic phosphorus (Porg))
 Nitrogen (organic nitrogen (Norg), nitrate (NO3-) and ammonium (NH4+))
 Phytoplankton (2 different species)
 Oxygen (O2)
8
 Phosphorus cycling in the river sub-model:
 Variables represented: particulate inorganic phosphorus (PP), phosphate (PO43-),
dissolved organic phosphorus (Porg) and phytoplankton phosphorus (Phyto_P).
 Total phosphorus= PP+PO43-+Porg+Phyto_P
 Phosphate is produced by the mineralisation of the organic matter and consumed
by the phytoplankton growth.
 Organic phosphorus does not sediment but is mineralised or produced by
phytoplankton lysis or grazing.
 Particulate inorganic phosphorus is a function of suspended sediments (SS) and
PO43- concentrations in the water to simulate adsorption/desorption processes. PP
is also affected by sedimentation/resuspension following the suspended
sediments dynamics.
 Nitrogen cycling in the river sub-model:
 Variables represented: Nitrate (NO3-), ammonium (NH4+), organic nitrogen (Norg)
and phytoplankton nitrogen (Phyto_N)
 Total nitrogen=NO3-+ NH4++Norg+Phyto_N
 Ammonium is produced by mineralisation (organic matter degradation) and
consumed by phytoplankton growth
 Nitrate is consumed by phytoplankton growth and denitrification
 Organic nitrogen does not sediment but is mineralised or produced by
phytoplankton lysis or grazing
 Sedimentation of nitrogen is only taken into account through phytoplankton
sedimentation
 The modelling of bioavailable nutrients with the VEMALA
v.3 model will allow the definition of:
 The phytoplankton growth in Finnish water bodies
 The proportion of biologically available fractions in the run off to
the Sea
 The contribution of the different loading sources to the biologically
available nutrients
 The impact of the different farming actions and loading reduction
actions on the biologically available nutrient loads
 The effect of climate change on the biologically available nutrient
fractions
11
Where can it be used?
 It can simulate the water quality in rivers and lakes larger than 1ha in
Finland :
 As daily, monthly or annual loads -> e.g. Aurajoki
12
As daily concentrations -> e.g. Aurajoki
Phytoplankton (µgChla L-1)
Nitrate (mg L-1)
Ammonium (mgN L-1)
Total nitrogen (mg L-1)
13
14
 It can simulate:
 The retention in lakes and the river network. -> Sed/denit…
 The phytoplankton growth in Finnish water bodies ->
Phytoplankton growth in Aurajoki
15
 It can simulate:
 The contribution of the different loading sources to the total or
biologically available nutrients: Source apportionment
 The proportion of biologically available fractions in the run off to
the sea
16
Data for MMEA
● Available now:
○ Nutrient loading (N,P) of rivers to the Baltic Sea as total
nutrients
● In the model also:
○ Loading scenarios for fields
○ Loading scenarios for lakes
○ Division of loading by source
19
20
21
Basic information about loading available
for each lake (58 000 lakes)
Sonkajärvi 2006-2011
TP hulev.
0%
TP haja-asutus
3%
TP pistek
2%
TP laskeuma
3%
TP peltoviljely
39%
TP metsä luonnonh.
42%
TP metsätalous
9%
TP pelto luonnonh.
2%
22
Basic loading scenarios for each lake
Sonkajärvi Fosforikuorma kg/a
18000
16000
14000
12000
TP laskeuma
10000
TP pistek
TP hulev.
8000
TP haja-asutus
TP metsä luonnonh.
6000
TP metsätalous
TP pelto luonnonh.
4000
TP peltoviljely
2000
0
23
Lohko 7620520262 Nivonniska. Keskikaltevuus 4,0%. Pinta-ala 3,47 ha. Maalaji AS. pH 6,4. Multavuus rm. P-luku 12,5.
