アンサンブルカルマンフィルターによ On-line estimation of る大気海洋結合モデルへのデータ同化 observation error covariance for ensemble-based filters Genta Ueno The Institute of Statistical Mathematics 1 Covariance matrix in DA State space model xt f t xt 1 G t vt , y t ht xt wt Cost function x1 ~ N xb , B , vt ~ N 0, Qt , wt ~ N 0, Rt 1 1 1 T Q 1v J x1, v 2 : T | y1: T x1 x B x x v 1 b 2 t t t b 2 t2 1 1 T y t ht x t R t y t ht x t 2 t 1 where xt f t xt 1 G t vt 2 Filtered estimates with different θ Large Q large sh大) Large R (large a) Which one should be chosen? 3 Ensemble approx. of distribution Gaussian dist. Vt | j Non-Gaussian dist. xt xt xt | j Exactly represented N xt | j , V t | j Kalman filter (KF) Ensemble approx. / Particle approx. xt Ensemble Kalman filter (EnKF), Particle filter(PF) 4 Kalman filter (KF) Filtered dist. at t-1 yt Filtered dist. at Predicted dist. at t N xt 1 | t 1,V t 1 | t 1 N xt | t 1,V t | t 1 N x t | t ,V t | t V t 1| t 1 V t | t 1 xt 1 xt 1 | t 1 xt xt | t 1 xt | t 1 F t xt 1 | t 1 V t | t 1 F t V t 1 | t 1 F t G t Qt G t Kalman gain Simulation Vt |t xt xt | t x t | t 1 K t y t H t x t | t 1 K t V t | t 1 H t H t V t | t 1 H t Rt xt | t Vt |t I K t H t V t | t 1 5 1 EnKF and PF EnKF xt(1) 1 | t 1 xt(1|)t 1 xt(1|)t 1 xt(1|)t xt(1|)t Resampling V H H V H R t | t 1 t t t | t 1 t t | t 1 n xt | t yt xt(1) 1 | t 1 Approx. Kalman gain Kt PF yt p yt | xt(n| t) 1 1 n n n x t | t 1 K t y t wt H t x t | t 1 KF xt 1 xt 6 xt Likelihood Which is the most likely distribution that produces observation yobs ? p y |q 1 yobs p y |q 2 yobs Likelihood L(t) = p(yobs|θ) In this example, q3 is most likely. p y |q 3 yobs Likelihood of time series L q p y1, y 2, , yT | q p y1 | q p y 2 | y1, q p y 3 | y1, y 2, q T p y t | y1: t 1, q t 1 Find θ that maximizes L(θ). In practice, log-likelihood is easy to handle: q log p y1: T | q T log p y | y ,q t 1: t 1 t 1 p y N | y1, y 2, ,y T 1, q Likelihood of time series T q log p yt | y1: t 1,q t 1 T p y | x ,q p x | y log , q dx t t t 1: t 1 t t 1 likelihood Predicted dist. Observation model y H w t t t w ~ N 0, R t t N H x ,R t t t Non-Gaussian dist. [due to nonlinear model] If it were Gaussian, f f N x , P t t Estimation of covariance matrix Minimizing innovation [predicted error] Maximum likelihood 1. With assumption of Gaussian dist. of state • Naive • Ensemble mean and covariance of state • Adjustment according to cost function • Matcing with innovation covariance 2. Without assumption of Gaussian dist. of state • EnsembleThis mean of likelihood study Bayes estimation Covariance matching Ueno et al., Q. J. R. Met. Soc. (2010) 10 Ensemble approx. of likelihood q log p y1: T | q T ,q log p y | y t 1: t 1 t 1 T p y | x ,q p x | y , q dx log t t 1: t 1 t t t 1 T 1 N n dx q , x | y p log x x t t | t 1 t t t N n 1 t 1 T 1 N n ,q log p y | x t t | t 1 N n 1 t 1 T dim y t log 2 1 log Rt 2 2 t 1 Observation model y t ht ( xt ) wt w ~ N 0, R t t Ensemble mean of likelihood of each member xt|t-1(n) N n n 1 1 y H x N log log exp y t H t x R t t t t | t 1 1 t | t 2 n 1 • Find θ that maximizes the ensemble approx. log-likelihood. 11 Regularization of Rt T dim y t log 2 1 log l q Rt 2 2 t 1 N 1 n n 1 log exp y t H t xt | t 1 R t y t H t xt | t 1 log N 2 n 1 Regularization with Gaussian graphical model 12 neighborhood Sample covariance (singular due to n<<p) 12 Maximum likelihood T N 1 1 dim y t l q log 2 log Rt log exp y t H t xt n| t 1 Rt 1 yt H t xt n| t 1 log N 2 2 2 t 1 n 1 q s , L , L , a h x y 2 2 y y i j xi x j 2 Q q ij s exp , h 2 2 2 Lx 2 Ly R a s 0.1, 0.2, 0.5, 1, 2, 5, 10 h L 4, 8, 20, 40 x L 1, 2, 5, 10 y a 1, 2, 5, 10, 20, 50,100, 200, 500 13 Data and Model year longitude The color shows SSH anomalies. 