Stark, M., Wilt, M., Haught, J.R., and Goldstein, N., 1980, Controlled-Source Electromagnetic Survey at Soda Lakes Geothermal Area, Nevada: California University, Berkeley; Lawrence Berkeley Lab, LBL-1 122 1, UC-66b, 98 p.

1I
I
I
LBL-1 122 1
I
UC-66b
,
i
I
CONTROLLE D-SOURCE ELECTROMAGNETIC
S U LVEY AT SODA LAKES
G E O ~iERMAL AREA, NEVADA
I
Mitchel Stark, Michael Wilt,
J. R a n ;ey Haught, and Norman Goldstein
~
i
.I
I
July 1980
i
I
,
Pre ired for t h e U.S. Department of Energy
under Contract W-7405-ENG-48
I
I
I
,
DISCLAIMER
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.
DISCLAIMER
Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.
LEGAL NOTICE
I
I
agency thereof.
Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price Code: A f W
h0J/
LBL-I 1 2 2 1
CONTROLLED-SOURCE ELECTROMAGNETIC SURVEY
AT SODA LAKE'S GEOTHERMAL AREA, NEVADA
Mitchel S t a r k , Michael W i l t ,
J. R a m s e y Haught, and N o r m a n Goldstein
E a r t h Sciences D i v i s i o n
L a w r e n c e B e r k e l e y Laboratory
U n i v e r s i t y of C a l i f o r n i a
B e r k e l e y , C a l i f o r n i a 94720
July 1 9 8 0
ii i
TABLE OF CONTENTS
b
n
V
Abstract
The EM-60 system, a large-moment frequency-domain e l e c t r o m a g n e t i c loop
p r o s p e c t i n g system, w a s o p e r a t e d i n t h e Soda Lakes geothermal a r e a , Nevada.
T h i r t e e n s t a t i o n s w e r e occupied a t d i s t a n c e s r a n g i n g from 0.5-3.0
t w o t r a n s m i t t e r sites.
These y i e l d e d f o u r sounding curves--the
km f r o m
normalized
amplitudes and p h a s e s of t h e v e r t i c a l and r a d i a l magnetic f i e l d s a s a f u n c t i o n
of frequency--at
each s t a t i o n .
In a d d i t i o n , t w o p o l a r i z a t i o n e l l i p s e
parameters, e l l i p t i c i t y and tilt a n g l e , w e r e c a l c u l a t e d a t each frequency.
The data w e r e i n t e r p r e t e d by means of a l e a s t - s q u a r e s i n v e r s i o n procedure
which f i t s a l a y e r e d r e s i s t i v i t y model t o t h e data.
A
three-layer structure
i s i n d i c a t e d , with a n e a r - s u r f a c e 1 0 ohm-m l a y e r of 100-400 m t h i c k n e s s , a
middle 2 ohm-m l a y e r of approximately 1 km t h i c k n e s s , and a "basement" of
g r e a t e r t h a n 10 ohm-m.
The models i n d i c a t e a n o r t h w e s t e r l y s t r u c t u r a l s t r i k e ;
t h e top and middle l a y e r s s e e m t o t h i c k e n from n o r t h e a s t t o southwest.
The
r e s u l t s agree q u i t e w e l l w i t h p r e v i o u s r e s u l t s of d i p o l e - d i p o l e and magnetot e l l u r i c (MT) surveys.
(1
-
The EM-60 s u r v e y provided g r e a t e r depth p e n e t r a t i o n
1.5 km) t h a n d i p o l e - d i p o l e ,
exploration.
operation.
b u t MT f a r s u r p a s s e d both i n i t s d e p t h of
One advantage of EM i n t h i s area i s its ease and speed of
Another advantage, i t s r e l a t i v e i n s e n s i t i v i t y t o l a t e r a l inhomo-
g e n e i t i e s , i s n o t as pronounced h e r e as it would be i n areas of m o r e complex
geology.
1
Introduction
As part of t h e Department of Energy's
industry-coupled program i n
n o r t h e r n Nevada, Lawrence Berkeley Laboratory h a s made e l e c t r o m a g n e t i c
surveys u s i n g i t s newly-developed
s e v e r a l geothermal p r o s p e c t s .
c o n t r o l l e d - s o u r c e EM system (EM-60) a t
The EM-60 i s a large-moment
frequency-domain
e l e c t r o m a g n e t i c system, d e s c r i b e d i n Appendix A.
The Soda L a k e s a r e a i s l o c a t e d i n w e s t - c e n t r a l Nevada about 8 0 k m e a s t
of Reno and 1 0 km northwest of F a l l o n .
A v a r i e t y of geophysical s u r v e y s ,
i n c l u d i n g magnetotelluric and dipole-dipole r e s i s t i v i t y have been c a r r i e d o u t
i n the area, and t h r e e i n t e r m e d i a t e t o deep h o l e s have been d r i l l e d .
The
w e l l s have n o t pierced a p r o d u c i b l e r e s e r v o i r , b u t the prospect i s s t i l l
under e x p l o r a t i o n .
W e brought t h e EM-60
system t o Soda Lakes t o compare t h e r e s u l t s with
t h e d i p o l e - d i p o l e and t h e m a g n e t e l l u r i c d a t a and t o b e t t e r d e f i n e , i f
p o s s i b l e , t h e r e s i s t i v i t y s t r u c t u r e of t h e p r o s p e c t .
Hydrology and Geology
Garside and S c h i l l i n g ( 1 9 7 9 ) have d e s c r i b e d t h e hydrology, geology, and
geothermal a c t i v i t y of t h e Soda Lakes a r e a .
It l i e s n e a r t h e southwestern
margin of t h e Carson Sink, a major hydrologic b a s i n .
Groundwater, t h e r e f o r e ,
tends t o flow northeast.
1
The Soda L a k e s thermal anomaly w a s d i s c o v e r e d a c c i d e n t a l l y i n 1903 when
d r i l l e r s found b o i l i n g w a t e r 60 f t below t h e s u r f a c e .
The results of a
s h a l l o w t e m p e r a t u r e survey a r e r e p o r t e d i n Olmsted e t a l . ( 1 9 7 5 ) ( F i g u r e 1 ) .
The plume-like temperature d i s t r i b u t i o n s u g g e s t s h o t w a t e r ascending t o the
h o t t e s t p o i n t s , and d i f f u s i n g o u t i n t h e d i r e c t i o n of t h e r e g i o n a l groundwater
6d
flow ( n o r t h e a s t ) .
2
Soda Lake i s thought t o f i l l an e x p l o s i o n c r a t e r and i s rimmed by
b a s a l t i c d e b r i s ; t h i s a c t i v i t y probably c e a s e d w i t h i n t h e l a s t 7000 y e a r s .
B a s a l t i c r i d g e s o u t c r o p 10-20 km t o t h e n o r t h .
u n c o n s o l i d a t e d lake sediments dominate.
E l s e w h e r e , exposures of
Hydrothermal a l t e r a t i o n p r o d u c t s ,
such as k a o l i n i t e and i r o n m i n e r a l s , have been found i n t h e s u r f a c e sediments.
A few n o r t h e a s t - t r e n d i n g f a u l t s have been mapped, b u t t h e s e are p o o r l y
exposed
The topography i s f l a t t o hummocky.
The s o i l i s v e r y sandy, b u t vege-
t a t i o n i s r e l a t i v e l y l u s h due t o e x t e n s i v e s u r f a c e i r r i g a t i o n .
Small ponds
and d r y l a k e beds d o t t h e area, remnants of a n c i e n t Lake Lahontan.
P r e v i o u s Geophysical Work
The r e s u l t s of t h e shallow-hole t e m p e r a t u r e s t u d y a r e mentioned above.
Other g e o p h y s i c a l work h a s i n c l u d e d s h a l l o w and deep s e i s m i c r e f l e c t i o n ,
dipole-dipole r e s i s t i v i t y , and m a g n e t o t e l l u r i c s .
The shallow weight-drop r e f l e c t i o n survey covered 4 0 l i n e km i n t h e a r e a
mapped i n F i g u r e 1.
The survey r e v e a l e d numerous s h o r t ( 1 - 2 km) northwest-
t r e n d i n g normal f a u l t s , with d i s p l a c e m e n t s on t h e o r d e r of t e n s of meters.
The deep r e f l e c t i o n survey d e t e c t e d a deeper 0 1 k m ) n o r t h e a s t - t r e n d i n g normal
f a u l t d i s p l a c i n g beds a few hundred meters.
The d i p o l e - d i p o l e survey covered t h e a r e a mapped i n F i g u r e 1.
mum s p a c i n g used w a s 4 d i p o l e l e n g t h s ( n = 4 1 , a d i s t a n c e of 2 . 4 km.
The maxiIn m o s t
c a s e s , however, r e l i a b l e d a t a w e r e o b t a i n e d only up t o n = 2 o r 3 , g i v i n g an
e f f e c t i v e p e n e t r a t i o n of 250-400 m.
The a p p a r e n t r e s i s t i v i t i e s , p r e s e n t e d
i n p s e u d o s e c t i o n s , i n d i c a t e a g e n e r a l l y conductive s e c t i o n .
In a few a r e a s
t h e c o n t r a c t o r i n t e r p r e t e d t h e d a t a w i t h a simple two-layer curve-matching
A
3
SODA LAKES
/
033.1'
/
,
,
/
/
/
/
I
/
18.0.
/'
Test hole
Number i s t e m p e r a t u r e ( ' C ) at d e p t h of 3 0 m
T e m p e r a t u r e e x t r a p o l a t e d f r o m t h e r m a l g r a d i e n t above
30m
/
/
I
I
I
XBLBO4-7049
Fig.
1.
Location map and shallow temperature survey r e s u l t s .
4
procedure.
These a l l i n d i c a t e d t r u e r e s i s t i v i t i e s d e c r e a s i n g from about
10 ohm-m n e a r t h e s u r f a c e t o 2 ohm-m a t d e p t h s of a few hundred m e t e r s ;
n o t h i n g d i f f e r e n t w a s i n t e r p r e t e d w i t h i n the thermal anomaly.
MT surveys w e r e conducted i n 1973 and i n 1977 t o e x p l o r e the deeper
r e s i s t i v i t y structure.
Measurements were made a t f r e q u e n c i e s r a n g i n g from
.001 t o 100 Hz, a l l o w i n g i n t e r p r e t a t i o n from a few hundred m e t e r s down t o
t e n s of k i l o m e t e r s depth.
The i n t e r p r e t a t i o n w a s carried o u t by f i t t i n g
l a y e r e d models t o t h e d a t a , o r by d i r e c t i n v e r s i o n t o a continuous
resistivity-depth function.
Most of t h e i n t e r p r e t a t i o n s i n d i c a t e d a four-
layer resistivity structure:
a surface l a y e r of 10 ohm-m e x t e n d i n g t o a
d e p t h of a few hundred meters, a conductive (-2 ohm-m) zone down t o 1 km, a
r e l a t i v e l y r e s i s t i v e zone ( > l o ohm-m) e x t e n d i n g t o 5-10 km, and a conductor
of about 1 ohm-m a t depth.
C o r r e l a t i o n s w e r e sought between similar u n i t s
a t d i f f e r e n t s t a t i o n s , and r e s i s t i v i t y p r o f i l e s w e r e c o n s t r u c t e d .
F i g u r e 4b
shows t h e n e a r - s u r f a c e p o r t i o n of one such i n t e r p r e t e d r e s i s t i v i t y p r o f i l e ,
a l o n g Line A-A'
( F i g u r e 2).
