1I I I LBL-1 122 1 I UC-66b , i I CONTROLLE D-SOURCE ELECTROMAGNETIC S U LVEY AT SODA LAKES G E O ~iERMAL AREA, NEVADA I Mitchel Stark, Michael Wilt, J. R a n ;ey Haught, and Norman Goldstein ~ i .I I July 1980 i I , Pre ired for t h e U.S. Department of Energy under Contract W-7405-ENG-48 I I I , DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. LEGAL NOTICE I I agency thereof. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price Code: A f W h0J/ LBL-I 1 2 2 1 CONTROLLED-SOURCE ELECTROMAGNETIC SURVEY AT SODA LAKE'S GEOTHERMAL AREA, NEVADA Mitchel S t a r k , Michael W i l t , J. R a m s e y Haught, and N o r m a n Goldstein E a r t h Sciences D i v i s i o n L a w r e n c e B e r k e l e y Laboratory U n i v e r s i t y of C a l i f o r n i a B e r k e l e y , C a l i f o r n i a 94720 July 1 9 8 0 ii i TABLE OF CONTENTS b n V Abstract The EM-60 system, a large-moment frequency-domain e l e c t r o m a g n e t i c loop p r o s p e c t i n g system, w a s o p e r a t e d i n t h e Soda Lakes geothermal a r e a , Nevada. T h i r t e e n s t a t i o n s w e r e occupied a t d i s t a n c e s r a n g i n g from 0.5-3.0 t w o t r a n s m i t t e r sites. These y i e l d e d f o u r sounding curves--the km f r o m normalized amplitudes and p h a s e s of t h e v e r t i c a l and r a d i a l magnetic f i e l d s a s a f u n c t i o n of frequency--at each s t a t i o n . In a d d i t i o n , t w o p o l a r i z a t i o n e l l i p s e parameters, e l l i p t i c i t y and tilt a n g l e , w e r e c a l c u l a t e d a t each frequency. The data w e r e i n t e r p r e t e d by means of a l e a s t - s q u a r e s i n v e r s i o n procedure which f i t s a l a y e r e d r e s i s t i v i t y model t o t h e data. A three-layer structure i s i n d i c a t e d , with a n e a r - s u r f a c e 1 0 ohm-m l a y e r of 100-400 m t h i c k n e s s , a middle 2 ohm-m l a y e r of approximately 1 km t h i c k n e s s , and a "basement" of g r e a t e r t h a n 10 ohm-m. The models i n d i c a t e a n o r t h w e s t e r l y s t r u c t u r a l s t r i k e ; t h e top and middle l a y e r s s e e m t o t h i c k e n from n o r t h e a s t t o southwest. The r e s u l t s agree q u i t e w e l l w i t h p r e v i o u s r e s u l t s of d i p o l e - d i p o l e and magnetot e l l u r i c (MT) surveys. (1 - The EM-60 s u r v e y provided g r e a t e r depth p e n e t r a t i o n 1.5 km) t h a n d i p o l e - d i p o l e , exploration. operation. b u t MT f a r s u r p a s s e d both i n i t s d e p t h of One advantage of EM i n t h i s area i s its ease and speed of Another advantage, i t s r e l a t i v e i n s e n s i t i v i t y t o l a t e r a l inhomo- g e n e i t i e s , i s n o t as pronounced h e r e as it would be i n areas of m o r e complex geology. 1 Introduction As part of t h e Department of Energy's industry-coupled program i n n o r t h e r n Nevada, Lawrence Berkeley Laboratory h a s made e l e c t r o m a g n e t i c surveys u s i n g i t s newly-developed s e v e r a l geothermal p r o s p e c t s . c o n t r o l l e d - s o u r c e EM system (EM-60) a t The EM-60 i s a large-moment frequency-domain e l e c t r o m a g n e t i c system, d e s c r i b e d i n Appendix A. The Soda L a k e s a r e a i s l o c a t e d i n w e s t - c e n t r a l Nevada about 8 0 k m e a s t of Reno and 1 0 km northwest of F a l l o n . A v a r i e t y of geophysical s u r v e y s , i n c l u d i n g magnetotelluric and dipole-dipole r e s i s t i v i t y have been c a r r i e d o u t i n the area, and t h r e e i n t e r m e d i a t e t o deep h o l e s have been d r i l l e d . The w e l l s have n o t pierced a p r o d u c i b l e r e s e r v o i r , b u t the prospect i s s t i l l under e x p l o r a t i o n . W e brought t h e EM-60 system t o Soda Lakes t o compare t h e r e s u l t s with t h e d i p o l e - d i p o l e and t h e m a g n e t e l l u r i c d a t a and t o b e t t e r d e f i n e , i f p o s s i b l e , t h e r e s i s t i v i t y s t r u c t u r e of t h e p r o s p e c t . Hydrology and Geology Garside and S c h i l l i n g ( 1 9 7 9 ) have d e s c r i b e d t h e hydrology, geology, and geothermal a c t i v i t y of t h e Soda Lakes a r e a . It l i e s n e a r t h e southwestern margin of t h e Carson Sink, a major hydrologic b a s i n . Groundwater, t h e r e f o r e , tends t o flow northeast. 1 The Soda L a k e s thermal anomaly w a s d i s c o v e r e d a c c i d e n t a l l y i n 1903 when d r i l l e r s found b o i l i n g w a t e r 60 f t below t h e s u r f a c e . The results of a s h a l l o w t e m p e r a t u r e survey a r e r e p o r t e d i n Olmsted e t a l . ( 1 9 7 5 ) ( F i g u r e 1 ) . The plume-like temperature d i s t r i b u t i o n s u g g e s t s h o t w a t e r ascending t o the h o t t e s t p o i n t s , and d i f f u s i n g o u t i n t h e d i r e c t i o n of t h e r e g i o n a l groundwater 6d flow ( n o r t h e a s t ) . 2 Soda Lake i s thought t o f i l l an e x p l o s i o n c r a t e r and i s rimmed by b a s a l t i c d e b r i s ; t h i s a c t i v i t y probably c e a s e d w i t h i n t h e l a s t 7000 y e a r s . B a s a l t i c r i d g e s o u t c r o p 10-20 km t o t h e n o r t h . u n c o n s o l i d a t e d lake sediments dominate. E l s e w h e r e , exposures of Hydrothermal a l t e r a t i o n p r o d u c t s , such as k a o l i n i t e and i r o n m i n e r a l s , have been found i n t h e s u r f a c e sediments. A few n o r t h e a s t - t r e n d i n g f a u l t s have been mapped, b u t t h e s e are p o o r l y exposed The topography i s f l a t t o hummocky. The s o i l i s v e r y sandy, b u t vege- t a t i o n i s r e l a t i v e l y l u s h due t o e x t e n s i v e s u r f a c e i r r i g a t i o n . Small ponds and d r y l a k e beds d o t t h e area, remnants of a n c i e n t Lake Lahontan. P r e v i o u s Geophysical Work The r e s u l t s of t h e shallow-hole t e m p e r a t u r e s t u d y a r e mentioned above. Other g e o p h y s i c a l work h a s i n c l u d e d s h a l l o w and deep s e i s m i c r e f l e c t i o n , dipole-dipole r e s i s t i v i t y , and m a g n e t o t e l l u r i c s . The shallow weight-drop r e f l e c t i o n survey covered 4 0 l i n e km i n t h e a r e a mapped i n F i g u r e 1. The survey r e v e a l e d numerous s h o r t ( 1 - 2 km) northwest- t r e n d i n g normal f a u l t s , with d i s p l a c e m e n t s on t h e o r d e r of t e n s of meters. The deep r e f l e c t i o n survey d e t e c t e d a deeper 0 1 k m ) n o r t h e a s t - t r e n d i n g normal f a u l t d i s p l a c i n g beds a few hundred meters. The d i p o l e - d i p o l e survey covered t h e a r e a mapped i n F i g u r e 1. mum s p a c i n g used w a s 4 d i p o l e l e n g t h s ( n = 4 1 , a d i s t a n c e of 2 . 4 km. The maxiIn m o s t c a s e s , however, r e l i a b l e d a t a w e r e o b t a i n e d only up t o n = 2 o r 3 , g i v i n g an e f f e c t i v e p e n e t r a t i o n of 250-400 m. The a p p a r e n t r e s i s t i v i t i e s , p r e s e n t e d i n p s e u d o s e c t i o n s , i n d i c a t e a g e n e r a l l y conductive s e c t i o n . In a few a r e a s t h e c o n t r a c t o r i n t e r p r e t e d t h e d a t a w i t h a simple two-layer curve-matching A 3 SODA LAKES / 033.1' / , , / / / / I / 18.0. /' Test hole Number i s t e m p e r a t u r e ( ' C ) at d e p t h of 3 0 m T e m p e r a t u r e e x t r a p o l a t e d f r o m t h e r m a l g r a d i e n t above 30m / / I I I XBLBO4-7049 Fig. 1. Location map and shallow temperature survey r e s u l t s . 4 procedure. These a l l i n d i c a t e d t r u e r e s i s t i v i t i e s d e c r e a s i n g from about 10 ohm-m n e a r t h e s u r f a c e t o 2 ohm-m a t d e p t h s of a few hundred m e t e r s ; n o t h i n g d i f f e r e n t w a s i n t e r p r e t e d w i t h i n the thermal anomaly. MT surveys w e r e conducted i n 1973 and i n 1977 t o e x p l o r e the deeper r e s i s t i v i t y structure. Measurements were made a t f r e q u e n c i e s r a n g i n g from .001 t o 100 Hz, a l l o w i n g i n t e r p r e t a t i o n from a few hundred m e t e r s down t o t e n s of k i l o m e t e r s depth. The i n t e r p r e t a t i o n w a s carried o u t by f i t t i n g l a y e r e d models t o t h e d a t a , o r by d i r e c t i n v e r s i o n t o a continuous resistivity-depth function. Most of t h e i n t e r p r e t a t i o n s i n d i c a t e d a four- layer resistivity structure: a surface l a y e r of 10 ohm-m e x t e n d i n g t o a d e p t h of a few hundred meters, a conductive (-2 ohm-m) zone down t o 1 km, a r e l a t i v e l y r e s i s t i v e zone ( > l o ohm-m) e x t e n d i n g t o 5-10 km, and a conductor of about 1 ohm-m a t depth. C o r r e l a t i o n s w e r e sought between similar u n i t s a t d i f f e r e n t s t a t i o n s , and r e s i s t i v i t y p r o f i l e s w e r e c o n s t r u c t e d . F i g u r e 4b shows t h e n e a r - s u r f a c e p o r t i o n of one such i n t e r p r e t e d r e s i s t i v i t y p r o f i l e , a l o n g Line A-A' ( F i g u r e 2). W e l l Logs L i t h o l o g i c and d r i l l e r ' s l o g s were a v a i l a b l e t o u s f o r three h o l e s , a l l of which w e r e c o l l a r e d w i t h i n .5 k m of Line A-A'. A g e n e r a l i z e d summary o f t h e l i t h o l o g i c i n f o r m a t i o n i s g i v e n i n F i g u r e 4c. Unconsolidated sands and c l a y s dominate t h e uppermost k i l o m e t e r of t h e sedimentary s e c t i o n . These y i e l d t o v o l c a n i c s a n d s t o n e s and s i l t s t o n e s c h a r a c t e r i z e d by secondary m i n e r a l i z a t i o n a t depth. 