Kasvi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Ohra
Ohra
Ohra
Ohra
Muokkausmenetelmä
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Suorakylvö
Suorakylvö
Suorakylvö
Suorakylvö
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Suorakylvö
Suorakylvö
Suorakylvö
Suorakylvö
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
Kevytmuokkaus
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
keväällä
Maan fosforipitoisuus
FosforiTämänlannoitus hetkinen
kg/ha/v
P mg/l
0
5
10
5
20
5
30
5
0
5
10
5
20
5
30
5
0
5
10
5
20
5
30
5
0
5
10
5
20
5
30
5
0
5
10
5
20
5
30
5
0
10
10
10
20
10
30
10
0
10
10
10
20
10
30
10
0
10
10
10
20
10
30
10
0
10
10
10
20
10
30
10
0
10
10
10
20
10
30
10
0
12.5
10
12.5
20
12.5
30
12.5
0
12.5
10
12.5
20
12.5
30
12.5
0
12.5
10
12.5
20
12.5
30
12.5
Fosforihuuhtouma 10 v jaksolla
Eroosio 10 v jaksolla
10 v
viljelyn
keskiliukoinen keskijälkeen
määrin
minimi
maksimi fosfori
määrin
minimi
maksimi
P mg/l
kg/ha/v
kg/ha/v
kg/ha/v
kg/ha/v
kg/ha/v
kg/ha/v
kg/ha/v
3.8
0.36
0.08
0.59
0.09
189
36
310
4.4
0.43
0.12
0.64
0.13
189
36
310
5.3
0.51
0.16
0.9
0.17
189
36
310
6.5
0.59
0.2
1.18
0.21
189
36
310
3.8
0.65
0.08
1.29
0.13
532
36
1384
4.2
0.72
0.11
1.48
0.14
532
36
1384
5
0.81
0.15
1.71
0.17
532
36
1384
6.2
0.9
0.19
1.95
0.2
532
36
1384
4.1
0.35
0.07
1.31
0.1
206
26
1064
4.7
0.36
0.07
1.31
0.1
206
26
1064
5.5
0.37
0.08
1.32
0.11
206
26
1064
6.5
0.39
0.09
1.32
0.12
206
26
1064
4.2
0.47
0.13
1.31
0.12
262
56
1064
4.9
0.48
0.14
1.32
0.12
262
56
1064
5.7
0.49
0.15
1.32
0.13
262
56
1064
6.7
0.5
0.15
1.32
0.14
262
56
1064
4
1.3
0.26
2.18
0.1
1560
315
2965
4.6
1.34
0.28
2.3
0.12
1560
315
2965
5.3
1.39
0.3
2.42
0.13
1560
315
2965
6.1
1.43
0.32
2.54
0.15
1560
315
2965
8.6
0.46
0.11
0.72
0.16
189
36
310
10.1
0.54
0.15
0.81
0.2
189
36
310
12.4
0.63
0.2
1.08
0.25
189
36
310
15.8
0.71
0.24
1.37
0.3
189
36
310
8.4
0.79
0.11
1.52
0.19
532
36
1384
9.8
0.88
0.15
1.75
0.22
532
36
1384
11.9
0.97
0.19
1.98
0.25
532
36
1384
15
1.06
0.23
2.22
0.28
532
36
1384
9.9
0.45
0.1
1.62
0.16
206
26
1064
11.7
0.46
0.1
1.62
0.17
206
26
1064
14.2
0.48
0.11
1.62
0.18
206
26
1064
17.3
0.49
0.12
1.62
0.19
206
26
1064
10.1
0.6
0.17
1.62
0.19
262
56
1064
12.1
0.61
0.18
1.62
0.2
262
56
1064
14.6
0.62
0.19
1.62
0.21
262
56
1064
17.8
0.63
0.19
1.62
0.22
262
56
1064
9.3
1.65
0.36
2.72
0.26
1560
315
2965
10.8
1.69
0.37
2.84
0.27
1560
315
2965
12.8
1.74
0.39
2.96
0.29
1560
315
2965
15.3
1.78
0.41
3.09
0.3
1560
315
2965
10.6
0.49
0.12
0.76
0.17
189
36
310
12.6
0.57
0.16
0.85
0.22
189
36
310
15.4
0.66
0.21
1.12
0.27
189
36
310
19.5
0.75
0.25
1.41
0.31
189
36
310
10.3
0.84
0.12
1.6
0.2
532
36
1384
12.1
0.93
0.16
1.83
0.23
532
36
1384
14.7
1.02
0.2
2.06
0.27
532
36
1384
18.4
1.11
0.24
2.3
0.3
532
36
1384
12.3
0.48
0.1
1.71
0.18
206
26
1064
14.6
0.49
0.11
1.71
0.19
206
26
1064
17.7
0.51
0.12
1.72
0.2
206
26
1064
21.7
0.52
0.13
1.72
0.21
206
26
1064
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Nurmi
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Ohra
Suorakylvö
Suorakylvö
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Suorakylvö
Suorakylvö
Suorakylvö
Suorakylvö
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Kevytmuokkaus keväällä
Suorakylvö
Suorakylvö
Suorakylvö
Suorakylvö
Syyskyntö
Syyskyntö
Syyskyntö
Syyskyntö
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
0
10
20
30
10
10
10
10
10
10
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
14.6
17.8
9.3
10.8
12.8
15.3
10.6
12.6
15.4
19.5
10.3
12.1
14.7
18.4
12.3
14.6
17.7
21.7
12.6
15
18.2
22.3
11.5
13.4
15.8
18.9
16.2
19.2
23.4
29.6
15.7
18.4
22.2
27.7
18.8
22.4
27.1
33.2
19.2
22.9
27.7
34.1
17.3
20.2
23.8
28.5
Alueen vesienhoitotavotteiden kannalta ei-toivottava viljelytapa tällä lohkolla.