W e l l Logs
L i t h o l o g i c and d r i l l e r ' s l o g s were a v a i l a b l e t o u s f o r three h o l e s , a l l
of which w e r e c o l l a r e d w i t h i n .5 k m of Line A-A'.
A
g e n e r a l i z e d summary o f
t h e l i t h o l o g i c i n f o r m a t i o n i s g i v e n i n F i g u r e 4c.
Unconsolidated sands and
c l a y s dominate t h e uppermost k i l o m e t e r of t h e sedimentary s e c t i o n .
These
y i e l d t o v o l c a n i c s a n d s t o n e s and s i l t s t o n e s c h a r a c t e r i z e d by secondary
m i n e r a l i z a t i o n a t depth.
5
EM-60 Survey
F i g u r e 2 shows t h e l o c a t i o n s of t h e t w o t r a n s m i t t e r s i t e s and t h e 13
p l o t t i n g p o i n t s f o r the data.
These p l o t t i n g p o i n t s a r e mapped a t p o i n t s
midway between t h e t r a n s m i t t e r and t h e actual r e c e i v e r l o c a t i o n s , u s i n g a
convention which i s e x p l a i n e d b e l o w .
I n t e r p r e t a b l e data w e r e o b t a i n e d a t
a l l 13 s t a t i o n s ; i n most cases w e covered a t l e a s t three frequency decades.
A t t h e h i g h e r f r e q u e n c i e s w e could not o b t a i n a b s o l u t e amplitude and phase
d a t a (see Appendix A ) ; o n l y p o l a r i z a t i o n parameters such as e l l i p t i c i t y and
tilt a n g l e c o u l d be r e l i a b l y measured i n t h i s range.
and 2-1 w e r e l o c a t e d a t t h e s a m e s i t e ,
1 and 2 r e s p e c t i v e l y .
Receiver s t a t i o n s 1-5
d e t e c t i n g s i g n a l s from t r a n s m i t t e r s
The 13 soundings were o b t a i n e d by a c r e w of f o u r
d u r i n g one week of f i e l d work.
Data r e d u c t i o n and i n t e r p r e t a t i o n
The d a t a w e r e brought back t o t h e o f f i c e and e n t e r e d i n t o a small
computer.
Segments o b v i o u s l y contaminated by n o i s e w e r e e d i t e d o u t , g a i n s
c o r r e c t i o n s w e r e m a d e , and c o n s e c u t i v e segments corresponding t o i d e n t i c a l
f r e q u e n c i e s and s t a t i o n s w e r e averaged t o g e t h e r to o b t a i n s t a n d a r d error
estimates.
These procedures y i e l d e d a working data s e t , which i s t a b u l a t e d
i n Appendix B.
For i n t e r p r e t a t i o n , we r e l i e d on an automatic Marquardt least-squares
i n v e r s i o n (e.g.,
Inman e t a l . ,
1973).
T h i s i n v e r s i o n u s e s a "forward"
modeling program as i t s k e r n e l t o c a l c u l a t e t h e f i e l d s due t o a f i n i t e a.c.
loop s o u r c e above an a r b i t r a r i l y l a y e r e d e a r t h .
The i n v e r s i o n seeks a b e s t -
f i t t i n g e a r t h model by changing t h e r e s i s t i v i t i e s and t h i c k n e s s e s of t h e
6
e,;'
39" 35' N
118" 30'W,g
Legend
0Transmitter
81
I'
site
Interpreted depth to
p l o t t e d h a l f w a y between
transmitter and receiver
R e c e i v e r s t a t i o n no
T19N
/
/
/
/
//
R28E
I
-
0
0.5
1.0 km
XBL806-7201
Fig. 2 Contours on i n t e r p r e t e d depth t o top of conductive
second l a y e r
n
7
l a y e r s i n an i t e r a t i v e l e a s t - s q u a r e s procedure.
Each data p o i n t can be
weighted a c c o r d i n g t o t h e operator's c o n f i d e n c e i n it.
In g e n e r a l , t h e
s t a n d a r d errors l i s t e d i n Appendix B were n o t r e l i e d on i n t h i s r e g a r d because
t h e y r e f l e c t o n l y random sampling error, n o t s y s t e m a t i c n o i s e .
Instead, a
r a t h e r s u b j e c t i v e weighting scheme w a s used, based on our confidence i n t h e
d a t a , and i t s importance i n r e s o l v i n g c e r t a i n f e a t u r e s of t h e models.
With
such h i g h l y n o n l i n e a r curves, it may b e appropriate t o i n c l u d e a weighting
f a c t o r p r o p o r t i o n a l t o t h e s l o p e of t h e sounding curve a t each p o i n t .
In
any c a s e , t h e error estimates and model parameter confidence bounds a r e
questionable.
The r e s u l t s are shown in Appendix C.
For each s t a t i o n , t h e observed
amplitude, p h a s e , e l l i p t i c i t y , and tilt a n g l e d a t a are p l o t t e d a g a i n s t c u r v e s
c a l c u l a t e d f o r t h e b e s t - f i t t i n g e a r t h models.
The l a y e r t h i c k n e s s e s and
r e s i s t i v i t i e s are a l s o l i s t e d , with an estimate of t h e r e s o l u t i o n of t h e s e
properties.
Most of t h e soundings y i e l d e d t w o - o r t h r e e - l a y e r models, w i t h a near-
surface l a y e r of about 10 ohm-m,
a deeper conductive (-2 ohm-m) u n i t , and
( i n some cases) a r e l a t i v e l y r e s i s t i v e "basement" whose r e s i s t i v i t y could not
be w e l l resolved.
Drawing' c o r r e l a t i o n s between u n i t s of s i m i l a r r e s i s t i v i t y
from d i f f e r e n t s t a t i o n s enabled u s t o c o n s t r u c t t h e r e s i s t i v i t y s t r u c t u r e
contour maps i n F i g u r e s 2 and 3 and t h e cross s e c t i o n i n F i g u r e 4a.
F i g u r e 2 shows t h e top s u r f a c e of t h e conductive second l a y e r a s i n t e r p r e t e d from t h e soundings.
Depth p o i n t s are p l o t t e d midway between t h e
r e c e i v e r and t r a n s m i t t e r ; t h i s convention i s used i n l i e u of a r i g o r o u s
2-D o r 3-D i n t e r p r e t a t i o n .
8
The c o n t o u r s show a n o r t h w e s t e r l y t r e n d , with a steep g r a d i e n t n e a r
Transmitter 2 (T2).
This i s roughly c o n s i s t e n t w i t h t h e shallow seismic
r e s u l t s , which i n d i c a t e d a set of northwest-trending
faults.
However,
F i g u r e 2 s u g g e s t s v e r t i c a l displacement of 100-200 m a l o n g a f a u l t n e a r T2,
whereas a more g r a d u a l en echelon f a u l t i n g p a t t e r n i s i n f e r r e d from t h e
seismic data.
F i g u r e 2 a l s o agrees roughly with t h e f e w q u a n t i t a t i v e
i n t e r p r e t a t i o n s made f r o m t h e d i p o l e - d i p o l e data southwest of T2.
w e see a d e f i n i t e d i f f e r e n c e i n s i d e t h e thermal anomaly.
However,
O u r soundings t h e r e
i n d i c a t e a much s h a l l o w e r depth t o t h e conductor.
F i g u r e 3 s h o w s t h e i n t e r p r e t e d depth t o t h e base of this conductor.
It
should be noted t h a t fewer t h a n h a l f of t h e soundings responded t o t h e resist i v e u n i t beneath t h e conductor; none were able t o r e s o l v e i t s r e s i s t i v i t y .
The d e p t h s are n o t w e l l r e s o l v e d e i t h e r , so F i g u r e 3 s h o u l d be regarded as a
v e r y rough estimate of t h e d e p t h t o t h e resistor.
The p a t t e r n i s similar to
F i g u r e 2 i n s o f a r a s t h e base of t h e conductor i s shallower n o r t h and east of
T2
W e also c o n s t r u c t e d a p r o f i l e a l o n g Line A-A'
(Figure 4a).
The p r o f i l e
i s l i n e d up w i t h a s i m i l a r MT p r o f i l e ( F i g u r e 4 b ) and t h e g e n e r a l i z e d l i t h o logic logs (Figure 4c).
The agreement between t h e
p1
and Ea p r o f i l e s is good,
but there w e r e no MP
' s t a t i o n s n o r t h e a s t of T2, so w e cannot corroborate t h e
change i n t h i c k n e s s of t h e top two l a y e r s t h e r e .
The EM p r o f i l e shows t h a t
t h e t o p of t h e conductor drops 200-300 m southwest of T2 w h i l e i t s base drops
more t h a n 5 0 0 m.
This may i n d i c a t e t h a t f a u l t i n g w a s contemporaneous w i t h
d e p o s i t i o n of t h e conductive l a y e r .
9
Legend
0 Tronsmltter
site
560.
I n t e r p r e t e d depth to
( 2 - 7 ) bose of conductor ( m )
p l o t t e d h o l f w a y between
transmitter and recelver
I
R e c e i v e r s t a t i o n no
30 29
3&2
(3-11
\
(2-3)
*940
‘--\OOO
/
/
/
/
//
/
4 3
9srO
I
I
/
/ Sodo \
/
I
I
0
0.5
1.0 km
u
x m
Fig. 3.
806-7200
Contours on interpreted depth t o base of conductive
second l a y e r .
10
NE
A'
SW
A
T1
,
0
F i g . 4a
18.0
,,-e---
+/--
T2
017
(2-1)
(1-6)
(1-1)
(2-2)
I
(2-5)
//+-'9.5----+-50
(2-7)
0,68
1.3
I
--+---+/
13.0
400
-P
2
000
E
I
f
a
1200
al
0
-
1600
50
-
2000
0.5
0
1.0 k m
Horizonlol scale
sw
NE
0
+
-10 a-rn
Fig. 4b
+---
4oo
800
+-----
-+ \
'a 1200
l
-
,-- ?
?
,/,
/
/
\
\
.c
/
\
/
/
/+'
\
+
\,
0
+
a-rn
- 2
2
-t-
_,+----------?
--+/
/
+
sw
A
",
1-29 36-78
44-5
Fig. 4c
m i n o r sand
nllnor C l d Y
v o l c a n i c Sandstone
2000
i
-
0
0.5
LOkm
Hor~zonlals c a l e
XBL 806
Fig. 4a.
4b.
4c.
~
7204
I n t e r p r e t e d EM r e s i s t i v i t y cross s e c t i o n , Line A-A'.
I n t e r p r e t e d MT r e s i s t i v i t y cross s e c t i o n , Line A-A'.
Generalized l i t h o l o g i c l o g s f o r three w e l l s along Line A-A'.
11
The l i t h o l o g i c l o g from W e l l 44-5 h e l p s e x p l a i n the EM sounding i n t e r The t r a n s i t i o n from t h e s u r f a c e l a y e r to the conductor appears
pretation.
t o correspond t o t h e l i t h o l o g i c t r a n s i t i o n from predominantly unconsolidated
sands t o a clay-dominated sequence a t about 250 m.
their low resistivities.
Clays are w e l l known f o r
The deeper t r a n s i t i o n t o high r e s i s t i v i t i e s probably
r e p r e s e n t s t h e reemergence of sand a s t h e dominant m a t e r i a l a t about 1300 m.