5 EM-60 Survey F i g u r e 2 shows t h e l o c a t i o n s of t h e t w o t r a n s m i t t e r s i t e s and t h e 13 p l o t t i n g p o i n t s f o r the data. These p l o t t i n g p o i n t s a r e mapped a t p o i n t s midway between t h e t r a n s m i t t e r and t h e actual r e c e i v e r l o c a t i o n s , u s i n g a convention which i s e x p l a i n e d b e l o w . I n t e r p r e t a b l e data w e r e o b t a i n e d a t a l l 13 s t a t i o n s ; i n most cases w e covered a t l e a s t three frequency decades. A t t h e h i g h e r f r e q u e n c i e s w e could not o b t a i n a b s o l u t e amplitude and phase d a t a (see Appendix A ) ; o n l y p o l a r i z a t i o n parameters such as e l l i p t i c i t y and tilt a n g l e c o u l d be r e l i a b l y measured i n t h i s range. and 2-1 w e r e l o c a t e d a t t h e s a m e s i t e , 1 and 2 r e s p e c t i v e l y . Receiver s t a t i o n s 1-5 d e t e c t i n g s i g n a l s from t r a n s m i t t e r s The 13 soundings were o b t a i n e d by a c r e w of f o u r d u r i n g one week of f i e l d work. Data r e d u c t i o n and i n t e r p r e t a t i o n The d a t a w e r e brought back t o t h e o f f i c e and e n t e r e d i n t o a small computer. Segments o b v i o u s l y contaminated by n o i s e w e r e e d i t e d o u t , g a i n s c o r r e c t i o n s w e r e m a d e , and c o n s e c u t i v e segments corresponding t o i d e n t i c a l f r e q u e n c i e s and s t a t i o n s w e r e averaged t o g e t h e r to o b t a i n s t a n d a r d error estimates. These procedures y i e l d e d a working data s e t , which i s t a b u l a t e d i n Appendix B. For i n t e r p r e t a t i o n , we r e l i e d on an automatic Marquardt least-squares i n v e r s i o n (e.g., Inman e t a l . , 1973). T h i s i n v e r s i o n u s e s a "forward" modeling program as i t s k e r n e l t o c a l c u l a t e t h e f i e l d s due t o a f i n i t e a.c. loop s o u r c e above an a r b i t r a r i l y l a y e r e d e a r t h . The i n v e r s i o n seeks a b e s t - f i t t i n g e a r t h model by changing t h e r e s i s t i v i t i e s and t h i c k n e s s e s of t h e 6 e,;' 39" 35' N 118" 30'W,g Legend 0Transmitter 81 I' site Interpreted depth to p l o t t e d h a l f w a y between transmitter and receiver R e c e i v e r s t a t i o n no T19N / / / / // R28E I - 0 0.5 1.0 km XBL806-7201 Fig. 2 Contours on i n t e r p r e t e d depth t o top of conductive second l a y e r n 7 l a y e r s i n an i t e r a t i v e l e a s t - s q u a r e s procedure. Each data p o i n t can be weighted a c c o r d i n g t o t h e operator's c o n f i d e n c e i n it. In g e n e r a l , t h e s t a n d a r d errors l i s t e d i n Appendix B were n o t r e l i e d on i n t h i s r e g a r d because t h e y r e f l e c t o n l y random sampling error, n o t s y s t e m a t i c n o i s e . Instead, a r a t h e r s u b j e c t i v e weighting scheme w a s used, based on our confidence i n t h e d a t a , and i t s importance i n r e s o l v i n g c e r t a i n f e a t u r e s of t h e models. With such h i g h l y n o n l i n e a r curves, it may b e appropriate t o i n c l u d e a weighting f a c t o r p r o p o r t i o n a l t o t h e s l o p e of t h e sounding curve a t each p o i n t . In any c a s e , t h e error estimates and model parameter confidence bounds a r e questionable. The r e s u l t s are shown in Appendix C. For each s t a t i o n , t h e observed amplitude, p h a s e , e l l i p t i c i t y , and tilt a n g l e d a t a are p l o t t e d a g a i n s t c u r v e s c a l c u l a t e d f o r t h e b e s t - f i t t i n g e a r t h models. The l a y e r t h i c k n e s s e s and r e s i s t i v i t i e s are a l s o l i s t e d , with an estimate of t h e r e s o l u t i o n of t h e s e properties. Most of t h e soundings y i e l d e d t w o - o r t h r e e - l a y e r models, w i t h a near- surface l a y e r of about 10 ohm-m, a deeper conductive (-2 ohm-m) u n i t , and ( i n some cases) a r e l a t i v e l y r e s i s t i v e "basement" whose r e s i s t i v i t y could not be w e l l resolved. Drawing' c o r r e l a t i o n s between u n i t s of s i m i l a r r e s i s t i v i t y from d i f f e r e n t s t a t i o n s enabled u s t o c o n s t r u c t t h e r e s i s t i v i t y s t r u c t u r e contour maps i n F i g u r e s 2 and 3 and t h e cross s e c t i o n i n F i g u r e 4a. F i g u r e 2 shows t h e top s u r f a c e of t h e conductive second l a y e r a s i n t e r p r e t e d from t h e soundings. Depth p o i n t s are p l o t t e d midway between t h e r e c e i v e r and t r a n s m i t t e r ; t h i s convention i s used i n l i e u of a r i g o r o u s 2-D o r 3-D i n t e r p r e t a t i o n . 8 The c o n t o u r s show a n o r t h w e s t e r l y t r e n d , with a steep g r a d i e n t n e a r Transmitter 2 (T2). This i s roughly c o n s i s t e n t w i t h t h e shallow seismic r e s u l t s , which i n d i c a t e d a set of northwest-trending faults. However, F i g u r e 2 s u g g e s t s v e r t i c a l displacement of 100-200 m a l o n g a f a u l t n e a r T2, whereas a more g r a d u a l en echelon f a u l t i n g p a t t e r n i s i n f e r r e d from t h e seismic data. F i g u r e 2 a l s o agrees roughly with t h e f e w q u a n t i t a t i v e i n t e r p r e t a t i o n s made f r o m t h e d i p o l e - d i p o l e data southwest of T2. w e see a d e f i n i t e d i f f e r e n c e i n s i d e t h e thermal anomaly. However, O u r soundings t h e r e i n d i c a t e a much s h a l l o w e r depth t o t h e conductor. F i g u r e 3 s h o w s t h e i n t e r p r e t e d depth t o t h e base of this conductor. It should be noted t h a t fewer t h a n h a l f of t h e soundings responded t o t h e resist i v e u n i t beneath t h e conductor; none were able t o r e s o l v e i t s r e s i s t i v i t y . The d e p t h s are n o t w e l l r e s o l v e d e i t h e r , so F i g u r e 3 s h o u l d be regarded as a v e r y rough estimate of t h e d e p t h t o t h e resistor. The p a t t e r n i s similar to F i g u r e 2 i n s o f a r a s t h e base of t h e conductor i s shallower n o r t h and east of T2 W e also c o n s t r u c t e d a p r o f i l e a l o n g Line A-A' (Figure 4a). The p r o f i l e i s l i n e d up w i t h a s i m i l a r MT p r o f i l e ( F i g u r e 4 b ) and t h e g e n e r a l i z e d l i t h o logic logs (Figure 4c). The agreement between t h e p1 and Ea p r o f i l e s is good, but there w e r e no MP ' s t a t i o n s n o r t h e a s t of T2, so w e cannot corroborate t h e change i n t h i c k n e s s of t h e top two l a y e r s t h e r e . The EM p r o f i l e shows t h a t t h e t o p of t h e conductor drops 200-300 m southwest of T2 w h i l e i t s base drops more t h a n 5 0 0 m. This may i n d i c a t e t h a t f a u l t i n g w a s contemporaneous w i t h d e p o s i t i o n of t h e conductive l a y e r . 9 Legend 0 Tronsmltter site 560. I n t e r p r e t e d depth to ( 2 - 7 ) bose of conductor ( m ) p l o t t e d h o l f w a y between transmitter and recelver I R e c e i v e r s t a t i o n no 30 29 3&2 (3-11 \ (2-3) *940 ‘--\OOO / / / / // / 4 3 9srO I I / / Sodo \ / I I 0 0.5 1.0 km u x m Fig. 3. 806-7200 Contours on interpreted depth t o base of conductive second l a y e r . 10 NE A' SW A T1 , 0 F i g . 4a 18.0 ,,-e--- +/-- T2 017 (2-1) (1-6) (1-1) (2-2) I (2-5) //+-'9.5----+-50 (2-7) 0,68 1.3 I --+---+/ 13.0 400 -P 2 000 E I f a 1200 al 0 - 1600 50 - 2000 0.5 0 1.0 k m Horizonlol scale sw NE 0 + -10 a-rn Fig. 4b +--- 4oo 800 +----- -+ \ 'a 1200 l - ,-- ? ? ,/, / / \ \ .c / \ / / /+' \ + \, 0 + a-rn - 2 2 -t- _,+----------? --+/ / + sw A ", 1-29 36-78 44-5 Fig. 4c m i n o r sand nllnor C l d Y v o l c a n i c Sandstone 2000 i - 0 0.5 LOkm Hor~zonlals c a l e XBL 806 Fig. 4a. 4b. 4c. ~ 7204 I n t e r p r e t e d EM r e s i s t i v i t y cross s e c t i o n , Line A-A'. I n t e r p r e t e d MT r e s i s t i v i t y cross s e c t i o n , Line A-A'. Generalized l i t h o l o g i c l o g s f o r three w e l l s along Line A-A'. 