Mechanics of Thin Structure Lecture 15 Wrapping Up the Course Shunji Kanie Mechanics of Thin Structure What you learned are; Introduction for Linear Elasticity Stress and Strain with 3D General Expressions Plane Stress and Plane Strain Principle of Energy Principle of Virtual Work Calculus of Variations Theory of Beams Theory of Plates Example Pure bending problem Solve the problem Equilibrium Compatibility Energy Governing Equation Example Pure bending problem Solve the problem Equilibrium Compatibility Vertical dQ q( x) 0 dx Moment Q dx M Q dx dx q( x)dx dx 0 x 2 x dM d 2M Q q ( x) 2 dx dx Example Pure bending problem Solve the problem Equilibrium Compatibility X direction x yx zx 0 x y z h h yx x 2 2 zx h 2 x zdz h 2 y zdz h 2 z zdz 0 h 2 h 2 h 2 h h zx zdz zx z h2 h2 zx dz z 2 2 dM x Qx dx Example Pure bending problem Solve the problem Equilibrium dv u dx y Compatibility dv u( y) y y dx du d 2v x ( y) y dx dx 2 d 2v d 2v M x E x ydA E y 2 ydA EI 2 dx dx A A Example Pure bending problem Solve the problem Equilibrium Compatibility 2 2 d v d v d 2M q ( x) M x E x ydA E y 2 ydA EI 2 2 dx dx dx A A Governing Equation d 4v EI 4 q ( x) 0 dx Example Pure bending problem Compatibility Energy dv u( y) y y dx du d 2v x ( y) y dx dx 2 dv u dx y Energy should be Minimum, so that Energy is calcualted such as; Example Pure bending problem Energy for section 2 1 du d v bdy x ( y) y 2 x x dx dx 2 l l 1 1 2 U x x bdy dx E x bdy dx 0 2 0 2 2 2 2 2 l 1 EI l d v 2 d v Ey bdy dx dx 2 0 0 dx 2 2 dx 2 Example Pure bending problem Potential Energy l W q( x)vdx 0 l EI U W 0 2 d v q( x)v dx dx 2 2 You have the Functional !! J v F ( x, v, v' ' )dx l 0 2 Example Pure bending problem You have the Functional !! J v F ( x, v, v' ' )dx l 0 EI 2 U W v' ' q( x)v dx 0 2 l Apply the Euler’s Equation F d F d 2 2 v dx v' dx F 0 v' ' Example Pure bending problem F d F d 2 v dx v' dx 2 F 0 v' ' F F F q EIv ' ' l EI v' '2 q( x)v dx 0 0 2 v v' ' v' q d 2 dx EIv ' ' EI 2 4 d v dx 4 q 0 Governing Equation for pure bending beam from the Euler’s Equation Example Pure bending problem Boundary Condition See eq. (6-31) F d F d v EIv ' ' Qx Shearing force v' dx v' ' dx F dv EIv ' ' M x Bending Moment v' dx v' ' Example Pure bending problem Mechanical Boundary Condition Geometrical Boundary Condition Qx Mx or dv v' dx or v J Q x v x M x x2 x2 1 x1 x2 x1 d2 2 EIv ' ' q vdx dx Example Solution 1 : Direct Integration d 4v EI 4 q 0 dx EI EI d 3v dx 3 x d 2v dx q ( x)dx C1 2 q ( x)dxdx C1 x C 2 xx 5 qL4 0.01302 384 EI Example Solution 2 : Virtual Work Equilibrium d 4v EI 4 q 0 dx No Energy produced if the Equilibrium is satisfied Virtual Displacement d 4v x EI dx 4 q vdx 0 Virtual Work What is the requirement for the virtual displacement? Example Solution 2 : Virtual Work d 4v x EI dx 4 q vdx 0 ~ v a sin L EI L 4 Assumption x a sin L x vdx qvdx 0 x x v sin x L Virtual Displacement Example Solution 2 : Virtual Work ~ v a sin L Assumption x v sin x L 4 Virtual Displacement 2 1 EI a sin vdx xdx vdx xx2dx qq sin x0dxx0dx 0 qsin asin 1 cos L x x 2 LL L x x x L L Example Solution 2 : Virtual Work ~ v a sin L Assumption x Virtual Displacement v sin x L 4 4 4 1 1 L q L EI aEI 4 x 5dx 0 a 1Lcos 2q 2 x 0dx aq sin EI L 2L xL2 L x 4 qL4 qL4 a 0.01307 306 EI EI 5 qL4 qL4 0.01302 384 EI EI Example Solution 2 modified d 4v x EI dx 4 q vdx 0 m ~ v a m sin L m 4 x Assumption 4 Lm m EI EI a sin x vdx xqvdx vdx 0qvdx 0 am sin L L x m L x x x n sin x x vnsin L L Virtual Displacement Example Solution 2 modified m EI L m 4 n vn sin L m EI L m 4 m am sin L x vdx qvdx 0 x x x n q sin L x x dx Fourier