T h i s compares w i t h t h e EM estimate of 1500 m and t h e MT estimates of 1300 and
1400 m.
The l i t h i f i c a t i o n and secondary m i n e r a l i z a t i o n noted below 1000 rn i n
t h e l o g a r e a p p a r e n t l y n o t expressed i n e i t h e r t h e MT o r t h e EM d a t a .
The t w o w e l l l o g s n e a r T2 (1-29 and 3 6 - 7 8 )
a r e n o t as o b v i o u s l y c o r r e -
l a t e d w i t h t h e r e s i s t i v i t y p r o f i l e s ( n o r are t h e y e s p e c i a l l y w e l l c o r r e l a t e d
w i t h each o t h e r ) , b u t t h e y can be r e c o n c i l e d .
The s u r f a c e l a y e r i s n o t
expressed i n e i t h e r l o g , because no rock d e s c r i p t i o n s were reported above
about 100 m.
Both l o g s c o n t a i n sand and c l a y sediments down t o about 600 m;
v o l c a n i c rock fragments (VRF's) p r e v a i l a t g r e a t e r depth.
be d e t r i t a l ; t h e l o g s a r e u n c l e a r in t h i s r e g a r d .
The v o l c a n i c s may
In any c a s e , t h e sand and
c l a y u n i t appears t o correspond t o t h e conductive second l a y e r i n the EM
p r o f i l e , while t h e v o l c a n i c m a t e r i a l b e l o w 600 m corresponds t o t h e r e s i s t i v e
"basement.
"
Thus it a p p e a r s t h a t t h e conductive zone i s caused a t least i n p a r t by
clay.
The deeper r e s i s t i v e zone may be caused by t h e absence of c l a y ,
i n c r e a s i n g l i t h i f i c a t i o n , secondary m i n e r a l i z a t i o n , and/or massive v o l c a n i c s .
The s h a l l o w i n g of t h e conductive u n i t appears t o c o r r e l a t e d i r e c t l y with t h e
thermal anomaly.
12
The shallow geothermal system may occur because h o t w a t e r i s r i s i n g
a l o n g a northwest-trending
f a u l t p a s s i n g n e a r T2, and d i f f u s i n g o u t t o t h e
n o r t h e a s t w i t h t h e r e g i o n a l groundwater flow.
However, t h i s s c e n a r i o does
n o t t e l l u s where t h e h o t water i s coming from, nor does it e x p l a i n t h e r o l e
( i f any) of t h e major n o r t h e a s t - t r e n d i n g f a u l t noted i n t h e deep seismic
profile.
EM-60 Survey E v a l u a t i o n
The g o a l s of t h e survey w e r e t o o b t a i n d a t a i n an e f f i c i e n t manner, t o
compare the r e s u l t s w i t h those f r o m o t h e r geophysical s u r v e y s , and, i f
p o s s i b l e , t o add new i n f o r m a t i o n t o guide e x p l o r a t i o n p l a n n e r s i n the area.
W e o b t a i n e d 13 soundings i n one week w i t h a crew of f o u r , c o v e r i n g an
a r e a o f 30 km2 w i t h d e p t h p e n e t r a t i o n of about 1.5 km.
good-to-excellent
throughout.
d e p t h of e x p l o r a t i o n achieved.
Somewhat d i s a p p o i n t i n g was t h e r a t h e r shallow
The EM method i s n o t w e l l suited t o r e s o l u t i o n
of r e s i s t i v e b o d i e s b e n e a t h c o n d u c t i v e overburden.
two-to-three
D a t a quality was
Nonetheless, w e achieved
t i m e s deeper p e n e t r a t i o n t h a n t h e d i p o l e - d i p o l e survey and were
a b l e t o develop a more q u a n t i t a t i v e i d e a of t h e r e s i s t i v i t y s t r u c t u r e .
As e x p e c t e d , t h e MT survey provided much g r e a t e r depth of e x p l o r a t i o n
t h a n EM o r d i p o l e - d i p o l e r e s i s t i v i t y .
The EM-60 system w i l l be t e s t e d soon
i n a deeper a p p l i c a t i o n ; i n any c a s e , MT i s unique i n its r e s o l u t i o n of t h e
r e s i s t i v i t y s t r u c t u r e down t o s e v e r a l t e n s o r hundreds o f kilometers.
Lateral
inhomogeneities, which c a n o f t e n h a m p e r MT i n t e r p r e t a t i o n , were not a s e r i o u s
d i f f i c u l t y a t Soda Lake.
T h e r e f o r e , t h e major i n t r i n s i c advantages of EM o v e r
MT h e r e were t h e improvement i n n e a r - s u r f a c e r e s o l u t i o n and t h e l a v e r cost of
13
data acquisition.
"2,
I n a d d i t i o n , we o b t a i n e d more i n f o r m a t i o n n o r t h e a s t of
because t h e r e were no MT s t a t i o n s t h e r e .
W e b e l i e v e t h a t t h e EM r e s u l t s have c l e a r l y demonstrated t h a t t h e shallow
thermal anomaly i s a s s o c i a t e d w i t h a shallowing of t h e l o w - r e s i s t i v i t y second
layer.
They a l s o s u g g e s t t h e importance of t h e northwest-trending
i n c o n t r o l l i n g t h e shallow geothermal regime.
f a u l t set
F i n a l l y , t h e survey h a s c o r r o -
b o r a t e d many of t h e f i n d i n g s from t h e MT and d i p o l e - d i p o l e s t u d i e s ; no s e r i o u s
d i s c r e p a n c i e s w e r e found between d a t a sets.
14
Acknowledgment
This work w a s supported by t h e D i v i s i o n of Geothermal Energy of t h e
U.S.
Department of Energy under C o n t r a c t N o . W-7405-ENG-48.
References
G a r s i d e , L. J., and J. H. S c h i l l i n g , 1979. Thermal w a t e r s of Nevada.
Bureau Mines and Geology, b u l l e t i n 91.
Inman, J. R., J. Ryu and S. H. Ward, 1973.
38, 6, pp. 1088-1108.
-
R e s i s t i v i t y inversion:
Nevada
Geophysics
Olmsted, F. H., P. A. Glancy, J. R. H a r r i l l , F. E. Rush, and A. S.
VanDenburgh. 1975. P r e l i m i n a r y hydrogeologic appraisal of s e l e c t e d
hydrothermal systems i n n o r t h e r n and c e n t r a l Nevada : U. S. Geological
Survey, o p e n - f i l e report 75-56.
15
APPENDIX A
Description of EM-60 System
16
APPENDIX A
EM-60 ELECTROMAGNETIC SYSTEM
I n 1976, Lawrence Berkeley Laboratory, i n c o n j u n c t i o n w i t h t h e
U n i v e r s i t y of C a l i f o r n i a Berkeley, made p r e l i m i n a r y measurements w i t h a
prototype large-moment, h o r i z o n t a l - l o o p EM p r o s p e c t i n g system (Jain, 1978)
i n a geothermal a r e a i n Nevada.
Encouraging r e s u l t s from t h i s work l e d t o
t h e development of the EM-60 h o r i z o n t a l - l o o p system (Morrison e t a l . ,
19781,
which has now been o p e r a t e d f o r more t h a n 500 h r a t v a r i o u s geothermal s i t e s
i n Nevada and Oregon.
The EM method o f f e r s t h e f o l l o w i n g advantages o v e r dc r e s i s t i v i t y and
m a g n e t o t e l l u r i c s i n geothermal e x p l o r a t i o n :
( 1 ) T h e maximum depth of explo-
r a t i o n w i t h EM i s approximately e q u a l t o t h e d i s t a n c e between t h e transmitter
and r e c e i v e r ; t h i s compares t o about o n e - f i f t h t h e s o u r c e - r e c e i v e r s e p a r a t i o n
f o r dc r e s i s t i v i t y .
r e s i s t i v i t y or MT.
( 2 ) The EM method i s f a s t e r and less expensive t h a n d c
(3) D i s t a n t l a t e r a l inhomogeneities, which o f t e n a f f e c t
MT data, have r e l a t i v e l y minor s i g n i f i c a n c e f o r EM, because t h e s t r e n g t h of
t h e f i e l d s s t r o n g l y d e c r e a s e s with i n c r e a s i n g d i s t a n c e from t h e t r a n s m i t t e r .
System D e s c r i p t i o n
The system, a s shown s c h e m a t i c a l l y i n F i g u r e A-1
c o n s i s t s of t w o s e c t i o n s :
( a ) a t r a n s m i t t e r s e c t i o n c o n s i s t i n g of t h e p o w e r s o u r c e , c o n t r o l e l e c t r o n i c s ,
t i m i n g , and a t r a n s i s t o r i z e d s w i t c h c a p a b l e of h a n d l i n g l a r g e c u r r e n t ; and
( b ) a r e c e i v e r s e c t i o n c o n s i s t i n g of magnetic or a combination of magnetic and
e l e c t r i c f i e l d detectors, s i g n a l c o n d i t i o n i n g amplifiers and a n t i - a l i a s
f i l t e r s , and a m u l t i c h a n n e l programmable r e c e i v e r (spectrum a n a l y z e r ) .
c
Preamplifiers and
mu It i plexer
6
Horizontal loop, M>10 m k s
4
i
I
+
Transmitter t r u c k
"X
I
I
I
FM
radio
telemetry
Control units
D
I
3 Component
IJ
SQUID
magnetometer
I
I
I
I
I
Phase
I
I - - -- - -- - - - - - - - reference
signal
(Clock source or)
wire telemetry
1-1
Multi -channel
stacking
spectrum
analyzer
Filters
and
amp1if iers
--I
D isc r im ina t o r
u _I
4
3 Component
IJ
SQUID
magnetometer
XBL 797-11400
F i g u r e A-1.
S c h e m a t i c diagram of the E~I-60s y s t e m .
18
T r a n s m i t t e r System
The EM-60 t r a n s m i t t e r is powered by a Hercules g a s o l i n e engine l i n k e d
t o an a i r c r a f t 60-kW, 400-Hz, 3$ a l t e r n a t o r .
i n t h e bed of a o n w t o n , four-wheel-drive
These two components are mounted
truck.
The o u t p u t is full-wave
r e c t i f i e d and capable of p r o v i d i n g f150 V a t up t o 4 0 0 A t o t h e h o r i z o n t a l
The square-wave c u r r e n t p u l s e s are c r e a t e d by means of a t r a n s i s -
coil.
t o r i z e d s w i t c h , which c o n s i s t s of two p a r a l l e l a r r a y s of from 6 t o 6 0
t r a n s i s t o r s i n i n t e r c h a n g e a b l e modules w i t h i n t h e "crate" ( t h e lower outward
The upper u n i t c o n t a i n s a r r a y - d r i v i n g elec-
p i v o t i n g box i n F i g u r e A-2).
t r o n i c s and t i m i n g c i r c u i t r y .
The t r a n s m i t t e r i s operated by one man who
c o n t r o l s t h e frequency of t h e primary magnetic f i e l d o v e r t h e range of
t o l o 3 Hz by means of s w i t c h e s on a remote c o n t r o l box which c o n t a i n s a
c r y s t a l - c o n t r o l l e d o s c i l l a t o r and d i v i d e r s (Morrison e t a l . ,
1978).
The d i p o l e moment, which i s a measure of t h e s t r e n g t h of t h e s i g n a l , i s
determined by t h e r e s i s t a n c e and i n d u c t a n c e of t h e loop.
