2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
St. Mark’s School
2003/04 Half-yearly Examination
Pure Mathematics
Time allowed: 3hr.
S.6B
Section A:
1. (a)
Jan. 2004
A16 + 2R
SHK
a n 1 a n b ab n b n 1
=
a n a b b n a b
=
a ba n b n
=
a b 2 a n1 a n2 b a n3b 2 ab n2 b n1
a, b 0, a b
0
1M
1
(b) Let S (n ) be the statement “ a n1 b n n 1a nb 0 ”
For n 1,
a 2 b2a b a 2 2ab b 2 a b 0 .
2
a b
S (1) is true.
Assume S (k ) is true for some k N.
1
i.e. a k 1 b k k 1a kb 0
For n k 1,
L.H.S. = a k 2 b k 1 k 2a k 1b
= a k 2 b k 1 k 1a kb ab k 1 b k 2
a k 2 a k 1b ab k 1 b k 2
0
2.
(by assumption)
(by (a))
1
1
(5)
1 3
2n 1
2 4
2n
2 4
2n
Let y n
.
3 5
2n 1
Consider,
xn
2n
2n 1
1
4n 2 2n 12n 1
=
=
>0
2n 1
2n
2n2n 1
2n2n 1
1M
2n
2n 1
2n 1
2n
y n xn
x n 2 x n y n
xn
1 2 3 4
2n 1 2n
1
2 3 4 5
2n 2n 1 2n 1
2M
1
2n 1 .
So, 0 xn
1
1
2n 1
, and lim
n
1
2n 1
0
By sandwich rule, lim x n 0 .
1
n
(5)
p.1 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
3.
(a)
P (x )
Q (x)
1
2 x 4 3x 3 x 2 x 1
x 1
2
1
2x 4 x3 0x 2 x
2
1
4x3 x 2 x 1
2
3
2
4x 2x 0x 1
1
x2 x
2
4x3 2x 2 0x 1
4x 4
4x3 2x 2
4x 2 0x 1
4x 2 2x
2x 1
2M
1A
the greatest common divisor of P (x ) and Q (x) is 2x 1 .
1
(b) Let r1 ( x) x 2 x ,
2
d ( x) 2 x 1
1
P ( x) x 1Q( x) r1 ( x)
2
Q( x) 4x 4r1 ( x) d ( x)
1M
d ( x) Q( x) 4x 4r1 ( x)
1
Q( x) 4 x 4 P( x) x 1Q( x)
2
1
4 x 4P( x) 1 4 x 4 x 1Q( x)
2
4 x 4P( x) 2 x 2 2 x 3 Q( x)
S ( x) 4 x 4
T ( x) 2 x 2 2 x 3
2A
(6)
4.
(a)
1 xn C0n C1n x C2n x 2 C3n x 3 Cnn x n
1M
Integrate both sides w.r.t. x from 0 to 1.
1
1 n 2 1 n 3 1 n 4
1
n
n n 1
0 1 x dx C0 x 2 C1 x 3 C2 x 4 C3 x n 1 Cn x 0
1
n
1M
1 x n 1
1 n 1 n 1 n
1
n
C nn
C0 C1 C 2 C3
2
3
4
n 1
n 1 0
1
1 n 1 n 1 n
1
2 n1 1
n
.
C C1 C 2 C3
Cn
2
3
4
n 1
n 1
n
0
(b)
2x 2 x 4
x x2 2
2
A Bx C Dx E
2
x x2 2
x2 2
1M
A x 2 2 xBx C x 2 2 xDx E
2
x x 2
2
2
2 x 2 x 4 A x 2 2 x x 2 2 Bx C xDx E
2
1
p.2 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
A B x 2 Cx 3 4 A 2B Dx 2 2C E x 4 A
Comparing cofficients, we get
A B
C
4 A 2 B D
2C E
4A
A
B
C
D
E
0
2
1M
1
4
1
1
0
0
1
2x 2 x 4
0
x x 2
2
2
1
x
1
.
2
2
x x 2 x 2 2
1
(6)
5.
(a) r r is a root of x 3 ax b 0
r r
3
a r r b 0
1M
r 3 3r 2 r 3r 2 r r ar a r b 0
r
3
1A
3r 2 ar b r 3r 2 r a 0
r is not a rational
r 3 3r 2 ar b 0 and 3r 2 r a 0
(b) (i)
1
Sub. r r into x 3 ax b 0
L.H.S. = r r
ar r b
3
= r 3 3r 2 ar b r 3r 2 r a
=
0
1
(by (a))
r r is also a root of the equation.