11 The l i t h o l o g i c l o g from W e l l 44-5 h e l p s e x p l a i n the EM sounding i n t e r The t r a n s i t i o n from t h e s u r f a c e l a y e r to the conductor appears pretation. t o correspond t o t h e l i t h o l o g i c t r a n s i t i o n from predominantly unconsolidated sands t o a clay-dominated sequence a t about 250 m. their low resistivities. Clays are w e l l known f o r The deeper t r a n s i t i o n t o high r e s i s t i v i t i e s probably r e p r e s e n t s t h e reemergence of sand a s t h e dominant m a t e r i a l a t about 1300 m. T h i s compares w i t h t h e EM estimate of 1500 m and t h e MT estimates of 1300 and 1400 m. The l i t h i f i c a t i o n and secondary m i n e r a l i z a t i o n noted below 1000 rn i n t h e l o g a r e a p p a r e n t l y n o t expressed i n e i t h e r t h e MT o r t h e EM d a t a . The t w o w e l l l o g s n e a r T2 (1-29 and 3 6 - 7 8 ) a r e n o t as o b v i o u s l y c o r r e - l a t e d w i t h t h e r e s i s t i v i t y p r o f i l e s ( n o r are t h e y e s p e c i a l l y w e l l c o r r e l a t e d w i t h each o t h e r ) , b u t t h e y can be r e c o n c i l e d . The s u r f a c e l a y e r i s n o t expressed i n e i t h e r l o g , because no rock d e s c r i p t i o n s were reported above about 100 m. Both l o g s c o n t a i n sand and c l a y sediments down t o about 600 m; v o l c a n i c rock fragments (VRF's) p r e v a i l a t g r e a t e r depth. be d e t r i t a l ; t h e l o g s a r e u n c l e a r in t h i s r e g a r d . The v o l c a n i c s may In any c a s e , t h e sand and c l a y u n i t appears t o correspond t o t h e conductive second l a y e r i n the EM p r o f i l e , while t h e v o l c a n i c m a t e r i a l b e l o w 600 m corresponds t o t h e r e s i s t i v e "basement. " Thus it a p p e a r s t h a t t h e conductive zone i s caused a t least i n p a r t by clay. The deeper r e s i s t i v e zone may be caused by t h e absence of c l a y , i n c r e a s i n g l i t h i f i c a t i o n , secondary m i n e r a l i z a t i o n , and/or massive v o l c a n i c s . The s h a l l o w i n g of t h e conductive u n i t appears t o c o r r e l a t e d i r e c t l y with t h e thermal anomaly. 12 The shallow geothermal system may occur because h o t w a t e r i s r i s i n g a l o n g a northwest-trending f a u l t p a s s i n g n e a r T2, and d i f f u s i n g o u t t o t h e n o r t h e a s t w i t h t h e r e g i o n a l groundwater flow. However, t h i s s c e n a r i o does n o t t e l l u s where t h e h o t water i s coming from, nor does it e x p l a i n t h e r o l e ( i f any) of t h e major n o r t h e a s t - t r e n d i n g f a u l t noted i n t h e deep seismic profile. EM-60 Survey E v a l u a t i o n The g o a l s of t h e survey w e r e t o o b t a i n d a t a i n an e f f i c i e n t manner, t o compare the r e s u l t s w i t h those f r o m o t h e r geophysical s u r v e y s , and, i f p o s s i b l e , t o add new i n f o r m a t i o n t o guide e x p l o r a t i o n p l a n n e r s i n the area. W e o b t a i n e d 13 soundings i n one week w i t h a crew of f o u r , c o v e r i n g an a r e a o f 30 km2 w i t h d e p t h p e n e t r a t i o n of about 1.5 km. good-to-excellent throughout. d e p t h of e x p l o r a t i o n achieved. Somewhat d i s a p p o i n t i n g was t h e r a t h e r shallow The EM method i s n o t w e l l suited t o r e s o l u t i o n of r e s i s t i v e b o d i e s b e n e a t h c o n d u c t i v e overburden. two-to-three D a t a quality was Nonetheless, w e achieved t i m e s deeper p e n e t r a t i o n t h a n t h e d i p o l e - d i p o l e survey and were a b l e t o develop a more q u a n t i t a t i v e i d e a of t h e r e s i s t i v i t y s t r u c t u r e . As e x p e c t e d , t h e MT survey provided much g r e a t e r depth of e x p l o r a t i o n t h a n EM o r d i p o l e - d i p o l e r e s i s t i v i t y . The EM-60 system w i l l be t e s t e d soon i n a deeper a p p l i c a t i o n ; i n any c a s e , MT i s unique i n its r e s o l u t i o n of t h e r e s i s t i v i t y s t r u c t u r e down t o s e v e r a l t e n s o r hundreds o f kilometers. Lateral inhomogeneities, which c a n o f t e n h a m p e r MT i n t e r p r e t a t i o n , were not a s e r i o u s d i f f i c u l t y a t Soda Lake. T h e r e f o r e , t h e major i n t r i n s i c advantages of EM o v e r MT h e r e were t h e improvement i n n e a r - s u r f a c e r e s o l u t i o n and t h e l a v e r cost of 13 data acquisition. "2, I n a d d i t i o n , we o b t a i n e d more i n f o r m a t i o n n o r t h e a s t of because t h e r e were no MT s t a t i o n s t h e r e . W e b e l i e v e t h a t t h e EM r e s u l t s have c l e a r l y demonstrated t h a t t h e shallow thermal anomaly i s a s s o c i a t e d w i t h a shallowing of t h e l o w - r e s i s t i v i t y second layer. They a l s o s u g g e s t t h e importance of t h e northwest-trending i n c o n t r o l l i n g t h e shallow geothermal regime. f a u l t set F i n a l l y , t h e survey h a s c o r r o - b o r a t e d many of t h e f i n d i n g s from t h e MT and d i p o l e - d i p o l e s t u d i e s ; no s e r i o u s d i s c r e p a n c i e s w e r e found between d a t a sets. 14 Acknowledgment This work w a s supported by t h e D i v i s i o n of Geothermal Energy of t h e U.S. Department of Energy under C o n t r a c t N o . W-7405-ENG-48. References G a r s i d e , L. J., and J. H. S c h i l l i n g , 1979. Thermal w a t e r s of Nevada. Bureau Mines and Geology, b u l l e t i n 91. Inman, J. R., J. Ryu and S. H. Ward, 1973. 38, 6, pp. 1088-1108. - R e s i s t i v i t y inversion: Nevada Geophysics Olmsted, F. H., P. A. Glancy, J. R. H a r r i l l , F. E. Rush, and A. S. VanDenburgh. 1975. P r e l i m i n a r y hydrogeologic appraisal of s e l e c t e d hydrothermal systems i n n o r t h e r n and c e n t r a l Nevada : U. S. Geological Survey, o p e n - f i l e report 75-56. 15 APPENDIX A Description of EM-60 System 16 APPENDIX A EM-60 ELECTROMAGNETIC SYSTEM I n 1976, Lawrence Berkeley Laboratory, i n c o n j u n c t i o n w i t h t h e U n i v e r s i t y of C a l i f o r n i a Berkeley, made p r e l i m i n a r y measurements w i t h a prototype large-moment, h o r i z o n t a l - l o o p EM p r o s p e c t i n g system (Jain, 1978) i n a geothermal a r e a i n Nevada. Encouraging r e s u l t s from t h i s work l e d t o t h e development of the EM-60 h o r i z o n t a l - l o o p system (Morrison e t a l . , 19781, which has now been o p e r a t e d f o r more t h a n 500 h r a t v a r i o u s geothermal s i t e s i n Nevada and Oregon. The EM method o f f e r s t h e f o l l o w i n g advantages o v e r dc r e s i s t i v i t y and m a g n e t o t e l l u r i c s i n geothermal e x p l o r a t i o n : ( 1 ) T h e maximum depth of explo- r a t i o n w i t h EM i s approximately e q u a l t o t h e d i s t a n c e between t h e transmitter and r e c e i v e r ; t h i s compares t o about o n e - f i f t h t h e s o u r c e - r e c e i v e r s e p a r a t i o n f o r dc r e s i s t i v i t y . r e s i s t i v i t y or MT. ( 2 ) The EM method i s f a s t e r and less expensive t h a n d c (3) D i s t a n t l a t e r a l inhomogeneities, which o f t e n a f f e c t MT data, have r e l a t i v e l y minor s i g n i f i c a n c e f o r EM, because t h e s t r e n g t h of t h e f i e l d s s t r o n g l y d e c r e a s e s with i n c r e a s i n g d i s t a n c e from t h e t r a n s m i t t e r . System D e s c r i p t i o n The system, a s shown s c h e m a t i c a l l y i n F i g u r e A-1 c o n s i s t s of t w o s e c t i o n s : ( a ) a t r a n s m i t t e r s e c t i o n c o n s i s t i n g of t h e p o w e r s o u r c e , c o n t r o l e l e c t r o n i c s , t i m i n g , and a t r a n s i s t o r i z e d s w i t c h c a p a b l e of h a n d l i n g l a r g e c u r r e n t ; and ( b ) a r e c e i v e r s e c t i o n c o n s i s t i n g of magnetic or a combination of magnetic and e l e c t r i c f i e l d detectors, s i g n a l c o n d i t i o n i n g amplifiers and a n t i - a l i a s f i l t e r s , and a m u l t i c h a n n e l programmable r e c e i v e r (spectrum a n a l y z e r ) . c Preamplifiers and mu It i plexer 6 Horizontal loop, M>10 m k s 4 i I + Transmitter t r u c k "X I I I FM radio telemetry Control units D I 3 Component IJ SQUID magnetometer I I I I I Phase I I - - -- - -- - - - - - - - reference signal (Clock source or) wire telemetry 1-1 Multi -channel stacking spectrum analyzer Filters and amp1if iers --I D isc r im ina t o r u _I 4 3 Component IJ SQUID magnetometer XBL 797-11400 F i g u r e A-1. S c h e m a t i c diagram of the E~I-60s y s t e m . 18 T r a n s m i t t e r System The EM-60 t r a n s m i t t e r is powered by a Hercules g a s o l i n e engine l i n k e d t o an a i r c r a f t 60-kW, 400-Hz, 3$ a l t e r n a t o r . i n t h e bed of a o n w t o n , four-wheel-drive These two components are mounted truck. The o u t p u t is full-wave r e c t i f i e d and capable of p r o v i d i n g f150 V a t up t o 4 0 0 A t o t h e h o r i z o n t a l The square-wave c u r r e n t p u l s e s are c r e a t e d by means of a t r a n s i s - coil. t o r i z e d s w i t c h , which c o n s i s t s of two p a r a l l e l a r r a y s of from 6 t o 6 0 t r a n s i s t o r s i n i n t e r c h a n g e a b l e modules w i t h i n t h e "crate" ( t h e lower outward The upper u n i t c o n t a i n s a r r a y - d r i v i n g elec- p i v o t i n g box i n F i g u r e A-2). t r o n i c s and t i m i n g c i r c u i t r y . The t r a n s m i t t e r i s operated by one man who c o n t r o l s t h e frequency of t h e primary magnetic f i e l d o v e r t h e range of t o l o 3 Hz by means of s w i t c h e s on a remote c o n t r o l box which c o n t a i n s a c r y s t a l - c o n t r o l l e d o s c i l l a t o r and d i v i d e r s (Morrison e t a l . , 1978). The d i p o l e moment, which i s a measure of t h e s t r e n g t h of t h e s i g n a l , i s determined by t h e r e s i s t a n c e and i n d u c t a n c e of t h e loop. A t frequencies below 50 H z , i n d u c t i v e r e a c t a n c e i s n e g l i g i b l e and t h e d i p o l e moment is governed by t h e l o a d r e s i s t a n c e . Four t u r n s of no. 6 w i r e i n a square o r cir- c u l a r loop, 50 m i n r a d i u s , w i l l y i e l d a d i p o l e moment of about 3 x l o 6 mks. T h i s p r o v i d e s adequate s i g n a l f o r soundings where t r a n s m i t t e r - r e c e i v e r separ a t i o n s a r e less t h a n about 5 km, which corresponds t o a maximum depth of e x p l o r a t i o n of about 5 km. A t f r e q u e n c i e s above about 1 0 0 Hz, t h e inductance c a u s e s t h e moment t o d e c r e a s e and t h e c u r r e n t waveform t o become q u a s i s i n u soidal. High-frequency i n f o r m a t i o n i s t h u s more d i f f i c u l t t o o b t a i n a t l a r g e transmitter-receiver separations. 