A t frequencies
below 50 H z , i n d u c t i v e r e a c t a n c e i s n e g l i g i b l e and t h e d i p o l e moment is
governed by t h e l o a d r e s i s t a n c e .
Four t u r n s of no. 6 w i r e i n a square o r cir-
c u l a r loop, 50 m i n r a d i u s , w i l l y i e l d a d i p o l e moment of about 3 x l o 6 mks.
T h i s p r o v i d e s adequate s i g n a l f o r soundings where t r a n s m i t t e r - r e c e i v e r separ a t i o n s a r e less t h a n about 5 km, which corresponds t o a maximum depth of
e x p l o r a t i o n of about 5 km.
A t f r e q u e n c i e s above about 1 0 0 Hz, t h e inductance
c a u s e s t h e moment t o d e c r e a s e and t h e c u r r e n t waveform t o become q u a s i s i n u soidal.
High-frequency i n f o r m a t i o n i s t h u s more d i f f i c u l t t o o b t a i n a t l a r g e
transmitter-receiver separations.
19
20
Receiver S e c t i o n
The f i e l d s are d e t e c t e d a t a p o i n t 1-4 km d i s t a n t f r o m t h e t r a n s m i t t e r
by m e a n s o f a three-component SQUID magnetometer o r i e n t e d t o measure t h e
v e r t i c a l , r a d i a l , and t a n g e n t i a l components w i t h r e s p e c t t o t h e loop.
S i g n a l s a r e a m p l i f i e d , a n t i - a l i a s f i l t e r e d and i n p u t t e d t o a six-channel,
programmable, m u l t i f r e q u e n c y p h a s e - s e n s i t i v e r e c e i v e r ( F i g u r e A-1).
t h e r e c e i v e r key-pad,
processing:
(a)
Through
t h e operator sets parameters c o n t r o l l i n g s i g n a l
fundamental p e r i o d of t h e waveform t o be processed;
(b)
maximum number of harmonics t o be analyzed, up t o 15; ( c ) number of c y c l e s
i n increments of 2N t o be s t a c k e d p r i o r to F o u r i e r decomposition; and ( d )
number of i n p u t c h a n n e l s of d a t a to be processed.
P r o c e s s i n g results i n a
r a w amplitude estimate f o r each component and a phase estimate r e l a t i v e t o
t h e phase of t h e c u r r e n t i n t h e loop.
Phase r e f e r e n c i n g i s maintained w i t h
a hard-wire l i n k between a s h u n t on the l o o p and t h e r e c e i v e r ; t h i s r e f e r e n c e
v o l t a g e i s a p p l i e d d i r e c t l y t o channel 1 of t h e r e c e i v e r f o r phase comparison.
Raw a m p l i t u d e e s t i m a t e s must b e l a t e r c o r r e c t e d f o r d i p o l e moment and d i s t a n c e
between l o o p and magnetometer.
I n p r a c t i c e , t h e hard-wire l i n k was found t o be a source of n o i s e , part i c u l a r l y above 50 Hz.
T h i s has r e q u i r e d t h e e l i m i n a t i o n of the a b s o l u t e
phase r e f e r e n c e a t high f r e q u e n c i e s i n f a v o r of r e l a t i v e phase measurements
between v e r t i c a l and r a d i a l components.
With r e l a t i v e phase measurements,
i n t e r p r e t a t i o n is based on the e l l i p t i c i t y and tilt a n g l e of magnetic f i e l d
r a t h e r t h a n amplitude-phase of t h e v e r t i c a l and r a d i a l f i e l d s .
A t l o w fre-
q u e n c i e s (G.1 Hz) n a t u r a l geomagnetic s i g n a l amplitude i n c r e a s e s roughly a s
21
l/f
w h i l e t h e s i g n a l sought decxeases as l / f .
The n e t r e s u l t is an e f f e c t i v e
s i g n a l - t o - n o i s e r a t i o t h a t decreases as l / f 2 , making n o i s e c a n c e l l a t i o n
i m p e r a t i v e f o r recovery of low-frequency i n f o r m a t i o n .
To c a n c e l geomagnetic
n o i s e , a r e f e r e n c e magnetometer i s p l a c e d f a r enough from t h e t r a n s m i t t e r
loop, (10-12 k m ) so t h a t t h e observed f i e l d s w i l l c o n s i s t o n l y of t h e geomagnetic f l u c t u a t i o n s .
Once i n s t a l l e d , t h e r e f e r e n c e magnetometer can o f t e n
remain f i x e d over t h e course of a survey.
The remote s i g n a l s a r e t r a n s m i t t e d
t o t h e mobile r e c e i v e r s t a t i o n from t h e t r a n s m i t t e r v i a F M r a d i o t e l e m e t r y .
Before t h e l o o p i s e n e r g i z e d , t h e remote s i g n a l s are i n v e r t e d , a d j u s t e d i n
a m p l i t u d e , and t h e n added t o t h e base s t a t i o n geomagnetic s i g n a l t o produce
essentially a null signal.
A good example of t h i s simple n o i s e c a n c e l l a t i o n
scheme i s shown i n F i g u r e A-3.
The r e s u l t i n g s i g n a l - t o - n o i s e
improvement of
roughly 20 dB h a s allowed u s t o o b t a i n r e l i a b l e d a t a t o 0 . 0 5 Hz, a g a i n of
t h r e e o r f o u r important d a t a p o i n t s on t h e sounding curve.
These p o i n t s are
i n v a l u a b l e f o r r e s o l v i n g deeper horizons.
D a t a Interpretation
Basic i n t e r p r e t a t i o n is accomplished by d i r e c t i n v e r s i o n of observed
d a t a t o f i t one-dimensional models.
The program used f i t s amplitude-phase
and/or e l l i p s e p o l a r i z a t i o n parameters j o i n t l y o r s e p a r a t e l y t o f i t a r b i t r a r i l y l a y e r e d models.
This program allows t h e use of e l l i p s e p o l a r i z a t i o n
parameters t o s e p a r a t e l y f i t high frequency p o i n t s , where a b s o l u t e phase
d a t a i s much n o i s i e r , while s i m u l t a n e o u s l y u s i n g a b s o l u t e phase d a t a a t t h e
lower f r e q u e n c i e s , where t h e phase r e f e r e n c e may allow f o r b e t t e r parameter
@
resolution.
Two-dimensional modeling, a l t h o u g h p o s s i b l e , i s c u r r e n t l y
I
W
I-
O
2
W
X
[r
I
22
-J
X
m
4J
rl
al
23
cumbersome and p r o h i b i t i v e l y expensive ( L e e , 1979).
Samples of EM-60 amplitude-phase s p e c t r a soundings are g i v e n i n F i g u r e s
A-4 and A-5;
t h e error bars s i g n i f y one s t a n d a r d d e v i a t i o n .
The f i t t o a
t h r e e - l a y e r model i s f a i r l y good, b u t n o t e t h a t d a t a were i n t e r p r e t e d only
t o 50 Hz because high n o i s e , due to t h e u s e of t h e r e f e r e n c e w i r e , p r o h i b i t e d
o b t a i n i n g h i g h e r frequency amplitude-phase d a t a .
could u s u a l l y be i n t e r p r e t e d t o 500 Hz.
E l l i p t i c i t y d a t a , however,
I
9
24
I
0
E €
0
0 0
mcu
*cu
+I +I
0 0
m a
0
0
-
cu
0
-I
a>
X
m
.
€
3
z
IItr,
c
.-
a
3
c
0
m
I
0
00
-
I
In
-
0
I
U
Q)
>
0
cu
-
,
'
I
25
€ €
0
0 0
+I
mcu
+I
0
m
1
CD
0
'
I
cu
0
co
26
References
J a i n , B., 1978. A low frequency e l e c t r o m a g n e t i c p r o s p e c t i n g system, Ph.D.
d i s s e r t a t i o n , U n i v e r s i t y o f C a l i f o r n i a , Berkeley, Department of
Engineering Geosciences, Lawrence Berkeley Laboratory, LBL-7042.
H.,
1978, Electromagnetic s c a t t e r i n g by a two-dimensional inhomog e n e i t y due t o an o s c i l l a t i n g magnetic dipole, Ph.D. d i s s e r t a t i o n ,
U n i v e r s i t y of C a l i f o r n i a , Berkeley, Department of Engineering
Geosciences, Lawrence Berkeley Laboratory, LBL-8275.
L e e , K.
Morrison, H. F., G o l d s t e i n , N. E. Hoversten, N., Oppliger, G., and
Riveros, C., 1978. D e s c r i p t i o n , f i e l d t e s t and data a n a l y s i s of a
c o n t r o l l e d - s o u r c e EM system EM-60, Lawrence Berkeley Laboratory,
LBL-7 0 88
A
n
27
APPENDIX B
F i n a l Working D a t a S e t
28
s t a t i o n : soda lake a-a' 0.5km north t i
scparationr960 neters
loop radiusm50 n a t e r r
number o f turnst4
hz nag const=7.092
hr mag consta7.936
phase e r r
Ihr phase
amp e r r
h t amp
frequency
8.257
185.047
0.002
1 808
1 800
a.585
170.554
0.006
1.114
3. e00
1 083
174.294
0,004
1.117
5.000
1 8 444
168.893
0.005
1.119
7.000
88037
164.439
8.001
1.112
10.880
8.120
136.973
0.008
0.878
30.880
0.887
89.219
e. e00
0.648
5e.eee
8.197
120.567
8,001
0.692
50 000
0.095
350 330
0.008
8.250
190.080
0.145
299.279
0. 001
8.146
150.600
0.171
286.829
0.800
8.014
zee Bee
e. 192
177.597
e.
0
004
500 000
.
.
..
frequency
1.808
3.008
5.080
7.000
ie.080
38.800
se. 000
50.800
100.000
1se.m
2Q0.000
5e0. e
m
frequency
1 880
3.000
5. 080
7.880
10.808
30 000
50.080
50.808
190.0ee
150.808
206. 008
500 800
.
.
.
hr amp
8.160
8.322
0. 435
8.499
0.631
e. 779
e.7~2
0.782
e.439
0 . 397
e. 058
0.018
e l 1 i p t i c i tu
-0.154
-0.239
-0.281
-8.385
-e.m
-e. 366
-0. 368
-0.400
-0.340
-e. 290
-0.237
-8. e35
I
we
amp e r r
8.013
8. e10
~ 3 1 2
8.007
8.005
0.004
e. 083
8.086
0, 081
e . 0 ~
8.001
@.e01
e l l i p err
e. eis
8.008
0. 086
8 . 01 1
0.081
8. 001
8.001
0.003
0. 000
0.001
8.804
0.088
h r phase
280.607
237. 196
22s. l e t
217.218
207.222
177.491
129.344
164.590
35.397
354.91 1
299.003
352.383
I
phase e r r
5.587
.
2.495
1 246
0. 345
8.197
8.126
0. 457
0. 121
8.247
40.283
1 064
t i l t angle
98.613
888 917
74 957
72,136
64 564
49.463
398 480
40.155
25 047
12.842
.
2.451
t i l t err
0.637
0. 793
8.858
1 824
0.319
.
4.670
-24.561
0.162
2.016
n
29
rtpuration-1956 ncterr
s t o t i o n : soda lake o-az l.5kr(r n o r t h t
nunbar of t u r n s r 4
loop radiuso50 m t c r r
h r m u g constt7.936
hr mag const=7.0 ' 2
I
e.500
1 800
.