(ii) From (a), 3r 2 r a 0 r 2
ra
3
Sub. into r 3 3r 2 ar b 0
r 2 ar
3r 2 ar b 0
3
1M+1A
8r 2 2ar 3b 0
r a
8
2ar 3b 0
3
6a 8r 9b 8a 0
r
8a 9b
23a 4
for a
4
3
1
p.3 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
Alternatively,
r 3 3r 2 ar b (1)
From (a),
2
(2)
3r r a
r 3r 2 ar b
(1)
:
3
ra
(2)
2
8r 2ar 3b 0
r a 2ar 3b
Hence,
3
8
8r 8a 6ar 9b
8a 9b
4
for a
r
3
2(3a 4)
6.
(a) [Differentibility]
f (0 x) f (0)
f ' (0) lim
x 0
x
x 3 sin 1 0
x
= lim
x 0
x
1
2
= lim x sin
x 0
x
(b)
1
1M
1
2
is bounded and lim x 0 )
x
0
x
f is differentiable at x 0 and f ' (0) 0 .
[Continuouity]
f is differentiable at x 0 .
f is continuous at x 0 .
Alternatively,
1
lim f ( x) lim x 3 sin 0
x 0
x 0
x
f (0) 0
f is continuous at x 0 .
= 0.
1M+1A
( sin
1
1
2
3x sin x cos
, x0
f ' ( x)
x
x
0
, x0
f ' (0 x) f ' (0)
f " 0 lim
x 0
x
1
1
2
3x s i n x c o s 0
x
x
lim
x 0
x
1
1
1
1A
1
1
cos
= lim 3x sin
x 0
x
x
does not exist.
the second derivative of f at x 0 does not exist
1
(5)
p.4 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
7.
(a)
y'
2 sin 1 x
1 x2
1 x2
y"
2
1 x
2 sin 1 x
2
2x
2 1 x2
1 x2
2 1 x 2 2 x s i n1 x
1 x 1 x
2
1A
2
1 x 2 y" xy'
2 1 x 2 2 x sin 1 x
1 x2
2 x sin 1 x
1 x2
2.
1 x 2 y" xy' 2 …(*)
1
Differentiate (*) w.r.t. x n-times.
( n 2)
n 1 x2
1 x y
( n 2)
2nxy( n1) nn 1y ( n) xy( n1) ny ( n ) 0
1 x y
( n 2)
2n 1xy( n1) n 2 y ( n ) 0 … (**)
2
2
2
nn 1
1 x2
2
1 x y
(1)
y ( n 1)
( 2)
y ( n ) xy ( n 1) nx (1) y ( n ) 0
1M
1
(b) Put x 0 into (**), y ( n 2) n 2 y ( n ) (0) .
1
For n is even, let n 2m 2 , where m N.
y ( 2 m ) 0 2m 2 y ( 2 m2) 0
2
2m 2 2m 4 y 2 m 4 0
2
2
2m 2 2m 4 2 2 y ( 2) (0)
2
2
22m 22m 4 4 2 .
2
y 0 2
y ( 2 n ) 0 22n 22n 4 4 2 .
2
2
1
For n is odd, let n 2m 1 , where m N.
y ( 2 m 1) 0 2m 1 y 2 m1 0
2
2m 1 2m 3 y 2 m 3 0
2
2
2m 1 2m 3 1 y (1) 0
2
0.
2
y
(1)
0
y ( 2 n1) 0 0 .
1
(7)
p.5 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
Section B:
8.
(a) (i)
Let f ( x) x 3 3 px 2q
If (*) has a repeated root, then f ( x) 0 and f ' ( x) 0 has a common root.
1M
f ' ( x) 3x 2 3 p
f ' ( x) 0
x2 p
1A
x p
If x
p is the common root, then
p 3 p p 2q 0
3
p
3
q
p3 q2
If x p is the common root, then
p 3 p p 2q 0
3
p
3
q
p3 q2
Alternatively,
f ' ( x) 0
1
x2 p
(1)
2
f ( x) 0
( 2)
x x 3 p 4q
(*) has a repeated root iff f ( x) 0 and f ' ( x) 0 has a common root.
2
2
Sub. (1) into (2), p p 3 p 4q
2
p3 , f ( p)
p 3p
3
1M
2
p3 q2
(ii) If q
1A
2
1
(3)
p 2 p3 0
1A
p satisfies both f ( x) 0 and f ' ( x) 0
p is a repeated root of (*).