19 20 Receiver S e c t i o n The f i e l d s are d e t e c t e d a t a p o i n t 1-4 km d i s t a n t f r o m t h e t r a n s m i t t e r by m e a n s o f a three-component SQUID magnetometer o r i e n t e d t o measure t h e v e r t i c a l , r a d i a l , and t a n g e n t i a l components w i t h r e s p e c t t o t h e loop. S i g n a l s a r e a m p l i f i e d , a n t i - a l i a s f i l t e r e d and i n p u t t e d t o a six-channel, programmable, m u l t i f r e q u e n c y p h a s e - s e n s i t i v e r e c e i v e r ( F i g u r e A-1). t h e r e c e i v e r key-pad, processing: (a) Through t h e operator sets parameters c o n t r o l l i n g s i g n a l fundamental p e r i o d of t h e waveform t o be processed; (b) maximum number of harmonics t o be analyzed, up t o 15; ( c ) number of c y c l e s i n increments of 2N t o be s t a c k e d p r i o r to F o u r i e r decomposition; and ( d ) number of i n p u t c h a n n e l s of d a t a to be processed. P r o c e s s i n g results i n a r a w amplitude estimate f o r each component and a phase estimate r e l a t i v e t o t h e phase of t h e c u r r e n t i n t h e loop. Phase r e f e r e n c i n g i s maintained w i t h a hard-wire l i n k between a s h u n t on the l o o p and t h e r e c e i v e r ; t h i s r e f e r e n c e v o l t a g e i s a p p l i e d d i r e c t l y t o channel 1 of t h e r e c e i v e r f o r phase comparison. Raw a m p l i t u d e e s t i m a t e s must b e l a t e r c o r r e c t e d f o r d i p o l e moment and d i s t a n c e between l o o p and magnetometer. I n p r a c t i c e , t h e hard-wire l i n k was found t o be a source of n o i s e , part i c u l a r l y above 50 Hz. T h i s has r e q u i r e d t h e e l i m i n a t i o n of the a b s o l u t e phase r e f e r e n c e a t high f r e q u e n c i e s i n f a v o r of r e l a t i v e phase measurements between v e r t i c a l and r a d i a l components. With r e l a t i v e phase measurements, i n t e r p r e t a t i o n is based on the e l l i p t i c i t y and tilt a n g l e of magnetic f i e l d r a t h e r t h a n amplitude-phase of t h e v e r t i c a l and r a d i a l f i e l d s . A t l o w fre- q u e n c i e s (G.1 Hz) n a t u r a l geomagnetic s i g n a l amplitude i n c r e a s e s roughly a s 21 l/f w h i l e t h e s i g n a l sought decxeases as l / f . The n e t r e s u l t is an e f f e c t i v e s i g n a l - t o - n o i s e r a t i o t h a t decreases as l / f 2 , making n o i s e c a n c e l l a t i o n i m p e r a t i v e f o r recovery of low-frequency i n f o r m a t i o n . To c a n c e l geomagnetic n o i s e , a r e f e r e n c e magnetometer i s p l a c e d f a r enough from t h e t r a n s m i t t e r loop, (10-12 k m ) so t h a t t h e observed f i e l d s w i l l c o n s i s t o n l y of t h e geomagnetic f l u c t u a t i o n s . Once i n s t a l l e d , t h e r e f e r e n c e magnetometer can o f t e n remain f i x e d over t h e course of a survey. The remote s i g n a l s a r e t r a n s m i t t e d t o t h e mobile r e c e i v e r s t a t i o n from t h e t r a n s m i t t e r v i a F M r a d i o t e l e m e t r y . Before t h e l o o p i s e n e r g i z e d , t h e remote s i g n a l s are i n v e r t e d , a d j u s t e d i n a m p l i t u d e , and t h e n added t o t h e base s t a t i o n geomagnetic s i g n a l t o produce essentially a null signal. A good example of t h i s simple n o i s e c a n c e l l a t i o n scheme i s shown i n F i g u r e A-3. The r e s u l t i n g s i g n a l - t o - n o i s e improvement of roughly 20 dB h a s allowed u s t o o b t a i n r e l i a b l e d a t a t o 0 . 0 5 Hz, a g a i n of t h r e e o r f o u r important d a t a p o i n t s on t h e sounding curve. These p o i n t s are i n v a l u a b l e f o r r e s o l v i n g deeper horizons. D a t a Interpretation Basic i n t e r p r e t a t i o n is accomplished by d i r e c t i n v e r s i o n of observed d a t a t o f i t one-dimensional models. The program used f i t s amplitude-phase and/or e l l i p s e p o l a r i z a t i o n parameters j o i n t l y o r s e p a r a t e l y t o f i t a r b i t r a r i l y l a y e r e d models. This program allows t h e use of e l l i p s e p o l a r i z a t i o n parameters t o s e p a r a t e l y f i t high frequency p o i n t s , where a b s o l u t e phase d a t a i s much n o i s i e r , while s i m u l t a n e o u s l y u s i n g a b s o l u t e phase d a t a a t t h e lower f r e q u e n c i e s , where t h e phase r e f e r e n c e may allow f o r b e t t e r parameter @ resolution. Two-dimensional modeling, a l t h o u g h p o s s i b l e , i s c u r r e n t l y I W I- O 2 W X [r I 22 -J X m 4J rl al 23 cumbersome and p r o h i b i t i v e l y expensive ( L e e , 1979). Samples of EM-60 amplitude-phase s p e c t r a soundings are g i v e n i n F i g u r e s A-4 and A-5; t h e error bars s i g n i f y one s t a n d a r d d e v i a t i o n . The f i t t o a t h r e e - l a y e r model i s f a i r l y good, b u t n o t e t h a t d a t a were i n t e r p r e t e d only t o 50 Hz because high n o i s e , due to t h e u s e of t h e r e f e r e n c e w i r e , p r o h i b i t e d o b t a i n i n g h i g h e r frequency amplitude-phase d a t a . could u s u a l l y be i n t e r p r e t e d t o 500 Hz. E l l i p t i c i t y d a t a , however, I 9 24 I 0 E € 0 0 0 mcu *cu +I +I 0 0 m a 0 0 - cu 0 -I a> X m . € 3 z IItr, c .- a 3 c 0 m I 0 00 - I In - 0 I U Q) > 0 cu - , ' I 25 € € 0 0 0 +I mcu +I 0 m 1 CD 0 ' I cu 0 co 26 References J a i n , B., 1978. A low frequency e l e c t r o m a g n e t i c p r o s p e c t i n g system, Ph.D. d i s s e r t a t i o n , U n i v e r s i t y o f C a l i f o r n i a , Berkeley, Department of Engineering Geosciences, Lawrence Berkeley Laboratory, LBL-7042. H., 1978, Electromagnetic s c a t t e r i n g by a two-dimensional inhomog e n e i t y due t o an o s c i l l a t i n g magnetic dipole, Ph.D. d i s s e r t a t i o n , U n i v e r s i t y of C a l i f o r n i a , Berkeley, Department of Engineering Geosciences, Lawrence Berkeley Laboratory, LBL-8275. L e e , K. Morrison, H. F., G o l d s t e i n , N. E. Hoversten, N., Oppliger, G., and Riveros, C., 1978. D e s c r i p t i o n , f i e l d t e s t and data a n a l y s i s of a c o n t r o l l e d - s o u r c e EM system EM-60, Lawrence Berkeley Laboratory, LBL-7 0 88 A n 27 APPENDIX B F i n a l Working D a t a S e t 28 s t a t i o n : soda lake a-a' 0.5km north t i scparationr960 neters loop radiusm50 n a t e r r number o f turnst4 hz nag const=7.092 hr mag consta7.936 phase e r r Ihr phase amp e r r h t amp frequency 8.257 185.047 0.002 1 808 1 800 a.585 170.554 0.006 1.114 3. e00 1 083 174.294 0,004 1.117 5.000 1 8 444 168.893 0.005 1.119 7.000 88037 164.439 8.001 1.112 10.880 8.120 136.973 0.008 0.878 30.880 0.887 89.219 e. e00 0.648 5e.eee 8.197 120.567 8,001 0.692 50 000 0.095 350 330 0.008 8.250 190.080 0.145 299.279 0. 001 8.146 150.600 0.171 286.829 0.800 8.014 zee Bee e. 192 177.597 e. 0 004 500 000 . . .. frequency 1.808 3.008 5.080 7.000 ie.080 38.800 se. 000 50.800 100.000 1se.m 2Q0.000 5e0. e m frequency 1 880 3.000 5. 080 7.880 10.808 30 000 50.080 50.808 190.0ee 150.808 206. 008 500 800 . . . hr amp 8.160 8.322 0. 435 8.499 0.631 e. 779 e.7~2 0.782 e.439 0 . 397 e. 058 0.018 e l 1 i p t i c i tu -0.154 -0.239 -0.281 -8.385 -e.m -e. 366 -0. 368 -0.400 -0.340 -e. 290 -0.237 -8. e35 I we amp e r r 8.013 8. e10 ~ 3 1 2 8.007 8.005 0.004 e. 083 8.086 0, 081 e . 0 ~ 8.001 @.e01 e l l i p err e. eis 8.008 0. 086 8 . 01 1 0.081 8. 001 8.001 0.003 0. 000 0.001 8.804 0.088 h r phase 280.607 237. 196 22s. l e t 217.218 207.222 177.491 129.344 164.590 35.397 354.91 1 299.003 352.383 I phase e r r 5.587 . 2.495 1 246 0. 345 8.197 8.126 0. 457 0. 121 8.247 40.283 1 064 t i l t angle 98.613 888 917 74 957 72,136 64 564 49.463 398 480 40.155 25 047 12.842 . 2.451 t i l t err 0.637 0. 793 8.858 1 824 0.319 . 4.670 -24.561 0.162 2.016 n 29 rtpuration-1956 ncterr s t o t i o n : soda lake o-az l.5kr(r n o r t h t nunbar of t u r n s r 4 loop radiuso50 m t c r r h r m u g constt7.936 hr mag const=7.0 ' 2 I e.500 1 800 . 1.270 1 .369 1.445 5.000 7.000 10. 008 30.800 50.000 0.773 0.638 8.521 0.247 0. 191 frequency 0.1e0 8.300 hr onp frequency e, 100 0.306 . 3.000 . 0.500 1 000 3.000 5.890 7.000 10.000 30.608 50.000 $requency 9. lea 0. 380 0.508 1.808 3.000 5.088 7.000 10.000 343. @eo 50.600 5e.0~90 188.008 150.000 206.006 see. 000 hz amp 1 090 1.027 0.217 0.552 . .. 0.780 1 074 1.195 1 088 1 029 0.899 8.455 0.175 ellipticity -0.196 -0.350 -0.389 -0.371 -0.339 -8.305 -0.278 -0.274 -0.298 -0.648 -0.147 -8.114 -0.089 -0.064 e.848 amp err 0,005 h t tohare 0.001 0.002 0.em 0.003 0.003 0.001 0.003 0. e84 188.427 185.251 177.789 166.823 139.310 129.246 123.910 118.127 98.513 87.232 amp e r r h r phase 0.001 0.003 0.003 0.003 0.002 0.005 0.003 0.010 0.812 8.011 0.009 e l l i p err 0.002 0.882 0.083 13.803 e. 002 0.002 0,004 0.003 0.007 0.039 8.002 0.004 0.017 0.021 0.044 269.079 243.843 229.534 289 806 177.246 165 456 159. 