1.270
1 .369
1.445
5.000
7.000
10. 008
30.800
50.000
0.773
0.638
8.521
0.247
0. 191
frequency
0.1e0
8.300
hr onp
frequency
e, 100
0.306
.
3.000
.
0.500
1 000
3.000
5.890
7.000
10.000
30.608
50.000
$requency
9. lea
0. 380
0.508
1.808
3.000
5.088
7.000
10.000
343. @eo
50.600
5e.0~90
188.008
150.000
206.006
see. 000
hz amp
1 090
1.027
0.217
0.552
.
..
0.780
1 074
1.195
1 088
1 029
0.899
8.455
0.175
ellipticity
-0.196
-0.350
-0.389
-0.371
-0.339
-8.305
-0.278
-0.274
-0.298
-0.648
-0.147
-8.114
-0.089
-0.064
e.848
amp err
0,005
h t tohare
0.001
0.002
0.em
0.003
0.003
0.001
0.003
0. e84
188.427
185.251
177.789
166.823
139.310
129.246
123.910
118.127
98.513
87.232
amp e r r
h r phase
0.001
0.003
0.003
0.003
0.002
0.005
0.003
0.010
0.812
8.011
0.009
e l l i p err
0.002
0.882
0.083
13.803
e. 002
0.002
0,004
0.003
0.007
0.039
8.002
0.004
0.017
0.021
0.044
269.079
243.843
229.534
289 806
177.246
165 456
159. 123
154.995
139.227
155.133
.
.
phase e r r
8.292
8.051
6.182
0.027
0.171
0.328
0.274
8.077
0.645
1.735
phase e r r
0.907
0.291
8.364
e. 333
0,282
0.194
0.622
0.245
0.719
3.447
t i l t angle
87.970
75 398
.
66.891
56.202
39.524
33.344
29 342
27.391
24 849
53.866
15.430
12.586
11.438
11.695
15.961
.
.
t i l t err
0.140
0.148
8.898
8.062
8.253
0.115
0.229
8.351
9.732 *
4 . 0 ~ ~
0.155
0.291
0.704
1.284
5.991
30
station: soda lake fi-fi' 2.3 kn sw ti
rrparation=2268 meters
number o f turns-4
loop radiusm30 meters
hr nas conrtr7.936
h i mag const=7.092
frequency
0. 100
0.300
0.500
0.788
1. 000
3.000
5.000
7.006
10. 600
f rcqucnc y
e. iee
e. 300
e. so0
e. 708
1.000
3.080
5.880
7. 808
10.000
frequency
e. lee
0.308
0. 598
8.790
1. e08
3. e m
5.080
7. 080
19.e00
30. e00
sa. m e
100,088
200.
em
h2 amp
1.063
1.148
1.232
1,173
1.077
5.092
8.594
0.515
8.431
hr a m p
0.318
0.655
0.895
0.984
0.957
7.184
0.827
0.770
8.865
e1 1 iptic i tu
-8.269
-0.357
-0.368
-0.380
-0.317
-0.159
-0.194
-e. 180
-0.176
-e. 092
=e. e86
-0.150
-0. 189
a m p err
h i phase
phase e r r
0.006
0.026
hr phase
253.658
235.687
phase e r r
0.038
0.027
6.202
0.019
e. e22
0.815
206.322
193.221
195.034
166.034
154,288
163.414
0.003
0.042
0.002
0.882
0. 002
0.014
e.ew
0.005
0.801
amp e r r
0.012
ellip e r r
0.006
0,006
0.006
0. 009
8.003
0,661
e. 085
0.008
e. 006
e. 604
0 . e03
6,018
8.022
187.613
188.237
178.325
163.822
157.687
143.153
136. 709
132.053
138.072
0.267
4.394
0.221
0.245
0.293
0,179
0.343
0.321
0.209
213.863
t i l t angle
82.342
65.586
56.964
51 762
49.201
25.199
34.982
33.036
25.112
3.152
79.1S8
13.383
ie.714
8.981
3.964
0.427
0.775
0.402
25.570
0,581
1.002
0.859
t i l t err
0.358
0.913
0.408
1.389
1.893
9.624
6.785
0.889
0.368
0.372
0.138
0.979
1e301
31
separation-552 meters
s t a t i o n : soda lake C-C' . 6 krr nu t 2
loop radius-50 meters
number o f t u r n r r 4
hr ~ a cons
g
t3~7.936 hz mag const=7.092
amp e r r
0.004
frequency
0. lee
0.390
0.500
0.700
1. 000
3.080
5.080
7.000
10.098
38. eee
h r amp
0.993
1 024
1.084
1.168
1.241
1.113
0.946
0.541
e. 188
e. 08s
erne
e.000
e.ew
8.881
e.eei
e. 083
frequency
0. 100
e. 308
h r amp
0.078
0.145
0.249
0.31 1
8.423
8.856
i.883
1.013
0. 780
0.375
amp e r r
0.016
8.003
0.004
e.ee6
e. e83
e.004
8.005
8.004
e. 002
0.003
i.ies
e. see
0. tee
1 000
3.090
5.088
7 . m
1e.m
30.000
frequency
0. 108
9.388
9.500
0. 708
1. 000
3. eee
5. 008
7. 000
10.000
ellipticity
-0.077
-e.
-0.217
-8.255
-0.308
-8.433
-8,442
-8.426
-e. 398
30. e m
50.800
100.000
208. e e
see. eee
139
~
-8.223
-e. 168
-e. 171
-8.162
-0.112
0.007
0.010
h t phase
181.467
183.000
179.600
182.440
i8e.eee
158a?70
141.608
129.01 1
i22.eee
123.440
phase e r r
0.333
0.000
3.408
0,223
8 . e00
eo 000
8.000
0.308
h r phase
271.8~
263 500
251 200
I249.208
241 580
I210. e20
189.600
175.300
167.258
phase e r r
5. 196
0.645
3.308
0.072
e.580
0.250
I
.
6.240
155.440
a l l i p err
0.015
e. ee3
0.003
e m 2
0.ee4
e. e02
em0
e. 004
e. ee2
e. 000
e. ee3
erne
0.801
8.802
0 . e ~
t i l t angle
90.195
80.633
85.639
83.210
79.166
4e.603
49 427
42.181
34.79s
24 290
20.085
17.043
12.219
9.688
e.eee
0 . 200
0.250
6.240
tilt err
0.475
8.111
0.878
0.365
0.077
8.227
8.220
0. 101
0.842
e.ew
0.074
8.037
e. 258
0.877
32
s t a t i o n : soda l a k e C-C' 1.8kn nw t 2
scparation=l764 meters
nunbar o f t u r n s ~ 4
loop r a d i u s 6 0 n e t e r r
hr mag conrt=7.936
hz nag conrt=7.892
..
frequency
0.050
0.050
0. 100
0.150
0.300
0.500
8.700
1.008
3.808
5.080
7.008
hr amp
1 049
1 042
1.141
1.103
1 8 275
1 402
1 459
1 433
1.861
8.670
8.448
amp e r r
0.016
0.015
0.006
0. e09
0.005
0.004
0.006
0.881
8.001
8.081
8.801
Rz phase
185.933
185.829
184.300
185.567
184.280
180.168
174.468
166. 964
125.770
105.600
101.300
phase- e r r
2.836
1,043
0.224
0.167
0.200
8.068
8.183
0.036
frequency
hc an0
0.147
8.113
0.167
0.235
0.446
8.660
0.821
0.944
1.160
0.990
0.807
amp err
hr phase
200.433
262.271
261 880
257.400
246.028
234.400
225.400
215.000
170.970
149.600
148.300
phase err
8.059
88050
0. 100
e. i s e
8.300
0.500
0.700
1.800
3.080
5.000
7. e00
8.100
8.150
0.308
0.500
0.700
1 888
3. 080
5.880
7. 000
10.080
30. e m
50. 000
100.000
.
.
el 1 i p t i c i tu
-8.887
-8.087
-8.143
-e. 201
-e. 300
-8.351
-8.380
-8.395
-8.414
-0.365
-0.289
-0.209
-6.1S3
-0.121
-0.115
-0.146
0.812
0.017
88 002
0.801
e. 002
0.004
0. 009
8.805
0.812
0.013
.
0.000
0. 080
0. 208
20.027
15.830
~1.683
1 438
8.828
0.400
0.400
0.000
0. 200
0. 800
8.374
.
e l l i p e r r t i l t a 1g1e t i l t e r r
2.762
90.3 il
0.014
1 505
89.1 313
e . 0 ~
0.128
88. 14 2
0.002
0.311
86.8 6
0.003
0.056
79.6 7
8.801
0.167
72.3 7' 1
8.003
8.389
66.9 67
e . 0 ~
0.198
61.3 9IS
0.001
0.405
4184 2r5
0.802
0 495
38.4 7'S
e e03
0.235
25.6 213
e. 004
0.357
22.5 18
8.003
0.677
18.9 0I9
8.802
0.390
16. 144
0. e02
0.981
14.7 a12
0. e05
2.803
128 34b5
8.016
3
.
.
33
s t a t i o n : soda l a k e d-d’ 0.5km w t2
s e ~ a r a t f o n * 7 2 0 meters
number o f turnsr4
loop radiur=S0 meters
hr wag const-7.936
hz mag conrt=7.092
f rcquenc y
.
..
.
hz amp
hz phase
183.825
183,460
183,383
183.163
184.190
179.640
174.542
170.554
165.817
132.733
82.630
106.122
192.541
196.231
266.964
130,591
phase e r r
em
1 007
1.010
1 034
1 e48
1.105
1 s 208
1 245
1.259
1.278
1.116
0.857
0.956
266.634
0.163
109.301
e. e22
frequency
hr amp
hr phase
phase err
0.108
0.300
8.580
8.700
1 888
3.~0
5.000
7.088
18.088
30
.eee
58.800
50.000
50.888
1e8.800
188.000
200.
0. 100
0. 388
8D588
8.780
1 888
3.008
5.808
7.008
18.880
38.000
58.808
58.868
s8.880
100.008
100D808
280.
em
frequency
e. 100
8.300
0.508
0.700
1 080
3. 000
5.000
7.008
10.080
30.000
50.080
.
58.888
58 800
100.008
iee.e08
280.
eee
290.908
0.027
0.063
8, 102
0.131
0.176
0.362
e. 417
e.561
0.671
0.947
0.951
1 046
287.9~
0.273
162.997
252.357
253.930
248.372
247.472
242.544
228.052
219.686
213.896
208.427
176.224
127.536
153.174
237.578
248.999
245.912
8.686
216.817
.
ellipticity
-0.025
-0.058
-8.089
-0.113
-0.135
-0.215
-8.252
-0.275
-0.306
-0.392
-0,410
-0. 433
-0.413
-0.409
-8.424
-0.256
-0.339
-8.173
.
.
8.809
0.013
0.025
0,026
0.m
8.011
0.023
0.023
0.029
8.10s
0.077
0. ite
48.976
e.838
45.439
8.241
2.525
2.098
1 537
1 003
0.227
0.294
0.141
.
t i l t angle
89 438
88.786
87.60e
a6 852
85.130
78.214
73.830
70.503
66.413
51 439
40.816
41,206
41 898
24.187
28.461
1.255
13.581
9. 580
.
.