1
3
p 0
(iii) If q p 3 , f ( p ) p 3 p p 2
3
(2)
1A+1A
p satisfies both f ( x) 0 and f ' ( x) 0
(*) has a repeated root and the root is p .
1
(3)
p.6 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
(b) (i)
Let x y h , then (**) becomes
2 y h 3 y h y h c 0
3
2
2 y 3 6h 3y 2 6h 2 6h 1 y 2h 3 3h 2 h c 0
1A
1
, (**) becomes
2
1
2y3 y c 0
2
Put h
1
c
y 3 3 y 2 0 … (3)
12
4
1A
(2)
(ii) Using the results of (a)(ii) and (iii), (3) and hence (**) has a repeated root if
3
1
c
12
4
c2
1
108
c
1
6 3
2
1M
( c 0 )
Consider (3) when c
1
6 3
1A
,
1
1
y 3 3 y 2
0 … (4)
12
24 3
Taking p
q
p3 ,
1
1
and q
in (a),
12
24 3
p
1
is a repeated root of (4).
12
1M
2
1
1
(4) becomes y
y
0
3
2 3
y
1
1
(repeated)
1A
1
1
1 1
or
(repeated)
x
2 2 3
2
3
1A
3
or
2 3
For the roots of (**),
1
x y
2
(5)
(15)
p.7 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
9.
(a) [Existence]
Let S (n ) be the statement “ there exist a positive integers a n and bn such that
1 3
2n
an bn 3 , (i) an 3b 2 2 2n and (ii) a n and bn are both divisible by
2
2 n .”
For n 1,
L.H.S. = 1 3
2
42 3
1A
Put a1 4 , b1 2 , then
(i)
a1 3b1 16 12 4 2 2
2
2
(ii) a1 ,b1 are both divisible by 2
1
Assume S (k ) is true for some integer k, k 1 .
i.e. 1 3
2k
ak 3bk 2 2k and (ii)
ak bk 3 , (i)
2
2
a k , bk are both divisible by
2k .
For n k 1,
1 3
2 k 1
=
1 3 1 3
a b 3 4 2 3
=
4ak 6bk 2ak 4bk
=
2k
k
2
2M
k
3
Put a k 1 4a k 6bk , bk 2ak 4bk , then
ak 1 3bk 1
2
(i)
2
=
4ak 6bk 2 32ak 4bk 2
=
16ak 48ak bk 36bk 3 4ak 16ak bk 16bk
=
4ak 12bk
=
2 2 2 2k
2
2
2
=
2
=
2
4 ak 3bk
2
2
2
2 2k 1
1
(ii) ak , bk are divisible by 2 k
ak 1 22ak 3bk and bk 1 2ak 2bk are divisible by 2 k 1 .
1
S (k 1) is true.
By the principle of mathematical induction, S (n ) is true for all positive integers n.
[Uniqueness] Suppose a b 3 c d 3 for some a, b, c, d Z+, then
(a c) (b d ) 3
3 is irrational,
a c b d 0 a c and b d
p.8 of 13
2
(8)
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
(b) By (a), an 3bn 2 2n
2
2
2 2n
an bn 3 =
1M
a n bn 3
1 3
3 1 3
2n
2 2n
1
=
2n
2 2n
=
2
2n
1 3
2n
2n
1 3
2n
=
Alternatively,
For n 1, 1 3
Assume 1 3
For n k 1,
1 3
2 k 1
2
2k
1
4 2 3 a1 b1 3
ak bk 3 , where k 1.
1M
1 3 1 3
a b 3 4 2 3
2k
=
=
k
2
k
4ak 6bk 2ak 4bk
=
3
= ak 1 bk 1 3
By the principle of mathematical induction, it is true for all positive integer n.
Alternatively,
1 3
2n
2n
C r2 n
r 0
3
r
n
=
C22rn
r 0
n
a n C 22rn
1 3
r 0
2n
3
2r
C 3
n
=
r 0
2r
1A
r
2r
2n
2r
r 0
2r
n 1
, bn C 22rn1 3
C r2 n 3
r 0
n 1
3 C 22rn1 3
r 0
2r
3
2n
1
n 1 2 n
3 C 2 r 1 3
r 0
2r
= an bn 3
1
(2)
a
1 3
(c) From (b), n 3
bn
bn
2n
1M
1
0.
n b
n
bn is divisible by 2 n
lim
1 3 1
lim 1 3
n
a
Hence lim n 3 lim 1 3
n b
n
n
2n
2n
0
1 For either
1
0
n b
n
lim
an
3
n b
n
lim
1
(3)
p.9 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
(d) 1 3
1 3
2n
2n
2an Z+ and 0 1 3
2a n is the smallest integer greater than 1 3
2n
2n
1
1M
.
a n is divisible by 2 n
2a n is divisible by 2 n 1 .