123 154.995 139.227 155.133 . . phase e r r 8.292 8.051 6.182 0.027 0.171 0.328 0.274 8.077 0.645 1.735 phase e r r 0.907 0.291 8.364 e. 333 0,282 0.194 0.622 0.245 0.719 3.447 t i l t angle 87.970 75 398 . 66.891 56.202 39.524 33.344 29 342 27.391 24 849 53.866 15.430 12.586 11.438 11.695 15.961 . . t i l t err 0.140 0.148 8.898 8.062 8.253 0.115 0.229 8.351 9.732 * 4 . 0 ~ ~ 0.155 0.291 0.704 1.284 5.991 30 station: soda lake fi-fi' 2.3 kn sw ti rrparation=2268 meters number o f turns-4 loop radiusm30 meters hr nas conrtr7.936 h i mag const=7.092 frequency 0. 100 0.300 0.500 0.788 1. 000 3.000 5.000 7.006 10. 600 f rcqucnc y e. iee e. 300 e. so0 e. 708 1.000 3.080 5.880 7. 808 10.000 frequency e. lee 0.308 0. 598 8.790 1. e08 3. e m 5.080 7. 080 19.e00 30. e00 sa. m e 100,088 200. em h2 amp 1.063 1.148 1.232 1,173 1.077 5.092 8.594 0.515 8.431 hr a m p 0.318 0.655 0.895 0.984 0.957 7.184 0.827 0.770 8.865 e1 1 iptic i tu -8.269 -0.357 -0.368 -0.380 -0.317 -0.159 -0.194 -e. 180 -0.176 -e. 092 =e. e86 -0.150 -0. 189 a m p err h i phase phase e r r 0.006 0.026 hr phase 253.658 235.687 phase e r r 0.038 0.027 6.202 0.019 e. e22 0.815 206.322 193.221 195.034 166.034 154,288 163.414 0.003 0.042 0.002 0.882 0. 002 0.014 e.ew 0.005 0.801 amp e r r 0.012 ellip e r r 0.006 0,006 0.006 0. 009 8.003 0,661 e. 085 0.008 e. 006 e. 604 0 . e03 6,018 8.022 187.613 188.237 178.325 163.822 157.687 143.153 136. 709 132.053 138.072 0.267 4.394 0.221 0.245 0.293 0,179 0.343 0.321 0.209 213.863 t i l t angle 82.342 65.586 56.964 51 762 49.201 25.199 34.982 33.036 25.112 3.152 79.1S8 13.383 ie.714 8.981 3.964 0.427 0.775 0.402 25.570 0,581 1.002 0.859 t i l t err 0.358 0.913 0.408 1.389 1.893 9.624 6.785 0.889 0.368 0.372 0.138 0.979 1e301 31 separation-552 meters s t a t i o n : soda lake C-C' . 6 krr nu t 2 loop radius-50 meters number o f t u r n r r 4 hr ~ a cons g t3~7.936 hz mag const=7.092 amp e r r 0.004 frequency 0. lee 0.390 0.500 0.700 1. 000 3.080 5.080 7.000 10.098 38. eee h r amp 0.993 1 024 1.084 1.168 1.241 1.113 0.946 0.541 e. 188 e. 08s erne e.000 e.ew 8.881 e.eei e. 083 frequency 0. 100 e. 308 h r amp 0.078 0.145 0.249 0.31 1 8.423 8.856 i.883 1.013 0. 780 0.375 amp e r r 0.016 8.003 0.004 e.ee6 e. e83 e.004 8.005 8.004 e. 002 0.003 i.ies e. see 0. tee 1 000 3.090 5.088 7 . m 1e.m 30.000 frequency 0. 108 9.388 9.500 0. 708 1. 000 3. eee 5. 008 7. 000 10.000 ellipticity -0.077 -e. -0.217 -8.255 -0.308 -8.433 -8,442 -8.426 -e. 398 30. e m 50.800 100.000 208. e e see. eee 139 ~ -8.223 -e. 168 -e. 171 -8.162 -0.112 0.007 0.010 h t phase 181.467 183.000 179.600 182.440 i8e.eee 158a?70 141.608 129.01 1 i22.eee 123.440 phase e r r 0.333 0.000 3.408 0,223 8 . e00 eo 000 8.000 0.308 h r phase 271.8~ 263 500 251 200 I249.208 241 580 I210. e20 189.600 175.300 167.258 phase e r r 5. 196 0.645 3.308 0.072 e.580 0.250 I . 6.240 155.440 a l l i p err 0.015 e. ee3 0.003 e m 2 0.ee4 e. e02 em0 e. 004 e. ee2 e. 000 e. ee3 erne 0.801 8.802 0 . e ~ t i l t angle 90.195 80.633 85.639 83.210 79.166 4e.603 49 427 42.181 34.79s 24 290 20.085 17.043 12.219 9.688 e.eee 0 . 200 0.250 6.240 tilt err 0.475 8.111 0.878 0.365 0.077 8.227 8.220 0. 101 0.842 e.ew 0.074 8.037 e. 258 0.877 32 s t a t i o n : soda l a k e C-C' 1.8kn nw t 2 scparation=l764 meters nunbar o f t u r n s ~ 4 loop r a d i u s 6 0 n e t e r r hr mag conrt=7.936 hz nag conrt=7.892 .. frequency 0.050 0.050 0. 100 0.150 0.300 0.500 8.700 1.008 3.808 5.080 7.008 hr amp 1 049 1 042 1.141 1.103 1 8 275 1 402 1 459 1 433 1.861 8.670 8.448 amp e r r 0.016 0.015 0.006 0. e09 0.005 0.004 0.006 0.881 8.001 8.081 8.801 Rz phase 185.933 185.829 184.300 185.567 184.280 180.168 174.468 166. 964 125.770 105.600 101.300 phase- e r r 2.836 1,043 0.224 0.167 0.200 8.068 8.183 0.036 frequency hc an0 0.147 8.113 0.167 0.235 0.446 8.660 0.821 0.944 1.160 0.990 0.807 amp err hr phase 200.433 262.271 261 880 257.400 246.028 234.400 225.400 215.000 170.970 149.600 148.300 phase err 8.059 88050 0. 100 e. i s e 8.300 0.500 0.700 1.800 3.080 5.000 7. e00 8.100 8.150 0.308 0.500 0.700 1 888 3. 080 5.880 7. 000 10.080 30. e m 50. 000 100.000 . . el 1 i p t i c i tu -8.887 -8.087 -8.143 -e. 201 -e. 300 -8.351 -8.380 -8.395 -8.414 -0.365 -0.289 -0.209 -6.1S3 -0.121 -0.115 -0.146 0.812 0.017 88 002 0.801 e. 002 0.004 0. 009 8.805 0.812 0.013 . 0.000 0. 080 0. 208 20.027 15.830 ~1.683 1 438 8.828 0.400 0.400 0.000 0. 200 0. 800 8.374 . e l l i p e r r t i l t a 1g1e t i l t e r r 2.762 90.3 il 0.014 1 505 89.1 313 e . 0 ~ 0.128 88. 14 2 0.002 0.311 86.8 6 0.003 0.056 79.6 7 8.801 0.167 72.3 7' 1 8.003 8.389 66.9 67 e . 0 ~ 0.198 61.3 9IS 0.001 0.405 4184 2r5 0.802 0 495 38.4 7'S e e03 0.235 25.6 213 e. 004 0.357 22.5 18 8.003 0.677 18.9 0I9 8.802 0.390 16. 144 0. e02 0.981 14.7 a12 0. e05 2.803 128 34b5 8.016 3 . . 33 s t a t i o n : soda l a k e d-d’ 0.5km w t2 s e ~ a r a t f o n * 7 2 0 meters number o f turnsr4 loop radiur=S0 meters hr wag const-7.936 hz mag conrt=7.092 f rcquenc y . .. . hz amp hz phase 183.825 183,460 183,383 183.163 184.190 179.640 174.542 170.554 165.817 132.733 82.630 106.122 192.541 196.231 266.964 130,591 phase e r r em 1 007 1.010 1 034 1 e48 1.105 1 s 208 1 245 1.259 1.278 1.116 0.857 0.956 266.634 0.163 109.301 e. e22 frequency hr amp hr phase phase err 0.108 0.300 8.580 8.700 1 888 3.~0 5.000 7.088 18.088 30 .eee 58.800 50.000 50.888 1e8.800 188.000 200. 0. 100 0. 388 8D588 8.780 1 888 3.008 5.808 7.008 18.880 38.000 58.808 58.868 s8.880 100.008 100D808 280. em frequency e. 100 8.300 0.508 0.700 1 080 3. 000 5.000 7.008 10.080 30.000 50.080 . 58.888 58 800 100.008 iee.e08 280. eee 290.908 0.027 0.063 8, 102 0.131 0.176 0.362 e. 417 e.561 0.671 0.947 0.951 1 046 287.9~ 0.273 162.997 252.357 253.930 248.372 247.472 242.544 228.052 219.686 213.896 208.427 176.224 127.536 153.174 237.578 248.999 245.912 8.686 216.817 . ellipticity -0.025 -0.058 -8.089 -0.113 -0.135 -0.215 -8.252 -0.275 -0.306 -0.392 -0,410 -0. 433 -0.413 -0.409 -8.424 -0.256 -0.339 -8.173 . . 8.809 0.013 0.025 0,026 0.m 8.011 0.023 0.023 0.029 8.10s 0.077 0. ite 48.976 e.838 45.439 8.241 2.525 2.098 1 537 1 003 0.227 0.294 0.141 . t i l t angle 89 438 88.786 87.60e a6 852 85.130 78.214 73.830 70.503 66.413 51 439 40.816 41,206 41 898 24.187 28.461 1.255 13.581 9. 580 . . 8.156 8.026 0. 100 0.080 8.161 48.965 0.037 43.322 6.264 tilt err 0.079 8.149 0.165 8.118 0.049 8.867 8.022 0.062 0.882 0.006 0.015 0.014 0.009 0.009 8.817 0.813 0.011 0.283 34 s t a t i o n : soda lake D-D’ 2.0km ne t i s e p a r a t i o n r 2 8 2 8 meters nunbcr o f t u r n s r 4 loop radius=50 asters hr nag constr7.936 hr nag c o n s t ~ 7 . 0 9 2 h t amp frequency 0.050 0. 100 0.150 0.380 0.500 0.700 1 000 3.008 5.808 7 . e ~ 10.800 30.~~0 58. 008 . 1.024 1.116 1.136 1 286 1 322 1 267 1.170 0. 787 0.553 0.464 0.386 9.074 e. i 7 e .. . f re q u en c y 0.850 hr amp 8.158 8.308 e. 580 0.308 0.446 0. 100 . 1 990 3. e m 5.068 7.888 10.980 39. 080 f requcnc y 0.050 e. l e 0 0.159 0.300 0.500 e.7130 1 e00 3. a00 . 5.800 7 . eee 10.800 30. e00 50.009 58 eee . 180.800 0.159 8.328 0.74s 0.969 1.672 1.158 1 040 0.966 8.919 . e. 904 0.806 ellipticitu -e. 133 -8.263 -e. 314 -0.381 -0.378 -e. 373 -0 348 -e. 247 -0.219 -0.193 -e. 181 -0.868 0. 002 -e. 167 -0. 12s . hz phase amp e r r 186.231 187.168 i86.5ie 180.235 170.674 162.502 154.695 140.418 135.e8~1 132.553 306.444 264 687 117.710 0.809 0.081 0. 004 0.002 0. 002 0.003 8.081 0.002 8.002 0.004 0.00~4 1 866 0. 282 e. 489 0.129 e. 898 0.116 0.046 e. 134 e. 165 0.463 . 0.002 8.882 hr. phase amp e r r e. 826 8.8e5 9.012 0.007 . phase e r r . 0.806 0. 010 0.883 0.004 9.008 e.018 8.081 time1 248.888 252 a 555 243.850 230.188 213.717 204.112 193.105 170.413 164.028 160.013 333.490 313.121 e l l i p err e. 030 0. ees 0.027 e. e04 e. e05 0. e04 0,081 0.003 e. 004 e.eii e. e m m e 3 e. e04 0.801 0. e83 .. e.052 1.315 1.361 phase e r r t i l t angle 86 630 82 498 77.138 65,727 56 a 699 51.322 45.362 32.732 213. e75 25,147 21.229 3.495 -1 1 08s 13,251 8.450 9.776 e. 729 4.93% 0.346 6.641 0. 354 0. 848 0.336 8.339 1.195 8.080 e.518 t,ilt err e.762 0. 251 e.873 0.278 0.291 0.269 0.069 0.172 0.213 0.460 0.m 0.184 0.171 e.068 0.178 35 0 station: soda lake 6-6’ 2.8 kn se t i separation-2796 meters loop radiur=S0 n e t e r r number o f turnis4 h r nag constr7.936 hr Rag constr7.092 frequency 0.058 0. tee 0. i s e 0.309 0.380 0.500 8.700 1 000 3.000 5.000 7. 000 10.000 18.008 30 e m . frequency 0. 850 0. 100 0.150 0.300 0. 380 0.580 0.700 1 000 3. 000 5. 080 7. e m 10.000 ie. m e 30.900 freauancy e. e50 e. l e e 0. 150 0.300 0.388 0.500 0.700 1n 000 3.000 5. e m 7. 000 10. 008 16.000 30 000 . 30. e m 100.0013 . hr a m 1 048 1.261 1 246 1 a 383 2.884 1 302 1.148 0.958 9.538 0,399 0.349 0.280 2517.613 e - 085 amp e r r 0.097 0.035 0.013 0.018 1.519 0.068 0.058 0.084 hr anp 0.281 0.463 0.620 0.957 1 069 1.281 1 575 1.103 0.839 0.820 8.738 0.641 5632.999 0.481 anp e r r 0.063 0.082 ~1.017 0.088 0.331 . . . el 1iptici ty -8.317 -8.224 -8.400 -0.427 -0.251 -0.396 -0.344 -0.297 -0.210 -8.143 -9.213 -8.159 -0.187 -0.133 -8.215 -0.088 0.005 0.013 0.016 0.003 7.013 8.011 0.082 0, 182 0.135 0. 