Transform m n n am sin L x sin L x dx q sin L x dx 0 x x It’s same as the solution introduced for Plate Theory Example Solution 3 :Point Collocation d 4v x EI dx 4 q vdx 0 Assume you would like to have the value at the center v L 2 Dirac Delta Function 4 4 L v x d v 1d 2 EI q L 2EI 4 q dx 4 L dx x L 0dx x x 2 2 Example Solution 3 :Point Collocation 4 4 d v d v EI dx 4 qdx EI dx 4 q 0 xL x 2 Assumption ~ v a sin x L 4 d v aEI sin x q 0 EI 4 4 q 4 4 4 L L qL dx L q x L 5 qL L qL x 2 a 0.01027 0.013022 EI 384 EI EI EI 4 Example Solution 4 :Least Square Method EI d 4v dx 4 q 0 Equilibrium Error should be minimum Assumption ~ v a sin x L 4 4~ d v Estimated EI 4 EIa sin x dx L L Example Solution 4 :Least Square Method 4~ Error 4 EI 4 q EIa sin x q dx L L d v 2 EIa sin x q dx L x L 4 Squared Error In order to expect the Error minimized, an appropriate value for a must be 4 EIa sin a a x L L x q dx 2 Example Solution 4 :Least Square Method 2 4 EIa sin x q dx a a x L L 4 2 EIa sin a L x L 4 x q EI sin L L 4 EIa sin x q sin x dx 0 a x L L L x dx 0 Example Solution 2 : Virtual Work ~ v a sin L Assumption x v sin x L EI L 4 Virtual Displacement a sin L x vdx qvdx 0 x x Example Solution 4 :Least Square Method 4 EIa sin x q sin x dx 0 a x L L L 4 2 EI a sin x dx q sin x dx 0 L x L L x Example Solution 5 :Galerkin Method 1 d 4v x EI dx 4 q vdx 0 Starting Equation is Same Assumption ~ v a sin x L v sin L x Weighting Function Example Solution 5 :Galerkin Method 2 d 4v x EI dx 4 q vdx 0 Starting Equation is Same L d v d 3v v d v EI dx4 qvdx EI dx3 v EI dx3 x dx qvdx x x x 0 4 EI 3 d v dx 3 3 L v EI 0 d v v 2 dx 2 2 x L EI 2 0 x d 2 v 2v dx 2 x 2 dx qvdx x Example Solution 5 :Galerkin Method 2 EI 3 d v dx EI x 3 L v EI 0 d 2 v 2v dx 2 x 2 d v v 2 dx 2 2 x EI 2 0 x d 2 v 2v dx 2 x 2 dx qvdx dx qvdx 0 x v~ ax3 bx 2 cx d 3 2 ~ v aL bL cL 0 L v~ ax3 bx 2 cx c aL bL v~ ax x 2 L2 bxx L 2 x Example Solution 5 :Galerkin Method 2 d 2 v 2v EI dx 2 x x 2 dx qvdx 0 x 2 2 ~ v ax x L bxx L dv~ 3ax 2 2bx c dx d 2v v1 x x L v2 xx L d v1 2 dx 2 2 6x 2 dx 2 6ax 2b d 2v2 dx 2 2 Example Solution 5 :Galerkin Method 2 d 2 v 2v EI dx 2 x 2 d v dx 2 x 2 d 2v1 dx qvdx 0 6ax 2b x v1 x x L 2 2 v2 xx L dx 2 d 2v2 dx 2 2 2 dx 0 EI 6 ax 2 b 6 x dx qx x L x x EI 6ax 2b2dx qxx Ldx 0 x x 6x 2 Example Solution 5 :Galerkin Method 2 24 2 4 4 EI 6 ax 2 b 6 x dx qx x L dx 0 L L L 3 2 a 0 3 2 EI 12 aL 6bL q q 0 x x 2 4 4 3 3 3 2 EI 6 ax 2 b 2 dx q x x L dx 0 L 2 L L 2 qL EI 6aL 4bL q q 0b x x 6 2 3 24 EI 4 4 22 2 ~ qL qL qL vv~ ax x vx L 0.0104166 xLx Lbx 96 EI EI 24 EI 5 qL4 qL4 0.01302 384 EI EI Example Solution 5 :Galerkin Method 3 v~ ax3 bx 2 cx d v~ d v~ dv~ 2 3ax 2bx c dx 1 1 2 v~ aL3 bL2 cL 0 v~2 a c aL bL 1 21 2 b L 2 3aL 2bL c 2aL bL 2 2 2 3 2 2 23 2 3 ~ 1 2 1 2 vv~ x 2 2xx x xx x1 x L2 L1 2 2 L L L L 2 L Example Solution 5 :Galerkin Method 3 3 2 3 2 x x x x ~ v 2 2 x1 2 2 L L L L d 2 v~ x 1 1 x 6 2 4 1 6 2 2 2 2 L L dx L L d v v 2 EI dx 2 x 2 x 2 dx qvdx 0 x Example Solution 5 :Galerkin Method 3 2 2 L 4 EI 1 2 L L 12 q 0 2 4 2 L EI 1 2 L L 12 2 6 3 L EI 1 L 12 q 0 3 3 qL qL q 1 2 24 EI 24 EI Example Solution 5 :Galerkin Method 3 3 2 3 2 x x x x ~ v 2 2 x1 2 2 L L L L 3 3 qL qL 2 1 24 EI 24 EI qL L L L L L ~ v 1 2 96 EI 8 2 2 8 4 4 qL4 qL4 qL4 5 qL4 0.01302 v 0.0104166 EI 96 EI EI 384 EI Mechanics of Thin Structure What you learned are; Introduction for Linear Elasticity Stress and Strain with 3D General Expressions Plane Stress and Plane Strain Principle of Energy Principle of Virtual Work Calculus of Variations Theory of Beams Theory of Plates
© Copyright 2025 Paperzz