14 Filtered estimates with different θ Large Q large sh大) Large R (large a) Which one should be chosen? 15 System noise: magnitude l s ,a p h max l s , L , L , a L ,L h x y x y 16 System noise: zonal correlation length l L ,a p x max l s , L , L , a s ,L h x y h y 17 System noise: meridional correlation length l L , a max l s , L , L , a p y s , L h x y h x 18 Observation noise: magnitude l a p max l s , L , L , a s ,L ,L h x y h x y 19 Estimates with MLE Filtered estimate Smoothed estimate year longitude qMLE 2m, 20deg, 5deg, 20 magnitude = (5.95cm)2, correlation lengths= (2.38,20 2.52deg) Summary for the first half • • Maximum likelihood estimation can be carried out even for nonGaussian state distribution with ensemble approximation Applicable for ensemble-based filters such as EnKF and PF • Estimated parameters: q s , L , L , a h x y q MLE 2m, 20 , 5 , 20 Ueno et al., Q. J. R. Met. Soc. (2010) • … Tractable for just four parameters? 21 Motivation for the second half • The output of DA (i.e. “analysis”) varies with prescribed parameter θ, where θ = (B, Q1:T, R1:T) B: covariance matrix of the initial state (i.e. V0|0) Qt: covariance matrix of system noise Rt: covariance matrix of observation noise • My interest is how to construct optimal θ for a fixed dynamic model • Only four parameters so far … • We allow more degree of freedom on R1:T • (dim yt)2/2 elements at maximum 22 Likelihood of Rt Current assumption Log-likelihood where R t 1: t R ,R 1: t 1 t q R1, R2 , dim y t 2 log 2 R1: T R R ,R , ,R 1: T 1 2 T B and Q are fixed 1: T T ,R R T t 1: t t 1 1 log Rt 2 R t N n n 1 1 log exp y t ht x R t y t ht x t | t 1 t | t 1 2 n 1 log N R 1: t 1 23 Estimation design R t 1: t R ,R 1: t 1 t dim y t 2 log 2 1 log Rt 2 R t N n n 1 1 log exp y t ht x R t y t ht x t | t 1 t | t 1 2 n 1 log N R 1: t 1 • Use ℓt(R1:t) for estimating Rt only • It is of course that R1:t-1 are parameters of ℓt(R1:t) • But they are assumed to have been estimated with former log-likelihood, ℓ1(R1), …, ℓt-1(R1:t-1) , and to be fixed at current time step t. • Rt is estimated at each time step t. Bad news: • The estimated Rt may vary significantly between different time steps. • A time-constant R cannot be estimated within the present framework. 24 Experiment • Assumed structure of Rt case 1: R 20 (control) t case 2 : R a t t case 3 : R diag r , t 1 case 4 : R a I t t ,r m 25 Data and Model year longitude The color shows SSH anomalies. 26 Estimate of Rt (Temporal mean) R 20 t R a t t R diag r , t 1 ,r m R a I t t var cov •Case at: similar output for 20. •Case diagonal: large variance near equator, small variance for offequator •Case atI: uniform variance with intermediate value 27 Estimate of Rt (Spatial mean) R 20 R a t t t R diag r , t 1 ,r m R a I t t var 1992- year -2002 • Case at: small variance for first half, large for second half • Case diagonal: large variance around 1998 • Case atI: similar for the diagonal case 28 Filtered estimates R 20 t R a t t R diag r , t 1 ,r m R a I t t •Case at: false positive anomalies in the east •Case atI: negative anomalies in the east, but the equatorial Kelvin waves unclear •Case diagonal: negative anomalies and equatorial Kelvin reproduced 29 Iteration times R a t t R diag r , t 1 ,r m R a I t t • Only 2-4 times • Small number of parameters requires large iteration numbers 30 Summary of the second half • An on-line and iterative algorithm for estimating observation error covariance matrix Rt. • The optimality condition of Rt leads a condition of Rt in a closed form. •Application to a coupled atmosphere-ocean model •Only 4-5 iterations are necessary •A diagonal matrix with independent elements produces more likely estimates than those of scalar multiplication of fixed matrices ( or I). 31
© Copyright 2025 Paperzz