935 0.827 0.042 0.012 118.872 8.038 e l l i p err 0.084 8.114 0.016 e. 025 0.230 0. 023 e. 02s 0.025 08 815 8.035 e. 042 0 . m 0. 009 8.033 8.022 8.013 hr phase 188.843 18s. 229 182.000 168.600 169.400 161.000 131.550 141 286 134,570 134.880 130.508 126.667 344.000 93.408 . phase e r r 2,650 1.325 e.510 1 288 4.400 4,211 4.655 0,286 1 020 1 800 2.983 88955 3. 000 4.140 hr phase 260.027 244.371 242.400 221.600 206 800 2es.500 193.838 178.143 160.970 155.800 162.500 151.667 373. 000 140.600 phase e r r 6.104 31.379 3.256 4.273 28.000 4.410 4.205 2.798 1.114 4.903 7.843 0.803 2. 000 2,839 . . . t i l t angle t i l t err 88.519 73.486 61 822 74.019 45.811 35.793 42.119 31 107 24 695 23.069 22.215 22.171 6.819 14.191 7.614 3.338 82.505 . .. 3.299 1.692 4.668 1.616 3.939 4.055 5.696 1.041 0,710 2.054 0.330 0.255 0.944 0. 121 1.613 36 station: soda lake E-€’ 1.3km su t2 separation-1260 netcrs loop radiurr58 meters number of turnrr4 hr nag const=7.936 h t Rag constr7.892 phase e r r hz phase amp e r r hz anp frequency 0.865 185.817 0.081 1.118 0. 100 0.866 185.108 8.849 1.124 0.300 0.111 182.iee e. eee 1.298 0. see 0. 142 178.782 0.822 1.316 e.700 m 8 e 175.920 8. 001 1 407 1.808 0.245 i49.17e 0.881 1.249 3.m 0,245 134.200 8.m 9.959 5. 900 0. 080 126.500 0.082 9.713 7.w e f reaucnc y 0. 0.380 me esee e. 780 1. m e 3.000 5 . m 7. eee frequency 0. 100 0.308 0, 500 wee 1. e00 3. w e 5. eee 7.990 ie. 000 39. e m 50. w e 58.800 100.988 hr amp 0.103 0.259 0.429 9.538 0.672 0.992 0.979 8.887 ellipticity -0.092 -6.213 -e. 278 -0.316 -0.325 -0.354 -0.329 -8.295 -0.330 -0.252 -0.249 -0.239 -9.218 amp e r r 0. 809 0.012 e. ee6 0.098 e.eei e.wi 0nMl2 0. 987 ellip err 0.804 8.082 0.004 0.802 0.880 0. ee3 0.002 9.903 e. e03 0.801 8.001 e. 002 0.014 h r phasa 271.967 ,253.940 241 850 234.919 225.080 189,379 170.680 160.250 I . phase err 1. Sf9 t i l t angle 89.617 8 s . 828 79.636 75.987 78.474 53.468 44.272 37.609 33.944 23.759 18.855 19.025 13.910 0.267 0.247 e. 601 8.000 0.245 0. m e 0.256 t i l t err 8. ise 8.113 0.162 8.264 e.831 0.085 8.114 9.323 0.048 0.314 0.112 0.097 0.728 37 station: soda lake €-E' 2.8kr1 ne t 2 rcparation*2760 meters number o f turns=4 loop radiusr50 meters hr Rag constr7.936 h t mag const=7.092 frequency 0. 108 0.300 0.588 e. 7ee 1.008 3.eee 5. 009 5. e m 7.888 10.008 f raquenc y 8.180 88300 0.580 8.788 1.080 3.088 5.088 5.em 7.008 10.000 frequency 0.180 8.380 e.500 0.780 1a 000 3. 080 s. m e 5.008 7.008 10.808 ie.eee . 38 880 50.080 h t amp 1.191 1 322 1 a 263 1.093 0.797 0.095 0. 185 0. 181 8.085 0.857 amp e r r 0 . m 0.010 0.011 0.014 0.001 0.084 0.082 0.004 0. 087 0.001 hz phase 181.386 159.194 147.450 120.800 97.667 111a145 108.236 108.457 88.308 107.600 phase e r r 0.568 0.612 0.284 1.517 0.21 1 2.556 0.742 4.672 3.718 0.812 hr amp 0.308 8.913 1.143 1.196 1,127 0.412 0.365 0.443 0.465 A.337 amp e r r 0.019 0.016 0.813 0.012 0,017 0.025 0.011 0.038 8.036 0.007 hr phase 255.943 223.429 194.338 178.008 is7.see 140.645 141.145 344.45'1 108.425 133.600 phase e r r 4.34s 1 075 1.117 0.860 0.992 2.973 1.713 3.979 6.420 1.408 e l 1 i p t i c i tu -8.304 -0.546 -0.431 -8.541 -0.S16 -e. 1i e -0.147 -0.133 -0.064 -0.072 -0.083 0.88s -0.025 e l l i p err 0.016 0.021 0.812 e.818 0.009 0.007 88807 0. 020 0,821 8.003 0.003 0.022 0.029 . 84.480 65.945 490 172 tilt err 1 563 1 335 0.376 27 440 11.752 13.987 10.795 9.669 8.643 10.631 9.738 6.375 0,793 0.929 0.644 8.994 1.010 0.179 8.270 0.631 3.480 t i l t angle . 40.206 8.981 38 station: soda lake e-@' 2.2kn. su reparationm2304 meters loop radius-50 meters number of turns4 hr nag conrt=7.936 hz nag const-7,092 frequency 0.050 0. 100 0.150 0.300 0.500 0.700 1.000 3.000 5.000 7.000 10.008 10. 000 38. eeb 30.000 50. 000 50.008 frequency 0. 050 8. tee 0. 150 8.300 0.580 0.700 1.000 3.800 5.000 7.800 10.800 10.800 38. 000 30.680 58.080 se.800 frequency 0.050 e. 108 0.150 9.300 0.500 0.700 1.880 3.080 5.000 7.000 10.880 10.800 30.880 30.800 50.800 50.008 58.008 100.000 . ht a m p 1 866 1.159 1.170 1.314 1.442 1.412 1 324 0.661 0.404 8.275 0,177 178.496 8.147 21.468 15.247 0.368 . h r amp 8. 195 8.285 0.398 0.666 0.954 1.168 1 230 1 829 0.792 0.660 0.572 376.873 0.536 58.941 57.135 0.746 .. e1 1 iptici tu -0.136 -8.213 -0.294 -0.369 -6.373 -0.418 -0.394 -0.293 -0.231 -0.19s -0.158 -8.198 0.007 -0.198 -0.166 0,071 -8.891 -0.361 a m err 0.824 0.008 0.014 0.055 0.802 8.802 0.901 0.002 8.003 0.006 0.887 0.373 8.810 0.219 0.177 0.012 hz phase 189.078 188.179 187.894 183.820 169.255 159.195 148.978 114.091 103.991 98.602 93.521 330.163 189.617 228.749 252.541 85.283 ohare e r r 1.214 0.463 0. 553 3.106 0.089 0.096 0.029 e. 142 0.359 0.733 0.190 7.691 8.007 45.325 31.414 5.873 anp e r r hr phase 268.135 phase e r r e. 788 2.521 0.468 4.268 2.549 0.330 0. is9 0.214 8.950 8.819 8.823 8.004 8.043 0.088 0.849 0.985 0.006 8.m 0.009 0.008 6.267 0. 020 2.222 8.882 0.026 e1 1 i p 249.840 250.462 239.376 214.475 285 303 192.114 . 1se.w 136.811 138.576 126.444 239.606 110.410 204 780 202.856 95.534 . irr 0.0 12 8.8 8 8.8 69.684 3.348 47.77s 30.742 5.072 1s 0.0 7 0.8 12 0. 0 15 0.8 12 8.0 12 0. 0 17 0. 0 1 0. 0 1 0.8 13 0.0 9 0. 0 3 0. 0 IS 0.8 e. 0 -9 e. 3 . t i l t angle e7 390 83.249 80.213 71.826 60.733 53.103 47.896 30.218 24.581 28.241 14.927 23.412 -14.936 17.169 11.876 -26 022 il.SS1 67 030 _ . . _ . _ _ . tilt err 1 345 0.614 8.278 1.413 0. 199 1 450 0.179 8.202 e.318 0.366 0.665 8.433 8.572 e. 504 0.297 8.266 0.900 2.255 . ~ - . 39 s t a t i o n : sl f - f . 6 k ~south scparationr612 Meters number o f turns=4 1 oop radius-50 Meters hr nag c o n s t ~ 7 . 9 3 6 h t mag const-7.092 frequency 1.090 3. 000 5. 000 7. m e amp e r r 30. e00 50. e00 h t anp 0.952 0.055 0.879 0.888 0.600 0.366 0. 222 f rcquenc y 1. e00 3. 080 5.000 7.800 10.000 3e.000 h r amp 0.272 e. 609 0.765 8.820 1.060 0.933 f raquanc y ellipticity ie.eee 1.000 3.800 5 . 0 ~ 7.008 10.000 30. 080 58.800 58.800 1ee.eeo 1 w . t ~ ~ 2e0.800 -0.27s -8.454 -0.324 -0.252 -0.336 -0.299 -0.206 -0.248 -0.180 -0.153 -e. 13s 0.002 0.002 0.003 0.038 0.027 8.810 h t phase 176.000 170.937 169.806 165.833 144.008 i0~1.50e 71.200 phase e r r 0.000 e. 167 0. 200 e. 333 0,408 2.173 5.721 amp err 0.801 0,002 0. 002 0.004 0.001 e. 002 hr phase 251 733 223.770 2e6.100 194. 167 189.000 162.280 . phase e r r 0.267 0. 000 0.289 0. 333 0. 000 e.000 0.801 e l l i p e r r t i l t a nIsle OS. 644 e. e00 59.9 317 0.002 49.9 1a e . 8 ~ 4 f . 5 7'0 0.803 24.0 616 0.008 14.2 7 0.030 3.0 8il 0.015 la 9.880 e.001 0.901 e. 800 17.3 016 12.8 019 10.8 2'7 9 . 5 74 t i l t err 0.086 e.875 0.061 8.843 1.487 0.620 1.128 e.ee2 0.041 0.835 0.804 40 station: soda lake F-F' 2.1 kn se t2 separation=2136 meters number o+ turns=4 loop r a d i u r r S 0 meters h r mag const=?.936 hz mag const=7.092 frequency 0.050 h t amp 0. 999 1.818 0.999 1.131 18127 1 8056 88912 0.304 0.204 0.179 f raquerncy 0.058 e. lee e. is8 e. 300 0.580 e. 700 1 L 080 38 060 5. e08 78 688 frequency 0.050 e. 100 0.158 08388 8.508 e. 780 1 800 38 eae 5. 0ee . 7. 080 18.006 38 800 50.880 100.808 . hr anp 8.170 0.262 e. 349 0.638 8.816 0.879 0.937 0.554 8.406 e. 342 el 1 i p t i c i t y -8.125 -0.244 -0. 388 -8.412 -0.425 -8.424 -6.417 -88 194 -0.186 -6.150 -8.296 -6.295 -0.264 -8.073 amp err 0.024 6.005 0. 084 0.603 e. eel 9,801 m e 0 0.001 e. e03 0.003 anp e r r 0,013 8.003 0.007 m e 4 e. 823 e. 021 0.083 9.003 8.013 8 . 009 ellip e r r 0.033 0. 002 e. 007 8.093 6. 005 8.014 0.004 9.842 8.008 0.617 0.005 0.018 e. 808 8.803 h t phase 186.225 184.400 181 400 172.060 158.588 146.000 133.250 1 1 1.548 111.400 114.106 phase e r r 0.263 0.400 e. 000 . hr phase 248,475 256.600 246.048 228 009 287.968 193.eee 178.545 137.868 138.e00 135.100 0. e00 0.116 0. 200 0,250 5.965 0 s 490 0.678 phase e r r . t i l t angle 87 278 85.285 80.619 68.963 58 438 52.618 43.916 26 997 25 226 26.594 41.132 27,290 54s 829 8 . I 6.988 , 15.591 0.735 0.933 8.316 . 8.838 1 463 0.130 0.411 0.510 2. 112 . t i l t err 1 279 8.187 0.221 0.295 1.161 1.816 6.139 . 0.538 1 842 0.656 8.354 0.867 2.224 0. 443 41 APPENDIX C Results of Inversions 42 r COMPARSION OF CALCULATED AND MEASURED DATA 10.00 I .OO 0. I0 0.01 0. SODA LAKE A - A .96 KM NE T I CALCLLATED DATA MASURED DATA I+? I-#? x I 12.04* .OO 446.1 t 4. HZ * 2 1.62* .0!5 .IBBBE*llr 0. m - - - DATA VARIENCE ESTIMATE L LAYER RESISTIVITY(OH4-M) TH1CK)SSSIWl 510.2 XBL 806-10122 43 1 .. COMPARSION OF CALCULATED AND MEASURED DATA 388.00 280.00 260.00 240.00 W 220.00 0) a a I 200.00 -1 2 z 180.00 N - 160.00 0 I 140.00 9 a 120.00 0 LT -I 100.00 a 2 80. Q3 I- LT W > 60.00 40.00 20.00 0.00 0.01 I0.88 I .BB 0. I0 I0ee.W 100.00 FREQUENCY (HZ) SODA LAKE A - A .96 KM NE T I CALCULATED DATA EASURED DATA HR w7 X I HZ * 2 H Z - - - DATA VARIEKE ESTIMATE L LAYER RESISTIVITYIOHI-MI 12.04* 1.62* THICKMSS(M1 * 4. .00 446.1 .E . I B B B E + I I ~e. 510.2 XBL 806-10121 r 44 1 COMPARSION OF CALCULATED 0.01 0. I 0 AND I .OO @ MEASURED DATA 10.00 100.00 10W.88 FREQUENCY (HZI SODA LAKE A - A .96 KM NE TI CALCUATED DATA W A S W E D DATA ELLIPTICITY ELLIPTICITY ~ LAYER X RESISTIVITY(WW-WI I 12.04t 2 1.62* THICKlrESStMI .OO 446.1 t 4. -85 .leBBE+llt 0. DATA VARIENCE ESTIMATE 510.2 L XBL 806-10119 45 COWARSION OF CALCULATED AND MEASURED DATA 1w.w 80.88 60.88 W -1 (3 z U I- r! 40.88 c 28.88 0.00 0.01 0.10 10.88 I .88 FREQUENCY SODA LAKE A - A .96 1888.88 KM NE TI C A L W A T E D DATA T I L T ANGLE 188.88 [HZ) - LAYER EASUREO DATA T I L T ANGLE X I 2 RESISTIVITYIU-U-M) 12.84s I.