8.156
8.026
0. 100
0.080
8.161
48.965
0.037
43.322
6.264
tilt err
0.079
8.149
0.165
8.118
0.049
8.867
8.022
0.062
0.882
0.006
0.015
0.014
0.009
0.009
8.817
0.813
0.011
0.283
34
s t a t i o n : soda lake D-D’ 2.0km ne t i
s e p a r a t i o n r 2 8 2 8 meters
nunbcr o f t u r n s r 4
loop radius=50 asters
hr nag constr7.936
hr nag c o n s t ~ 7 . 0 9 2
h t amp
frequency
0.050
0. 100
0.150
0.380
0.500
0.700
1 000
3.008
5.808
7 . e ~
10.800
30.~~0
58. 008
.
1.024
1.116
1.136
1 286
1 322
1 267
1.170
0. 787
0.553
0.464
0.386
9.074
e. i 7 e
..
.
f re q u en c y
0.850
hr amp
8.158
8.308
e. 580
0.308
0.446
0. 100
.
1 990
3. e m
5.068
7.888
10.980
39. 080
f requcnc y
0.050
e. l e 0
0.159
0.300
0.500
e.7130
1 e00
3. a00
.
5.800
7 . eee
10.800
30. e00
50.009
58 eee
.
180.800
0.159
8.328
0.74s
0.969
1.672
1.158
1 040
0.966
8.919
.
e. 904
0.806
ellipticitu
-e. 133
-8.263
-e. 314
-0.381
-0.378
-e. 373
-0 348
-e. 247
-0.219
-0.193
-e. 181
-0.868
0. 002
-e. 167
-0. 12s
.
hz phase
amp e r r
186.231
187.168
i86.5ie
180.235
170.674
162.502
154.695
140.418
135.e8~1
132.553
306.444
264 687
117.710
0.809
0.081
0. 004
0.002
0. 002
0.003
8.081
0.002
8.002
0.004
0.00~4
1 866
0. 282
e. 489
0.129
e. 898
0.116
0.046
e. 134
e. 165
0.463
.
0.002
8.882
hr. phase
amp e r r
e. 826
8.8e5
9.012
0.007
.
phase e r r
.
0.806
0. 010
0.883
0.004
9.008
e.018
8.081
time1
248.888
252 a 555
243.850
230.188
213.717
204.112
193.105
170.413
164.028
160.013
333.490
313.121
e l l i p err
e. 030
0. ees
0.027
e. e04
e. e05
0. e04
0,081
0.003
e. 004
e.eii
e. e m
m e 3
e. e04
0.801
0. e83
..
e.052
1.315
1.361
phase e r r
t i l t angle
86 630
82 498
77.138
65,727
56 a 699
51.322
45.362
32.732
213. e75
25,147
21.229
3.495
-1 1 08s
13,251
8.450
9.776
e. 729
4.93%
0.346
6.641
0. 354
0. 848
0.336
8.339
1.195
8.080
e.518
t,ilt err
e.762
0. 251
e.873
0.278
0.291
0.269
0.069
0.172
0.213
0.460
0.m
0.184
0.171
e.068
0.178
35
0
station: soda lake 6-6’ 2.8 kn se t i
separation-2796 meters
loop radiur=S0 n e t e r r
number o f turnis4
h r nag constr7.936
hr Rag constr7.092
frequency
0.058
0. tee
0. i s e
0.309
0.380
0.500
8.700
1 000
3.000
5.000
7. 000
10.000
18.008
30 e m
.
frequency
0. 850
0. 100
0.150
0.300
0. 380
0.580
0.700
1 000
3. 000
5. 080
7. e m
10.000
ie. m e
30.900
freauancy
e. e50
e. l e e
0. 150
0.300
0.388
0.500
0.700
1n 000
3.000
5. e m
7. 000
10. 008
16.000
30 000
.
30. e m
100.0013
.
hr a m
1 048
1.261
1 246
1 a 383
2.884
1 302
1.148
0.958
9.538
0,399
0.349
0.280
2517.613
e - 085
amp e r r
0.097
0.035
0.013
0.018
1.519
0.068
0.058
0.084
hr anp
0.281
0.463
0.620
0.957
1 069
1.281
1 575
1.103
0.839
0.820
8.738
0.641
5632.999
0.481
anp e r r
0.063
0.082
~1.017
0.088
0.331
.
.
.
el 1iptici ty
-8.317
-8.224
-8.400
-0.427
-0.251
-0.396
-0.344
-0.297
-0.210
-8.143
-9.213
-8.159
-0.187
-0.133
-8.215
-0.088
0.005
0.013
0.016
0.003
7.013
8.011
0.082
0, 182
0.135
0. 935
0.827
0.042
0.012
118.872
8.038
e l l i p err
0.084
8.114
0.016
e. 025
0.230
0. 023
e. 02s
0.025
08 815
8.035
e. 042
0 . m
0. 009
8.033
8.022
8.013
hr phase
188.843
18s. 229
182.000
168.600
169.400
161.000
131.550
141 286
134,570
134.880
130.508
126.667
344.000
93.408
.
phase e r r
2,650
1.325
e.510
1 288
4.400
4,211
4.655
0,286
1 020
1 800
2.983
88955
3. 000
4.140
hr phase
260.027
244.371
242.400
221.600
206 800
2es.500
193.838
178.143
160.970
155.800
162.500
151.667
373. 000
140.600
phase e r r
6.104
31.379
3.256
4.273
28.000
4.410
4.205
2.798
1.114
4.903
7.843
0.803
2. 000
2,839
.
.
.
t i l t angle
t i l t err
88.519
73.486
61 822
74.019
45.811
35.793
42.119
31 107
24 695
23.069
22.215
22.171
6.819
14.191
7.614
3.338
82.505
.
..
3.299
1.692
4.668
1.616
3.939
4.055
5.696
1.041
0,710
2.054
0.330
0.255
0.944
0. 121
1.613
36
station: soda lake E-€’ 1.3km su t2 separation-1260 netcrs
loop radiurr58 meters
number of turnrr4
hr nag const=7.936
h t Rag constr7.892
phase e r r
hz phase
amp e r r
hz anp
frequency
0.865
185.817
0.081
1.118
0. 100
0.866
185.108
8.849
1.124
0.300
0.111
182.iee
e. eee
1.298
0. see
0. 142
178.782
0.822
1.316
e.700
m 8 e
175.920
8. 001
1 407
1.808
0.245
i49.17e
0.881
1.249
3.m
0,245
134.200
8.m
9.959
5. 900
0.
080
126.500
0.082
9.713
7.w e
f reaucnc y
0.
0.380
me
esee
e. 780
1. m e
3.000
5 . m
7. eee
frequency
0. 100
0.308
0, 500
wee
1. e00
3. w
e
5. eee
7.990
ie. 000
39. e
m
50. w e
58.800
100.988
hr amp
0.103
0.259
0.429
9.538
0.672
0.992
0.979
8.887
ellipticity
-0.092
-6.213
-e. 278
-0.316
-0.325
-0.354
-0.329
-8.295
-0.330
-0.252
-0.249
-0.239
-9.218
amp e r r
0. 809
0.012
e. ee6
0.098
e.eei
e.wi
0nMl2
0. 987
ellip err
0.804
8.082
0.004
0.802
0.880
0. ee3
0.002
9.903
e. e03
0.801
8.001
e. 002
0.014
h r phasa
271.967
,253.940
241 850
234.919
225.080
189,379
170.680
160.250
I
.
phase err
1. Sf9
t i l t angle
89.617
8 s . 828
79.636
75.987
78.474
53.468
44.272
37.609
33.944
23.759
18.855
19.025
13.910
0.267
0.247
e. 601
8.000
0.245
0. m
e
0.256
t i l t err
8. ise
8.113
0.162
8.264
e.831
0.085
8.114
9.323
0.048
0.314
0.112
0.097
0.728
37
station: soda lake €-E' 2.8kr1 ne t 2
rcparation*2760 meters
number o f turns=4
loop radiusr50 meters
hr Rag constr7.936
h t mag const=7.092
frequency
0. 108
0.300
0.588
e. 7ee
1.008
3.eee
5. 009
5. e m
7.888
10.008
f raquenc y
8.180
88300
0.580
8.788
1.080
3.088
5.088
5.em
7.008
10.000
frequency
0.180
8.380
e.500
0.780
1a 000
3. 080
s. m e
5.008
7.008
10.808
ie.eee
.
38 880
50.080
h t amp
1.191
1 322
1 a 263
1.093
0.797
0.095
0. 185
0. 181
8.085
0.857
amp e r r
0 . m
0.010
0.011
0.014
0.001
0.084
0.082
0.004
0. 087
0.001
hz phase
181.386
159.194
147.450
120.800
97.667
111a145
108.236
108.457
88.308
107.600
phase e r r
0.568
0.612
0.284
1.517
0.21 1
2.556
0.742
4.672
3.718
0.812
hr amp
0.308
8.913
1.143
1.196
1,127
0.412
0.365
0.443
0.465
A.337
amp e r r
0.019
0.016
0.813
0.012
0,017
0.025
0.011
0.038
8.036
0.007
hr phase
255.943
223.429
194.338
178.008
is7.see
140.645
141.145
344.45'1
108.425
133.600
phase e r r
4.34s
1 075
1.117
0.860
0.992
2.973
1.713
3.979
6.420
1.408
e l 1 i p t i c i tu
-8.304
-0.546
-0.431
-8.541
-0.S16
-e. 1i e
-0.147
-0.133
-0.064
-0.072
-0.083
0.88s
-0.025
e l l i p err
0.016
0.021
0.812
e.818
0.009
0.007
88807
0. 020
0,821
8.003
0.003
0.022
0.029
.
84.480
65.945
490 172
tilt err
1 563
1 335
0.376
27 440
11.752
13.987
10.795
9.669
8.643
10.631
9.738
6.375
0,793
0.929
0.644
8.994
1.010
0.179
8.270
0.631
3.480
t i l t angle
.
40.206
8.981
38
station: soda lake e-@' 2.2kn. su
reparationm2304 meters
loop radius-50 meters
number of turns4
hr nag conrt=7.936
hz nag const-7,092
frequency
0.050
0. 100
0.150
0.300
0.500
0.700
1.000
3.000
5.000
7.000
10.008
10. 000
38. eeb
30.000
50. 000
50.008
frequency
0. 050
8. tee
0. 150
8.300
0.580
0.700
1.000
3.800
5.000
7.800
10.800
10.800
38. 000
30.680
58.080
se.800
frequency
0.050
e. 108
0.150
9.300
0.500
0.700
1.880
3.080
5.000
7.000
10.880
10.800
30.880
30.800
50.800
50.008
58.008
100.000
.
ht a m p
1 866
1.159
1.170
1.314
1.442
1.412
1 324
0.661
0.404
8.275
0,177
178.496
8.147
21.468
15.247
0.368
.
h r amp
8. 195
8.285
0.398
0.666
0.954
1.168
1 230
1 829
0.792
0.660
0.572
376.873
0.536
58.941
57.135
0.746
..
e1 1 iptici tu
-0.136
-8.213
-0.294
-0.369
-6.373
-0.418
-0.394
-0.293
-0.231
-0.19s
-0.158
-8.198
0.007
-0.198
-0.166
0,071
-8.891
-0.361
a m err
0.824
0.008
0.014
0.055
0.802
8.802
0.901
0.002
8.003
0.006
0.887
0.373
8.810
0.219
0.177
0.012
hz phase
189.078
188.179
187.894
183.820
169.255
159.195
148.978
114.091
103.991
98.602
93.521
330.163
189.617
228.749
252.541
85.283
ohare e r r
1.214
0.463
0. 553
3.106
0.089
0.096
0.029
e. 142
0.359
0.733
0.190
7.691
8.007
45.325
31.414
5.873
anp e r r
hr phase
268.135
phase e r r
e. 788
2.521
0.468
4.268
2.549
0.330
0. is9
0.214
8.950
8.819
8.823
8.004
8.043
0.088
0.849
0.985
0.006
8.m
0.009
0.008
6.267
0. 020
2.222
8.882
0.026
e1 1 i p
249.840
250.462
239.376
214.475
285 303
192.114
.