1
(2)
(15)
10. (a) (i)
Case 1: for n is a positive integer
Let S (n ) be the statement “ g (nx) g ( x) ”.
n
For n 1,
L.H.S. = g (x )
R.H.S. = g (x ) .
S (1) is true.
Assume S (k ) is true for some integer k 1.
i.e. g (kx) g ( x)
k
1M
For n k 1,
gk 1x
=
=
g (kx x)
g (kx) g ( x)
=
g ( x)k 1
S (k 1) is true.
By the principle of mathematical induction, S (n ) is true for all positive integer n. 1M
Case 2: for n = 0
g (0) g (0 0) g (0) g (0)
g (0)1 g (0) 0
g (0) 0 or g (0) 1
If g (0) 0 , then for any x R
g ( x) g ( x 0) g ( x) g (0) 0
which contradicts that g (x ) is a non-zero function.
g (0) 1
g (0 x) g (0) 1
and g ( x) 1
0
1M
1M
1M
Case 3: for n is negative integer
For any negative integer m, let m n ,
g (mx nx) g (mx) g (nx)
1 g (0) gm nx
= g (mx) g ( x)
n
g (mx)
1M
(since n is a positive integer)
1
g ( x)n
g ( x )
n
p.10 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
= g ( x )
m
1M
g (nx) g ( x) for all integer n.
n
(ii) Let M be such that g ( x) M for all x R.
(7)
1M
If g (x ) is not congruent to 1, then there exists R such that
g ( ) 1 or g ( ) 1 .
Case 1: g ( ) 1
If g ( ) 1 , then there exists n N such that
g ( )]n
M
g ( n ) M
which contradicts that g (x ) is bounded.
1M
Case 2: g ( ) 1
If g ( ) 1 , then
1
1.
g ( )
there exists a negative integer m such that
g ( )
m
M
g (m ) M
which contradicts that g (x ) is bounded.
g ( x) 1 .
(b) (i)
f (1)
g (1)
g (1)1
1 0 .
f is a non-zero function.
f ( x y)
=
1M
g ( x y)
g (1)x y
g ( x) g ( y )
g (1)x g (1)y
= f ( x) f ( y )
(ii)
1M
(3)
1M
(2)
f ( x 1) f ( x) f (1) f ( x)
f is a periodic function of period 1.
1M
Since g (x ) is bounded on 0,1 , f (x) is bounded on 0,1 .
And f is periodic with period 1.
f is bounded on R.
1M
(2)
(iii) By (a) (ii), we have f ( x) 1 .
g ( x) g (1)
x
for any x R.
1M
(1)
(15)
p.11 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
11. (a)
F ( x, y )
1
f y x
2x
F 1, y
1
f y 1
21
1A
1
y2
f y 1
y5
2
2
1M
f y 1 y 2 2 y 10 y 1 9
2
1A
f y x y x 9
2
i.e. F x, y
1
y x 2 9 .
2x
1
(4)
(b) (i)
x0 0 , xn1 F xn ,2 x , for n 0,1,2,
x1 F x0 ,2 x0
1
2 x0 x0 2 9 1 x0 2 9
2 x0
2 x0
x 2 F x1 ,2 x1
1
1
2
2
2 x1 x1 9
x1 9
2 x1
2 x2
1M
x n 1 F x n ,2 x n
1
2 xn xn 2 9 1 xn 2 9 .
2 xn
2 xn
1A
(ii) As x0 0 , xn 0 for all n N.
x n 1
1
2
xn 9
2 xn
1
xn 32 6 xn
2 xn
1
6 x n
2 xn
1M
1M
3
{xn } is bounded below by 3.
x n 1 x n
1
2
xn 9 xn
2 xn
xn 9 2 xn
2 xn
9 xn
2 xn
2
1A
1M
2
2
1A
3 xn 3 xn
1M
2 xn
p.12 of 13
2003/04 S.6 Pure Maths. Half-yearly Exam. (Solution)
0
1
xn1 xn for all n N.
{x n } is monotonic decreasing.
Let lim x n l .
n
n
1 2
l 9
2l
l2 9
or
l 3
l
1
2
xn 9
n 2 x
n
lim x n 1 lim
1M
l 3
(rejected)
1A
lim x n 3 .
n
(11)
(15)
p.13 of 13
© Copyright 2026 Paperzz