@* MICMSSlMl .GI0 446.1 t 4. .05 .leBBE+iit e. DATA VARIENCE ESTIUATE 510.2 L XBL 806-10120 r 46 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 I .00 -1 -2 2 c 0. I0 iK w > 0.01 0, SODA LAKE A - A 2.0 KM NE CALCULATED DATA m H z - - - DATA VARIENCE ESTIMATE L TI CEASURED DATA LAYER RESISTIVITYIM-M) THICKNESSIM) tR X I II.00* -00 230.0 Hz * 2 2.501 .00 050.0 3 50.001 77.00 * .IBBBE*IIt 0. 58. 0. .1397E*08 XBL 806-10278 47 COMPARSION OF CALCULATED AND MEASURED DATA 388.00 280. 00 260. 00 240.00 w 0 220.00 a 200.00 U I -I a I- 180.00 - 160.00 z 0 N [t: 0 I 140.00 4 Q 120.00 -1 a 100.00 c (r w > 80.M 2 60.00 40.00 20.00 0.00 0.01 0. I0 I .OO 100.00 10.00 1000.00 FREQUENCY (HZ) SODA LAKE A-A 2.0 KM NE T I CALCULATED DATA MEASURED DATA l-sz I+? X I HZ f 2 3 H Z - - - DATA VARIENCE ESTIMATE L LAYER RESISTIVITY(OHI-MI THICKKSS(M1 .OO 230.0 t 0. 2.50t .OO 850.0 f 58. 50.00t 77.00 .IBBBE*l I t e. 11.00t .1397E*08 XBL 806-10257 48 1 COWARSION OF CALCULATED 0.01 0. I 0 AND I .OO MEASURED DATA 100.00 10.00 IW0.00 FREQUENCY ( H Z ) SODA LAKE A - A 2 . 0 KM M: CALCULATED DATA ELLIPTICITY - TI CEASURED DATA ELLIPTICITY LAYER X THICKTESSIM) I II.00f .OO 230.0 f e. 2 2.50f .00 858.0 i 9. 3 DATA VARIENCE ESTIMATE RESISTIVITY(OH(-HI S0.00* 77.00 .IBBBE*llt 0. .1397E*08 XBL 806-10258 49 drs r COWARSION OF CALCULATED AND MEASURED DATA 100.00 1 88.00 60.00 w -I W z U t- -1 40.00 c 20.00 0.00 0.01 K I .OO 0. I 0 10.00 I00e.W 100.00 FREQUENCY ( H Z ) SODA LAKE A-A 2.0 KM NE TI CALCULATED DATA TILT ANGLE - DATA VARlENCE ESTIMATE WASWED DATA T I L T ANGLE LAYER X RESISTIVITY(OHI-Ml THICKPESSCM) I 11.00: .OO 230.0 : 2 2.50s .OO 85B.B t 3 50.W: 77.00 0. 58. .l@W€*ll: 0 . .1397E*08 XBL 806-10259 50 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 I .OO 0. I0 0.01 0.01 I .OO 0. I0 10.00 18B.00 FREQUENCY (HZ) SODA LAKE 2.3 KM SW TI LAYER CALCULATED DATA MEASURED DATA HR m X I HZ * 2 w - DATA VARIENCE - ESTIMATE RESISTIVITY(OH(-Ml 17.64* 1.66* THICMSS(M) * .OO 310.0 .w . I B B B E + I I ~e. 2. 32.61 XBL 806-10130 51 COWARSION OF CALCULATED AND MEASURED DATA 388.00 280.00 260.00 240.00 w 0) 220.00 E 200.00 U -I a c 180.00 - 160.00 0 I 140.00 4 U 120.00 z 0 N LT -I 100.00 a 2 c 80.m LT w > 60.00 40.00 20.00 0.00 0.01 I .OO 10.88 FREOUENCY ( H Z I 0.I 0 100.00 1000.00 SODA LAKE 2.3 KM SW T I CALCLllATEO DATA H1 L - - E - DATA VARIENCE ESTIKATE 32.61 CLASlRED DATA LAYER RESISTIVITY(OH(-Ml THICKESSIMI rn X I 17.64t .00 310.0 HZ * 2 1.66s .02 .IBBBE'llt t 2. e. XBL 806-10129 52 COMPARSION OF CALCULATED AND MEASURED DATA I .OO 0.80 0.60 0.40 0.20 0.00 - .20 -.40 - -60 - .80 I .OO 0.01 0 . I0 I .00 100.00 10.00 I090.BB FREQUENCY (HZI SODA LAKE 2.3 KM SW CALClhATED DATA ELLIPTICITY DATA VARIENCE L EASURED DATA ESTIMATE TI ELLIPTICITY LAYER X RESISTIVITY(WW-Ml THICKKSS(M1 1 17.64* .OO 310.0 2. 2 1.66* .02 .IBBBE+Ilt 0. 32.61 XBL 806-10128 53 COMPARSION OF CALCULATED AND MEASURED DATA 1w.w 80.00 60.00 w -1 (3 Z a - I-1 40.00 I- 20-00M 0.00 0.01 0. I0 I .OO 10.00 FREQUENCY ( H Z ) 100.00 SODA LAKE 2.3 KM SW TI CALCULATED DATA TILT ANGLE EASURED DATA - T I L T ANGLE LAYER X I 2 DATA VARIENCE L ESTIMATE RESISTIVITY(OH(-MI THICKFESSIMI 17.64: .OO 310.0 I.66* .82 .IBBBE*llt t 2. 0. 32.61 XBL 806-10127 54 1 COMPARSION OF CALCULATED AND MEASURED DATA w 0 3 t; -I a ZZ a J a 5 N I LL 0 I n z a -I -a 0 t a w > n w N I J a I LL 0 Z 0. I0 0.01 I .OO 10.00 FREOUENCY SODA LAKE 0.6 KM IB88.W 100.00 (HZ) Nn T 2 CALCULATED DATA WEASUKD DATA lm M X I 9.50* .BB 20.00 * 0. HZ * 2 .68* .OO .l0WE*ll* 8. ) Q - - - DATA VARlEmE ESTIClAfE LAYER LESISTIVITY(M-MI THICKHSSIMI sB8.0 XBL 806-10135 L 55 COMPARSION OF CALCULATED AND MEASURED DATA 300.00 280.00 260.00 240.00 w cn a I a 220.00 200.00 -1 I- a 180.00 6 N - 160.00 I Y 0 I n 140.00 z 120.00 -I 100.00 a -a 0 80.Q3 !LT W > 60.00 40.00 20.00 0.00 0.01 I .OO 0. I0 10.00 100.00 1000.00 FREQUENCY ( H Z ) SODA LAKE 0.6 KM NW T2 CALCULATED DATA MEASURED DATA HR HR X I HZ * 2 H Z - - - DATA VARIENCE ESTIMATE LAYER RESISTIVITY(0HM-MI 9.50t .68* THICKMSSIHI .OO 20.00 .00 .I000E*llt t 0. 0. 500.0 XBL 806-10136 56 r COMPARSIOh OF CALCULATED AND MEASURED DATA 0.01 0. I0 10.00 I .OO I 000.00 100.00 FREQUENCY ( H Z I SODA LAKE 0.6 KM NW T 2 MEASURED DATA CALCULATED DATA ELLIPTICITY - DATA VARIENCE ESTIMATE ELLIPTICITY LAYER X RESISTIVITY(0HM-MI THICKNESS(M1 I 3.502 .OO 20.00 2 .68* .OO .I000E+llt t 0. 0. 500.0 XBL 806-10138 57 c3 r 1 COMPARSION 0.01 OF CALCULATED AND MEASURED DATA 0. I0 SODA L A K E 0.6 KM I .OO FREQUENCY 100.00 1000.OO NW T 2 CALCULATED DATA MEASURED DATA T I L T ANGLE TILT ANGLE ~ LAYER X I 2 DATA VARIENCE E S T I M A T E 10.00 (HZ) RESISTIVITY(O'-b-M) 9.50t .68* THICKNESSIM) .OO 20.00 .OO .I000E+IIt t 0. 0. 500.0 XBL 806-10137 58 1 AND MEASURED DATA COMF'ARSION OF CALCULATED IO.W 1-00 0 . I0 0.01 0.01 0 . I0 I .OO l00.W 10.00 FREQUENCY ( H Z ) SODA LAKE I .8 KM Nn T 2 LAYER RES I ST IV 1TY t M - U I CALCULATED DATA MEASWED DATA rn H? X I HZ * 2 2.63* 3 50.00* H z - - - DATA VARIENCE ESTIUATE 1000.00, 0. .0I 0. T H I C M S S I b4 1 188.3 t e. 1875. L %. .leeBE*ll* e. 55.15 XBL 806-10142 59 COMPARSION OF CALCLiLATED AND HEASURED DATA 388.88 200.88 260.88 248.88 W 22a.00 u) a a I 288.88 -1 a 188.88 I- 5 - 160.00 I 0 148.88 ? a 120.88 4 100.00 2 I- BB.00 N LT a LT W > 60.00 40.88 20.00 0.00 0.01 I 1 1 1 1 1 1 1 1 I 1 1111111 0 . I0 1 I 1 I1111 I 1 1 l!11111 10.00 I .88 Iw0.W 100.00 FREQUENCY (HZ) SODA LAKE I .8 KM NW T2 CALCUATED DATA CEASUKD DATA Is M nz m - - - DATA VARlENCE ESTIMATE LAYER RESISTIVITYIOH(-U) THICKNSS(~I X I lw0.88* * 2 2.633. 3 5B.Wt 0. -01 e. 188.3 L 1875. .IBeBE*ll* 0. 96. e. 55.15 XBL 806-10141 60 AND MEASURED DATA COWARSION OF CALCULATED >I- L E SODA LAKE I .8 KM NW T2 CALCU-ATED DATA ELLIPTICITY - DATA VARlENCE ESTICUE LAYER W A S W E D DATA ELLIPTICITY X I RESISTIVITYIOHI-Ul THICKFESS(I0 I000.00* 2 2.63: 3 50.00* 0. .0I 0. 100.3 * 1875. : 96. .leBBE+ll: 0. 0. 55.15 XBL 806-10139 61 r c3 COMPARSION OF CALCULATED AMI MEASURED DATA lW.88 00.88 68.00 w -1 W z a c 2 48.88 I- 28.88 0.00 8.81 8 . I0 18.88 I .88 FREQUENCY SODA LAKE I .8 KM Nn T2 CALCULATED DATA T I L T ANGLE DATA VARlplcE l0W.BB I88.88 [HZ) EASUREO DATA - TILT ANGLE ESTIMATE 55.15 LAMR X RES 1S T IV 1TY(W - M ) 1 I0w.W: 2 2.63: 3 59.00: e. .@I 8. THICKNESS( M t 188.3 : 8. 1875. : 36. .1888*ll* e. XBL 806-10140 h 62 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 w n 3 t; -1 a I: a -1 a I Z .w 0 c! i Y 0 I n Z a -I 4 2 ILT 0. I0 w > 0 w N I A a I: LT 0 Z 0.01 0.01 0. I0 I .OO 10.00 100.00 FREQUENCY ( H Z ) SODA LAKE .72 KM NW TI LALCU-ATED DATA WASURED DATA m HI? X I 12.llt HZ * 2 I.77i HZ DATA VARIENCE - ESTIMATE LAYER RESISTIVITY(OHM-M~ THICKFLSStMl .OO 305.4 i 2. .02 .IBBBE*llr e. 15.23 XBL 806- 10148 63 COMPARSION OF CALCULATED AND MEASURED DATA 300.00 280.00 260.00 240.00 W 220.00 v) a a I 200.00 180.00 160.00 140.00 n z 120.00 -1 100.00 a a V 80.00 W > 60.00 40.00 20.00 0.00 0.01 I .OB 0. I0 10.00 IB88.88 100.00 FREOUENCY ( H Z ) SODA LAKE .72 KM NW TI CALCULATED DATA MEASURED DATA H? m DATA L - - - VARlENCE ESTIMATE LAYER RESISTIVITY(0t-M-MI THICKFLSS(M1 * HR X I 12.llt .OO 385.4 HZ * 2 I.77t -02 .leea*ll* e. 2. 15.23 XBL 806-10147 64 COMPARSION OF CALCULATED AND MEASURED DATA SODA LAKE .72 KM NW T I MASURED DATA CA-CVLATED DATA ELLIPTICITY - ELLIPTICITY LAYER X I 2 DATA L VARIENCE ESTIMATE RESISTIVITY(CIk94-MI THICKF(ESS(M1 If .BQ 385.4 I.77* .02 .1888E*llf e. 12.1 f 2. 15.23 XBL 806-10150 65 r COMPARSION OF CALCULATED AND MEASURED DATA w -1 (3 z a I- -1 I- 0.0i 0 . I0 I .OO 10.00 100.00 1888.88 FREOUENCY ( H Z ) SODA LAKE .72 KM NW TI CALClllATED DATA T I L T ANGLE DATA VARIENCE L CLASURED DATA ESTIMATE T I L T ANGLE LAYER X RESISTIVITY(CH4-MI THICKNESS(M1 I 12.ll* .00 385.4 2. 2 1.77, .02 .ieeBE+ii* e. 15.23 XBL 806-10149 66 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 w 0 J I- & 0 I -1 a 2 I& 0.I0 w > G w N I 0.01 0.01 1-00 0. I0 10.00 100.00 FREQUENCY ( H Z I SODA LAKE 2 . 0 KM N W TI :ALCUATED DATA EASURED DATA rn H z - - - DATA VARIENCE ESTIMATE LAYER RESISTIVITYIOH(-Hl THICKFLSS(W1 HR X I 12.90* .OO 232.3 HZ * 2 I.66t .0I 1236. 3 50.00t 0. 3 .IBBBE*II* I. 35. e. 45.89 XBL 806-10153 67 COMPARSION OF CALCULATED AND MEASURED DATA 300.00 280. 00 260.00 240.00 8 220.00 a I a 200.00 -1 c" 180.00 N 160.00 5 I p 4 a 2 0 t LT w > 140.00 120.00 I00.00 80.60 68.00 40.00 20.00 0.00 0.01 0.10 I .OO 10.00 I0W.BB 100.00 FREQUENCY ( H Z I SODA LAKE 2.0 CALCWATED DATA CEASUKD DATA Wt H t X I Hz * 2 I.&* 3 50.00: & 7 DATA L KM M TI - - VARlENCE ESTIUATE LAYER RESISTIVITYICNU-U) 12.90* THICKFESSIM) .BB 232.3 .ell 1236. 0. * .leeBE*ll* 1. 35. 0. 45.89 XBL 806- 10245 68 r COMPARSION OF CALCULATED AND MEASURED DATA I .OO 0.80 0.60 0.40 0.20 - > c V I 0.00 -i n -1 -1 - .20 w -.a - .60 - .88 -1.00 0.01 0. I0 I .OO 100.00 10.00 l000.00 FREQUENCY ( H Z ) SODA LAKE 2.0 KM NW TI CALCWATED DATA ELLIPTICITY DATA L - MEASURED DATA ELLIPTICITY LAYER X I RESISTIVITY(OH4-M) THICKPLSS(M1 12.%* 2 1.661 3 S0.00* .OO .0I 0. 232.3 1236. f : .leeBE*ll: 1. 35. e. VARIENCE ESTICUTE 45.89 XBL 806-10248 n -- . . . . . . 69 COMPARSION OF CALCULATED AND MEASURED D A T A 100.00 88.00 68.00 40.00 20.00 1 1 ill I I 1 jij 0.00 0.01 0. I0 I .OO 10.00 l0ee.W 100.00 FREOUENCY ( H Z ) SODA LAKE 2.0 KM Nw T I CALCULATED DATA E A S W DATA T I L T ANGLE T I L T ANGLE DATA VARlENCE L ~ ESTIMATE 45.89 LAYER X I RESISTIVITY(OHI-C) 12.9B* 2 1.661 3 50.00* MICKKSlM(, -00 232.3 t I. .0I 1236. f 35. .leaeE*ll. 0. 