1se.w
136.811
138.576
126.444
239.606
110.410
204 780
202.856
95.534
.
irr
0.0 12
8.8 8
8.8
69.684
3.348
47.77s
30.742
5.072
1s
0.0 7
0.8 12
0. 0 15
0.8 12
8.0 12
0. 0 17
0. 0 1
0. 0 1
0.8 13
0.0 9
0. 0 3
0. 0 IS
0.8
e. 0 -9
e. 3
.
t i l t angle
e7 390
83.249
80.213
71.826
60.733
53.103
47.896
30.218
24.581
28.241
14.927
23.412
-14.936
17.169
11.876
-26 022
il.SS1
67 030
_
.
.
_
.
_
_
.
tilt err
1 345
0.614
8.278
1.413
0. 199
1 450
0.179
8.202
e.318
0.366
0.665
8.433
8.572
e. 504
0.297
8.266
0.900
2.255
.
~
-
.
39
s t a t i o n : sl f - f . 6 k ~south
scparationr612 Meters
number o f turns=4
1 oop radius-50 Meters
hr nag c o n s t ~ 7 . 9 3 6 h t mag const-7.092
frequency
1.090
3. 000
5. 000
7. m e
amp e r r
30. e00
50. e00
h t anp
0.952
0.055
0.879
0.888
0.600
0.366
0. 222
f rcquenc y
1. e00
3. 080
5.000
7.800
10.000
3e.000
h r amp
0.272
e. 609
0.765
8.820
1.060
0.933
f raquanc y
ellipticity
ie.eee
1.000
3.800
5 . 0 ~
7.008
10.000
30. 080
58.800
58.800
1ee.eeo
1 w . t ~ ~
2e0.800
-0.27s
-8.454
-0.324
-0.252
-0.336
-0.299
-0.206
-0.248
-0.180
-0.153
-e. 13s
0.002
0.002
0.003
0.038
0.027
8.810
h t phase
176.000
170.937
169.806
165.833
144.008
i0~1.50e
71.200
phase e r r
0.000
e. 167
0. 200
e. 333
0,408
2.173
5.721
amp err
0.801
0,002
0. 002
0.004
0.001
e. 002
hr phase
251 733
223.770
2e6.100
194. 167
189.000
162.280
.
phase e r r
0.267
0. 000
0.289
0. 333
0. 000
e.000
0.801
e l l i p e r r t i l t a nIsle
OS. 644
e. e00
59.9 317
0.002
49.9 1a
e . 8 ~
4 f . 5 7'0
0.803
24.0 616
0.008
14.2 7
0.030
3.0 8il
0.015
la
9.880
e.001
0.901
e. 800
17.3 016
12.8 019
10.8 2'7
9 . 5 74
t i l t err
0.086
e.875
0.061
8.843
1.487
0.620
1.128
e.ee2
0.041
0.835
0.804
40
station: soda lake F-F' 2.1 kn se t2 separation=2136 meters
number o+ turns=4
loop r a d i u r r S 0 meters
h r mag const=?.936
hz mag const=7.092
frequency
0.050
h t amp
0. 999
1.818
0.999
1.131
18127
1 8056
88912
0.304
0.204
0.179
f raquerncy
0.058
e. lee
e. is8
e. 300
0.580
e. 700
1 L 080
38 060
5. e08
78 688
frequency
0.050
e. 100
0.158
08388
8.508
e. 780
1 800
38 eae
5. 0ee
.
7. 080
18.006
38 800
50.880
100.808
.
hr anp
8.170
0.262
e. 349
0.638
8.816
0.879
0.937
0.554
8.406
e. 342
el 1 i p t i c i t y
-8.125
-0.244
-0. 388
-8.412
-0.425
-8.424
-6.417
-88 194
-0.186
-6.150
-8.296
-6.295
-0.264
-8.073
amp err
0.024
6.005
0. 084
0.603
e. eel
9,801
m e 0
0.001
e. e03
0.003
anp e r r
0,013
8.003
0.007
m e 4
e. 823
e. 021
0.083
9.003
8.013
8 . 009
ellip e r r
0.033
0. 002
e. 007
8.093
6. 005
8.014
0.004
9.842
8.008
0.617
0.005
0.018
e. 808
8.803
h t phase
186.225
184.400
181 400
172.060
158.588
146.000
133.250
1 1 1.548
111.400
114.106
phase e r r
0.263
0.400
e. 000
.
hr phase
248,475
256.600
246.048
228 009
287.968
193.eee
178.545
137.868
138.e00
135.100
0. e00
0.116
0. 200
0,250
5.965
0 s 490
0.678
phase e r r
.
t i l t angle
87 278
85.285
80.619
68.963
58 438
52.618
43.916
26 997
25 226
26.594
41.132
27,290
54s 829
8
.
I
6.988
,
15.591
0.735
0.933
8.316
.
8.838
1 463
0.130
0.411
0.510
2. 112
.
t i l t err
1 279
8.187
0.221
0.295
1.161
1.816
6.139
.
0.538
1 842
0.656
8.354
0.867
2.224
0. 443
41
APPENDIX C
Results of Inversions
42
r
COMPARSION OF CALCULATED AND MEASURED DATA
10.00
I .OO
0. I0
0.01
0.
SODA LAKE A - A .96 KM NE T I
CALCLLATED DATA
MASURED DATA
I+?
I-#?
x
I
12.04*
.OO
446.1
t
4.
HZ
*
2
1.62*
.0!5
.IBBBE*llr
0.
m
-
- -
DATA VARIENCE ESTIMATE
L
LAYER
RESISTIVITY(OH4-M)
TH1CK)SSSIWl
510.2
XBL 806-10122
43
1
..
COMPARSION OF CALCULATED AND MEASURED DATA
388.00
280.00
260.00
240.00
W
220.00
0)
a
a
I
200.00
-1
2
z
180.00
N
-
160.00
0
I
140.00
9
a
120.00
0
LT
-I
100.00
a
2
80. Q3
I-
LT
W
>
60.00
40.00
20.00
0.00
0.01
I0.88
I .BB
0. I0
I0ee.W
100.00
FREQUENCY (HZ)
SODA LAKE A - A .96 KM NE T I
CALCULATED DATA
EASURED DATA
HR
w7
X
I
HZ
*
2
H Z -
- -
DATA VARIEKE ESTIMATE
L
LAYER
RESISTIVITYIOHI-MI
12.04*
1.62*
THICKMSS(M1
*
4.
.00
446.1
.E
. I B B B E + I I ~e.
510.2
XBL 806-10121
r
44
1
COMPARSION OF CALCULATED
0.01
0. I 0
AND
I .OO
@
MEASURED DATA
10.00
100.00
10W.88
FREQUENCY (HZI
SODA LAKE A - A .96 KM
NE TI
CALCUATED DATA
W A S W E D DATA
ELLIPTICITY
ELLIPTICITY
~
LAYER
X
RESISTIVITY(WW-WI
I
12.04t
2
1.62*
THICKlrESStMI
.OO
446.1
t
4.
-85
.leBBE+llt
0.
DATA VARIENCE ESTIMATE 510.2
L
XBL 806-10119
45
COWARSION OF CALCULATED
AND
MEASURED DATA
1w.w
80.88
60.88
W
-1
(3
z
U
I-
r!
40.88
c
28.88
0.00
0.01
0.10
10.88
I .88
FREQUENCY
SODA LAKE A - A .96
1888.88
KM NE TI
C A L W A T E D DATA
T I L T ANGLE
188.88
[HZ)
-
LAYER
EASUREO DATA
T I L T ANGLE
X
I
2
RESISTIVITYIU-U-M)
12.84s
I.@*
MICMSSlMl
.GI0
446.1
t
4.
.05
.leBBE+iit
e.
DATA VARIENCE ESTIUATE 510.2
L
XBL 806-10120
r
46
COMPARSION
OF CALCULATED AND MEASURED DATA
10.00
I .00
-1
-2
2
c
0. I0
iK
w
>
0.01
0,
SODA LAKE A - A 2.0 KM NE
CALCULATED DATA
m
H z -
- -
DATA VARIENCE ESTIMATE
L
TI
CEASURED DATA
LAYER
RESISTIVITYIM-M)
THICKNESSIM)
tR
X
I
II.00*
-00
230.0
Hz
*
2
2.501
.00
050.0
3
50.001
77.00
*
.IBBBE*IIt
0.
58.
0.
.1397E*08
XBL 806-10278
47
COMPARSION OF CALCULATED
AND MEASURED DATA
388.00
280. 00
260. 00
240.00
w
0
220.00
a
200.00
U
I
-I
a
I-
180.00
-
160.00
z
0
N
[t:
0
I
140.00
4
Q
120.00
-1
a
100.00
c
(r
w
>
80.M
2
60.00
40.00
20.00
0.00
0.01
0. I0
I .OO
100.00
10.00
1000.00
FREQUENCY (HZ)
SODA LAKE A-A 2.0 KM NE T I
CALCULATED DATA
MEASURED DATA
l-sz
I+?
X
I
HZ
f
2
3
H Z -
- -
DATA VARIENCE ESTIMATE
L
LAYER
RESISTIVITY(OHI-MI
THICKKSS(M1
.OO
230.0
t
0.
2.50t
.OO
850.0
f
58.
50.00t
77.00
.IBBBE*l I t
e.
11.00t
.1397E*08
XBL 806-10257
48
1
COWARSION OF CALCULATED
0.01
0. I 0
AND
I .OO
MEASURED DATA
100.00
10.00
IW0.00
FREQUENCY ( H Z )
SODA LAKE A - A 2 . 0 KM M:
CALCULATED DATA
ELLIPTICITY
-
TI
CEASURED DATA
ELLIPTICITY
LAYER
X
THICKTESSIM)
I
II.00f
.OO
230.0
f
e.
2
2.50f
.00
858.0
i
9.
3
DATA VARIENCE ESTIMATE
RESISTIVITY(OH(-HI
S0.00*
77.00
.IBBBE*llt
0.
.1397E*08
XBL 806-10258
49
drs
r
COWARSION OF CALCULATED
AND MEASURED DATA
100.00
1
88.00
60.00
w
-I
W
z
U
t-
-1
40.00
c
20.00
0.00
0.01
K
I .OO
0. I 0
10.00
I00e.W
100.00
FREQUENCY ( H Z )
SODA LAKE A-A 2.0 KM NE TI
CALCULATED DATA
TILT
ANGLE
-
DATA VARlENCE ESTIMATE
WASWED DATA
T I L T ANGLE
LAYER
X
RESISTIVITY(OHI-Ml
THICKPESSCM)
I
11.00:
.OO
230.0
:
2
2.50s
.OO
85B.B
t
3
50.W:
77.00
0.
58.
.l@W€*ll: 0 .