0.62
0.63
1.65
1.69
1.74
1.78
0.49
0.57
0.66
0.75
0.84
0.93
1.02
1.11
0.48
0.49
0.51
0.52
0.63
0.64
0.65
0.66
1.75
1.79
1.83
1.88
0.55
0.64
0.72
0.81
0.93
1.02
1.11
1.2
0.54
0.56
0.57
0.58
0.71
0.72
0.73
0.74
1.96
2
2.04
2.08
0.19
0.19
0.36
0.37
0.39
0.41
0.12
0.16
0.21
0.25
0.12
0.16
0.2
0.24
0.1
0.11
0.12
0.13
0.18
0.19
0.2
0.2
0.38
0.4
0.42
0.44
0.14
0.18
0.23
0.27
0.14
0.17
0.21
0.26
0.12
0.12
0.13
0.14
0.21
0.21
0.22
0.23
0.43
0.45
0.46
0.48
1.62
1.62
2.72
2.84
2.96
3.09
0.76
0.85
1.12
1.41
1.6
1.83
2.06
2.3
1.71
1.71
1.72
1.72
1.71
1.72
1.72
1.72
2.88
3
3.12
3.25
0.85
0.93
1.21
1.49
1.78
1.99
2.22
2.46
1.92
1.92
1.92
1.92
1.92
1.92
1.92
1.92
3.21
3.33
3.45
3.58
0.21
0.22
0.26
0.27
0.29
0.3
0.17
0.22
0.27
0.31
0.2
0.23
0.27
0.3
0.18
0.19
0.2
0.21
0.21
0.22
0.23
0.24
0.29
0.31
0.32
0.33
0.21
0.25
0.3
0.35
0.24
0.27
0.3
0.34
0.21
0.22
0.23
0.24
0.25
0.26
0.26
0.27
0.36
0.37
0.39
0.4
262
262
1560
1560
1560
1560
189
189
189
189
532
532
532
532
206
206
206
206
262
262
262
262
1560
1560
1560
1560
189
189
189
189
532
532
532
532
206
206
206
206
262
262
262
262
1560
1560
1560
1560
56
56
315
315
315
315
36
36
36
36
36
36
36
36
26
26
26
26
56
56
56
56
315
315
315
315
36
36
36
36
36
36
36
36
26
26
26
26
56
56
56
56
315
315
315
315
1064
1064
2965
2965
2965
2965
310
310
310
310
1384
1384
1384
1384
1064
1064
1064
1064
1064
1064
1064
1064
2965
2965
2965
2965
310
310
310
310
1384
1384
1384
1384
1064
1064
1064
1064
1064
1064
1064
1064
2965
2965
2965
2965
Examples how the data can be used
● River loading to the Baltic Sea:
○ Real time data and forecast for explaning the state of the sea,
however river loading explains only partly
○ As input for all kind of sea models
○ Scenarios show possible future pathways and variation for loading to
the sea:
• Climate change, human activities, nutrient load reduction actions
● Nutrient loading data for lakes:
○ Basic information for local people and water protection assosities:
where is the loading coming from
○ Scenarios: possible future pathways, limits for the effect of nutrient
loading actions
● Nutrient loading data for fields:
○ Limits for possibilities to effect on nutrient loading by farming actions
○ Background data for planning farming actions:
• If farmer has possibility to select, he has infromation which actions are favorable
26
for erosion and nutrient leaching: benefit for farmer and waters
Article under preparation
27
Thank you for your attention
[email protected]
Nitrogen loading from
forested catchments
Marie Korppoo
VEMALA catchment meeting, 25/09/2012