0. XBL 806-10246 70 r 1 AND COWARSION OF CALCl!LATED MEASURED DATA 10.88 w 0 I .OO c i Y 0 . I0 W > 0.01 0.01 0 . I0 I .OO SODA LAKE CALCULATED DATA MEASURED DATA rn X I HZ f 2 - (HZ) D-D 2.8 KM SE TI Is Hi! 188.88 10.00 FREQUENCY - - LAYER 3 DATA VARIENCE ESTIMATE RESISTIVITY(OCbl-U) 16.19* I.31* S0.00t THICKFLSS(M1 .W 371.8 .02 939.5 0. * .IBBBE+ll* 3. 24. e. 45.64 XBL 806-10126 L 71 7 6 COMPARSION OF CALCULATED AND MEASURED DATA 388.00 280.00 260.00 240.00 220.00 200.00 180.00 160.00 140.00 120.00 100.00 80.m 60.00 40.00 20.00 0.00 0.01 0. I0 IO.OO I .OO FREOUENCY 100.00 1000.88 [HZ) SODA LAKE D-D 2.8 KM SE TI CALCVLATED DATA MEASURED DATA I+? If? X HZ * H z - - - DATA VARIENCE ESTIMATE LAYER 1 RESISTIVITY(DHW-M) 16.19* 2 I.31* 3 50.00t THICKPLSS(M) .OO 371.8 t .02 939.5 t 0. .IBBBE*ll* 3. 24. 0. 45.64 XBL 806-10125 . 72 r 1 COMPARSION OF C A L ~ L A T E D AND MEASURED DATA I .OO 0.80 0.60 f -t 0.40 0.20 0.00 - .20 -.40 - .60 - .80 - I .OO B.01 0. I 0 I .ma 10.00 I000.W 188.00 FREOUENCY ( H Z ) SODA LAKE D-D 2.8 KM SE T I CALClhATED DATA ELLIPTICITY - DATA VARJENCE ESTIUATE L MASURED DATA ELLIPTICITY LAYER X RESISTIVITY(OH(-H) THICKFESS(M1 1 16.19* .OO 371.8 2 1.31* .02 939.5 3 50.00t 0. 3. * 24. .IEBBE*II* e. 45.64 XBL 806-10124 r 73 COMPARSION OF CALCULATED AND MEASURED DATA 100.00 80.00 60.00 W 40.00 20.00 0.00 0.01 0. I0 I .OO 100.00 10.00 1000.00 FREQUENCY ( H Z ) SODA LAKE D-D 2.8 KM SE T I CALCULATED DATA TILT ANGLE DATA VARIENCE ESTIMATE L MEASURED DATA ___ TILT ANGLE LAYER X I RESISTIVITY(OHM-MI 16.19* 2 I.31* 3 50.00i THICKFLSSIMI .OO 371.8 * 3. .02 939.5 i 24. 0. .I000E*ll* 0. 45.64 XBL 806-10123 74 1 COMPARSION OF CALCULATED AND EASURED DATA w c3 3 I .00 LT 0 I 2 4 0. I0 n w N 0.01 0.01 SODA 100.00 10.00 1888.88 (HZ) LAKE E-E 1.3 KM SW T2 CALCCllATED DATA EASURED DATA H? H7 X I II.30* .OO 204.0 HZ * 2 I.80* .BI .188BE*ll* f f z - - - DATA VARIENCE ESTIMATE L I .OO FREQUENCY 0. I0 LAYER RESISTIVITY(OCb(-M) THICKKSSIMI * I. e. 52.81 XBL 806-10134 75 r 6d -1 COMPARSION OF CALCULATED AM) MEASURED DATA 388.00 280.00 260.00 240.00 W cn 220.00 2 200.00 a -1 a 188.00 I- Z 0 N 160.00 LT 0 I 140.00 4 a 120.00 -1 100.00 4 V I- 80.m LT w > 60.00 40.00 20.00 0.00 0.01 I .OO 10.00 FREOUENCY (HZ) 0. I0 100.00 1000.00 SODA LAKE E-E 1.3 KM SW T2 CALCULATED DATA MZASIRED DATA HR H7 X I HZ * 2 H Z - - - DATA VARIENCE ESTIMATE L LAYER RESISTIVITY(OH(-l4I 11.30: I.E0* THICKt€SS(Ml * .OO 204.0 .01 .leBBE*lI* I. 0. 52.81 XBL 806-10133 76 COMPARSION OF CALCULATED AND MEASURED DATA 0.01 0. I0 I .OO 1888.88 100.88 10.00 FREQUENCY (HZ) SODA LAKE E-E 1.3 KM SW T 2 CALCULATED DATA ELLIPTICITY - DATA VARIENCE ESTIMATE L MASURED DATA ELLIPTICITY LAYER X RESISTIVITY(0l-M-U) THICKFESS(U1 * I II.30* -00 204.0 2 I.80* .0I .IB88E+ll* 1. e. 52.81 XBL 806-10131 77 COMPAFSION OF CALCULATED AND MEASURED DATA 1w.w- 8B.W- 68.86- 28.66- 0.m0.01 0 . I0 I .BB 18.88 Iwe.88 lBB.66 FREQUENCY ( H Z ) SODA LAKE E-E 1.3 KM SW T2 CALCUATED DATA T I L T ANGLE - DATA VARIENCE ESTIMATE L LAYER CEASLRED DATA TILT ANGLE X RESISTIVITY(OH(-U) MICKPESSIM) I II.3B* .BB 284.8 2 I.W* .@I .IBBBE*ll* f I. e. 52.81 XBL 806-10132 78 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 w n 3 I- -I Q: I .OO z 0 N I lx 0 I 0 . I0 i Y w > 0 0.01 0.01 I .00 0. I0 10.00 100.00 FREQUENCY (HZ) SODA LAKE E-E 2.8 KM CALCULATED DATA MEASURED DATA t s HR X I *=******* .OO 80.63 i 0. HZ * 2 I.32* .02 474.6 f 6. 3 50.00* HZ - - - DATA VARIENCE ESTIUATE L NE T2 LAYER RESISTIViTY(0M-MI 0. THICKNESS(WI .1000E+IIt 0. 7464. XBL 806-10107 79 COMPARSION OF CALCULATED AND MEASURED DATA 388.00 280.00 260.00 240.00 220.00 a a I 200.00 -1 2 180.00 z 0 E 160.00 e CK 140.00 n z a 120.00 2 100.00 t! c lY w 80.m > 60.00 40.00 20.00 0.00 0.01 I .OO 0.10 100.00 10.00 18BB.00 FREOUENCY (HZI SODA LAKE E-E 2.8 KM NE T2 CALCULATED DATA KASURED DATA HI? l-m X I HZ * 2 I.32* 3 S0.00t H z - - - DATA VARlENCE ESTIMATE L LAYER RESISTIVITY(W-Ml ****-**** MICKNESS(M1 .00 80.63 t 0. .a2 474.6 t 6. 0. .188BE*llt e. 7464. I XBL 806-10108 80 COMPARSION OF CALCULATED AND MEASURED DATA I .OO 0.80 0.60 0.40 0.20 0.00 - .20 -.40 - .60 - -80 ' j I I I 1 1 1 -1.00 0.01 0. I0 I .QB 10.00 FREQUENCY ( H Z I I i ' j j i I 1 ! Ill& I !I !I II 1\ /1 \1 ! IQB.OO 1000.00 SODA LAKE E-E 2.8 KM NE T 2 CALCULATED DATA ELLIPTICITY DATA VARIENCE ESTIMATE L MEASURED DATA - ELLIPTICITY LAYER X RESISTIVITY(M-M) THICKlgSS(M) I =**=***** .OO 80.63 f 0. 2 I.32* .02 474.6 * 6. 3 50.00t .IBBBE*ll* e. 0. 7464. XBL 806-10110 r 81 COMPARSION OF CALCULATED AND MEASURED DATA 100.00 10.00 FREQUENC',' SODA LAKE E-E 2.8 KM CALCULATED DATA T I L T ANGLE DATA VARIENCE ESTIMATE L T I L T ANGLE 7464. 10W.00 HZ 1 NE T2 MEASURED DATA - ( LA$FR RESISTIVITYIM-M) X i -*-****** 2 I.32* 3 50.00t THICl@i3SSlMI .00 80.63 t 0. .a2 474.6 t 6. 0. .1000E'llt 0. XBL 806-10109 82 r COMPARSION OF CALCULATED AND MEASURED DATA n z a _I a 0 + . tW > O W N 0.01 0.10 I .OO 10.00 100.ee FREOUENCY IHZ) SODA LAKE E-E 2 . 3 KM SW T2 LAYER CALCULATED DATA MEASURED DATA HR HR X 1 HZ f 2 3 HZ - - - DATA VARIENCE ESTIMATE RESISTIViTY(OHM-MI 8.70t THICKNESSIMI .OO 189.0 t 2. 2.20t .01 1119. f 52. 52.00. 83.67 . I000E. I I i 0. 105.1 XBL 806-10146 , COMPARSION OF CALCULATED AND MEASURED DATA w cn Q I a -I a kz - 0 N LT 0 I n Z a -I -a 0 kLT w > SODA LAKE E - E 2.3 KM SW T2 CALCULATED DATA MEASURED DATA HR HZ HR X HZ * - - _ DATA VARlENCE ESTIMATE L LAYER 1 RESISTIViTYlOHM-MI 8.70: THICKNESSIMI .0Q 189.0 t 2. 1119. f 52. . I000E* I I * 0. 2 2.20t .O1 3 52.00* 83.67 105.1 XBL 806-10143 84 COMPARS I OK 3F CALCGLATEL) AP'3 MEASURED DATA SODA L A K E E-E 2.3 KM SW T2 CALCULATED DATA MEASURED DATA ELLIPTICITY ELLIPTICITY ~ LAYER X I 2 3 DATA VARIENCE ESTIMATE RESISTIViTY(OHM-Ml THIiKNESS(M1 8.70t .OO 189.0 t 2. 2.20t .01 1119. t 52. . I000E*I I t 52.00* 83.67 0. 105.1 XBL 806-10145 85 r COMPARSION OF CALCULATED AND MEASURED DATA . . . . . . .. . . , . . . , . . . . . .. . . . . . .. .. .. w -1 (3 z a . . . . . . .. . . . . . +- ... -1 c ~ 0.01 0. I 0 10.00 I .OO . . . ..., . . .. . . - . . . ... . . . .- . 100.00 .. . 1000.00 FREQUENCY ( H Z I SODA LAKE E - E 2.3 SW T2 CALCULATED DATA MEASURED DATA TILT ANGLE TILT ANGLE ~ DATA VARIENCE ESTIMATE L KM LAYER X RESISTIViTY(0HM-MI THICKNESS(M1 I 8.70* .OO 189.0 i 2. 2 2.20i .01 1119. i 52. 3 52.00t 83.67 .I000E*II* 0 . 105.1 XBL 806-10144 86 r 1 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 I .OB -1 4 2 c 0 . I0 Ir W > 0.01 0. SODA LAKE F-F 0.6 KM SE T2 CALCULATED DATA MEASURED DATA HR HR X I 2.I0t .OO 58.00 HZ * 2 I.I0t .0I . I B B B E - I I ~e. HZ - - - DATA VARIENCE ESTIHATE L LAYER RESISTIVITYIOHM-MI THICKNESSIUI t I. 578.1 XBL 806-10111 a7 r 1 cs COMPARSION OF CALCULATED AND MEASURED DATA 388.00 280.00 260.00 240.00 220.00 200.00 180.00 160.00 [r 0 140.00 I Q z 120.00 -I 100.00 4 a 80.M 60.00 40.00 20.00 0.00 0.01 I .OO 10.00 FREQUENCY ( H Z ) 0. I0 I00.M 1000.00 SODA LAKE F-F 0.6 KM SE T2 CALCULATED DATA MEASURED DATA m HR X I 2.I0* .OO 58.00 HZ * 2 :.10* .0I .1888~+11i H Z DATA VARIENCE - - ESTIMATE LAYER RESISTIVITY(OHW-M) THICKMSSIMI i I. e. 578.1 XBL 806-10118 L 88 r I COMF'ARSION OF CALCULATED AND MEASURED DATA -1 -1 w SODA LAKE F-F 0 . 6 KM SE T2 CALCULATED DATA MEASURED DATA ELLIPTICITY ELLIPTICITY ~ DATA VARIENCE ESTIMATE L LAYER X RESISTIVITYIOHH-HI THICKMSSIW) I 2.I0t .OO 58.00 2 I.IQt .0I .1000E'llt * I. e. 578.1 XBL 806-10116 r 89 COWARSION OF CALCULATED AND MEASURED DATA 0.01 0. I0 I .OO 1000.00 100.00 10.00 FREQUENCY ( H Z I SODA LAKE F - F 0.6 K M SE T2 CALCULATED DATA TILT ANGLE DATA VARIENCE ESTIMATE L MEASURED DATA T I L T ANGLE ~ LAYER X RESISTIVITY(Old4-MI THICWSS(M) I 2.10t .OO 58.00 2 I.I0* .OI .I000E+lIt f I. 0. 578.1 XBL 806-10117 90 COMPARSION OF CALCULATED AND MEASURED DATA 10.00 w n 3 t- I -I a 3 -1 I .OO 4 z 0 - N LT 0 I n f -1 4 V I ILT 0. I0 W > 0 W N I -1 4 r LT 0 Z 0.01 0.01 I .OO 10.00 FREOUENCY ( H Z ) 0. I0 1000.m 100.00 SODA L A K E F-F 2.1 KM SE T 2 CALCULATED DATA MEASURED DATA HR H Z - - - DATA VARIENCE ESTIMATE L LAYER RESISTIVITY(OW-WI THICKNESS(W) m X I 3.00* .m 82.29 HZ * 2 I.20* .0I 460.0 3 S0.00t 19.11 2. f .IBBBE*llf 9. e. 448.1 XBL 806-10106 91 1 COMPARSION OF CALCULATED AND MEASURED DATA 300.00 280.00 260.00 240.00 w 220.00 cn a I a 200.00 -1 4 180.00 c z 0 c! 160.00 IY 0 140.00 I n z a 120.00 -1 a u 100.00 IIY 80.Q3 w > 60.00 40.00 20.00 0.00 0.01 SODA HR Z - DATA VARIENCE L 100.00 10.00 IB88.00 (HZI LAKE F-F 2.1 KM SE T2 CALCULATED DATA H I .OO FREOUENCY 0. I0 - - E A S U R E D DATA LAYER RESISTIVITY(M-Ml THICMSSIMI I-R X I 3.W* -00 82.20 * 2. HZ * 2 I.20* .0I 460.0 t 9. 3 50.00t 19.11 .IBBBE+IIt e. ESTIMATE 448.1 XBL 806-10105 r 92 COMPARSION OF CALCULATED AND MEASURED DATA I .OO 0.80 0.60 0.40 0.20 0.00 - .20 - -40 - .60 - .80 - I .OO 0.01 0. I0 I .OO FREQUENCY 10.00 100.00 1000.88 (HZ) SODA LAKE F - F 2.1 KM SE T 2 CALCULATED DATA ELLIPTICITY - DATA VARIENCE ESTIMATE L MEASURED DATA ELLIPTICITY LAYER X RESISTIVITY(OHM-Hl THICKMSS(H1 1 3.00* -00 82.20 * 2. 2 I.20* .01 460.0 * 9. 3 50.00* 13.11 .I000E*II* 0. 448.1 XBL 806-10103 r 93 COMI'ARSION OF CALCULATED AND MEASURED DATA 100.00 80.00 6U.00 40.00 20.00 0.00 0.01 0 . I0 I .OO 100.00 10.00 FREOIUENCY ( 1000.00 HZ 1 SODA LAKE F-F 2.1 KM SE T 2 CALCWATED DATA T I L T ANGLE - DATA VARIENCE ESTIMATE L MASURED DATA T I L T ANGLE LAYER X RESISTIVITY(OHM-U) THICKNSSIU) I 3.00* .BB 82.20 : 2. 2 1.20: .0I 460.0 t 9. 3 50.00: 19.11 .IBBBE'II* e. 448.1 XBL 806-10104
© Copyright 2026 Paperzz