.1397E*08
XBL 806-10259
50
COMPARSION OF CALCULATED
AND MEASURED DATA
10.00
I .OO
0. I0
0.01
0.01
I .OO
0. I0
10.00
18B.00
FREQUENCY (HZ)
SODA LAKE 2.3 KM SW TI
LAYER
CALCULATED DATA
MEASURED DATA
HR
m
X
I
HZ
*
2
w
-
DATA VARIENCE
- ESTIMATE
RESISTIVITY(OH(-Ml
17.64*
1.66*
THICMSS(M)
*
.OO
310.0
.w
. I B B B E + I I ~e.
2.
32.61
XBL 806-10130
51
COWARSION OF CALCULATED
AND
MEASURED DATA
388.00
280.00
260.00
240.00
w
0)
220.00
E
200.00
U
-I
a
c
180.00
-
160.00
0
I
140.00
4
U
120.00
z
0
N
LT
-I
100.00
a
2
c
80.m
LT
w
>
60.00
40.00
20.00
0.00
0.01
I .OO
10.88
FREOUENCY ( H Z I
0.I 0
100.00
1000.00
SODA LAKE 2.3 KM SW T I
CALCLllATEO DATA
H1
L
- -
E
-
DATA
VARIENCE ESTIKATE 32.61
CLASlRED DATA
LAYER
RESISTIVITY(OH(-Ml THICKESSIMI
rn
X
I
17.64t
.00
310.0
HZ
*
2
1.66s
.02
.IBBBE'llt
t
2.
e.
XBL 806-10129
52
COMPARSION OF CALCULATED AND MEASURED DATA
I .OO
0.80
0.60
0.40
0.20
0.00
- .20
-.40
- -60
- .80
I .OO
0.01
0 . I0
I .00
100.00
10.00
I090.BB
FREQUENCY (HZI
SODA LAKE 2.3 KM SW
CALClhATED DATA
ELLIPTICITY
DATA VARIENCE
L
EASURED DATA
ESTIMATE
TI
ELLIPTICITY
LAYER
X
RESISTIVITY(WW-Ml
THICKKSS(M1
1
17.64*
.OO
310.0
2.
2
1.66*
.02
.IBBBE+Ilt
0.
32.61
XBL 806-10128
53
COMPARSION OF CALCULATED
AND MEASURED DATA
1w.w
80.00
60.00
w
-1
(3
Z
a
-
I-1
40.00
I-
20-00M
0.00
0.01
0. I0
I .OO
10.00
FREQUENCY ( H Z )
100.00
SODA LAKE 2.3 KM SW TI
CALCULATED DATA
TILT ANGLE
EASURED DATA
-
T I L T ANGLE
LAYER
X
I
2
DATA VARIENCE
L
ESTIMATE
RESISTIVITY(OH(-MI
THICKFESSIMI
17.64:
.OO
310.0
I.66*
.82
.IBBBE*llt
t
2.
0.
32.61
XBL 806-10127
54
1
COMPARSION OF CALCULATED AND MEASURED DATA
w
0
3
t;
-I
a
ZZ
a
J
a
5
N
I
LL
0
I
n
z
a
-I
-a
0
t
a
w
>
n
w
N
I
J
a
I
LL
0
Z
0. I0
0.01
I .OO
10.00
FREOUENCY
SODA LAKE 0.6 KM
IB88.W
100.00
(HZ)
Nn T 2
CALCULATED DATA
WEASUKD DATA
lm
M
X
I
9.50*
.BB
20.00
*
0.
HZ
*
2
.68*
.OO
.l0WE*ll*
8.
)
Q
-
- -
DATA VARlEmE ESTIClAfE
LAYER
LESISTIVITY(M-MI
THICKHSSIMI
sB8.0
XBL 806-10135
L
55
COMPARSION OF CALCULATED AND MEASURED DATA
300.00
280.00
260.00
240.00
w
cn
a
I
a
220.00
200.00
-1
I-
a
180.00
6
N
-
160.00
I
Y
0
I
n
140.00
z
120.00
-I
100.00
a
-a
0
80.Q3
!LT
W
>
60.00
40.00
20.00
0.00
0.01
I .OO
0. I0
10.00
100.00
1000.00
FREQUENCY ( H Z )
SODA LAKE 0.6 KM
NW T2
CALCULATED DATA
MEASURED DATA
HR
HR
X
I
HZ
*
2
H Z -
- -
DATA VARIENCE ESTIMATE
LAYER
RESISTIVITY(0HM-MI
9.50t
.68*
THICKMSSIHI
.OO
20.00
.00
.I000E*llt
t
0.
0.
500.0
XBL 806-10136
56
r
COMPARSIOh OF CALCULATED AND MEASURED DATA
0.01
0. I0
10.00
I .OO
I 000.00
100.00
FREQUENCY ( H Z I
SODA LAKE 0.6 KM
NW T 2
MEASURED DATA
CALCULATED DATA
ELLIPTICITY
-
DATA VARIENCE ESTIMATE
ELLIPTICITY
LAYER
X
RESISTIVITY(0HM-MI THICKNESS(M1
I
3.502
.OO
20.00
2
.68*
.OO
.I000E+llt
t
0.
0.
500.0
XBL 806-10138
57
c3
r
1
COMPARSION
0.01
OF CALCULATED AND MEASURED DATA
0. I0
SODA L A K E 0.6 KM
I .OO
FREQUENCY
100.00
1000.OO
NW T 2
CALCULATED DATA
MEASURED DATA
T I L T ANGLE
TILT ANGLE
~
LAYER
X
I
2
DATA VARIENCE E S T I M A T E
10.00
(HZ)
RESISTIVITY(O'-b-M)
9.50t
.68*
THICKNESSIM)
.OO
20.00
.OO
.I000E+IIt
t
0.
0.
500.0
XBL 806-10137
58
1
AND MEASURED DATA
COMF'ARSION OF CALCULATED
IO.W
1-00
0 . I0
0.01
0.01
0 . I0
I .OO
l00.W
10.00
FREQUENCY ( H Z )
SODA LAKE I .8 KM
Nn T 2
LAYER
RES I ST IV 1TY t M - U I
CALCULATED DATA
MEASWED DATA
rn
H?
X
I
HZ
*
2
2.63*
3
50.00*
H z -
- -
DATA VARIENCE ESTIUATE
1000.00,
0.
.0I
0.
T H I C M S S I b4 1
188.3
t
e.
1875.
L
%.
.leeBE*ll*
e.
55.15
XBL 806-10142
59
COMPARSION OF CALCLiLATED
AND HEASURED DATA
388.88
200.88
260.88
248.88
W
22a.00
u)
a
a
I
288.88
-1
a
188.88
I-
5
-
160.00
I
0
148.88
?
a
120.88
4
100.00
2
I-
BB.00
N
LT
a
LT
W
>
60.00
40.88
20.00
0.00
0.01
I
1 1 1 1 1 1 1 1
I
1
1111111
0 . I0
1 I 1 I1111
I
1
1 l!11111
10.00
I .88
Iw0.W
100.00
FREQUENCY (HZ)
SODA LAKE I .8 KM
NW T2
CALCUATED DATA
CEASUKD DATA
Is
M
nz
m
-
- -
DATA VARlENCE ESTIMATE
LAYER
RESISTIVITYIOH(-U) THICKNSS(~I
X
I
lw0.88*
*
2
2.633.
3
5B.Wt
0.
-01
e.
188.3
L
1875.
.IBeBE*ll*
0.
96.
e.
55.15
XBL 806-10141
60
AND MEASURED DATA
COWARSION OF CALCULATED
>I-
L
E
SODA LAKE I .8 KM
NW T2
CALCU-ATED DATA
ELLIPTICITY
-
DATA VARlENCE ESTICUE
LAYER
W A S W E D DATA
ELLIPTICITY
X
I
RESISTIVITYIOHI-Ul THICKFESS(I0
I000.00*
2
2.63:
3
50.00*
0.
.0I
0.
100.3
*
1875.
: 96.
.leBBE+ll:
0.
0.
55.15
XBL 806-10139
61
r
c3
COMPARSION OF CALCULATED AMI MEASURED DATA
lW.88
00.88
68.00
w
-1
W
z
a
c
2
48.88
I-
28.88
0.00
8.81
8 . I0
18.88
I .88
FREQUENCY
SODA LAKE I .8 KM
Nn T2
CALCULATED DATA
T I L T ANGLE
DATA VARlplcE
l0W.BB
I88.88
[HZ)
EASUREO DATA
-
TILT ANGLE
ESTIMATE 55.15
LAMR
X
RES 1S T IV 1TY(W - M )
1
I0w.W:
2
2.63:
3
59.00:
e.
.@I
8.
THICKNESS( M t
188.3
:
8.
1875.
:
36.
.1888*ll*
e.
XBL 806-10140
h
62
COMPARSION OF CALCULATED AND MEASURED DATA
10.00
w
n
3
t;
-1
a
I:
a
-1
a
I
Z
.w
0
c!
i
Y
0
I
n
Z
a
-I
4
2
ILT
0. I0
w
>
0
w
N
I
A
a
I:
LT
0
Z
0.01
0.01
0. I0
I
.OO
10.00
100.00
FREQUENCY ( H Z )
SODA LAKE .72 KM
NW TI
LALCU-ATED DATA
WASURED DATA
m
HI?
X
I
12.llt
HZ
*
2
I.77i
HZ
DATA
VARIENCE
- ESTIMATE
LAYER
RESISTIVITY(OHM-M~ THICKFLSStMl
.OO
305.4
i
2.
.02
.IBBBE*llr
e.
15.23
XBL 806- 10148
63
COMPARSION OF CALCULATED AND MEASURED DATA
300.00
280.00
260.00
240.00
W
220.00
v)
a
a
I
200.00
180.00
160.00
140.00
n
z
120.00
-1
100.00
a
a
V
80.00
W
>
60.00
40.00
20.00
0.00
0.01
I .OB
0. I0
10.00
IB88.88
100.00
FREOUENCY ( H Z )
SODA LAKE .72 KM
NW TI
CALCULATED DATA
MEASURED DATA
H?
m
DATA
L
-
-
-
VARlENCE ESTIMATE
LAYER
RESISTIVITY(0t-M-MI
THICKFLSS(M1
*
HR
X
I
12.llt
.OO
385.4
HZ
*
2
I.77t
-02
.leea*ll* e.
2.
15.23
XBL 806-10147
64
COMPARSION OF CALCULATED AND MEASURED DATA
SODA LAKE .72
KM NW T I
MASURED DATA
CA-CVLATED DATA
ELLIPTICITY
-
ELLIPTICITY
LAYER
X
I
2
DATA
L
VARIENCE
ESTIMATE
RESISTIVITY(CIk94-MI
THICKF(ESS(M1
If
.BQ
385.4
I.77*
.02
.1888E*llf e.
12.1
f
2.
15.23
XBL 806-10150
65
r
COMPARSION OF CALCULATED AND MEASURED DATA
w
-1
(3
z
a
I-
-1
I-
0.0i
0 . I0
I .OO
10.00
100.00
1888.88
FREOUENCY ( H Z )
SODA LAKE .72 KM
NW TI
CALClllATED DATA
T I L T ANGLE
DATA VARIENCE
L
CLASURED DATA
ESTIMATE
T I L T ANGLE
LAYER
X
RESISTIVITY(CH4-MI
THICKNESS(M1
I
12.ll*
.00
385.4
2.
2
1.77,
.02
.ieeBE+ii*
e.
15.23
XBL 806-10149
66
COMPARSION OF CALCULATED AND MEASURED DATA
10.00
w
0
J
I-
&
0
I
-1
a
2
I&
0.I0
w
>
G
w
N
I
0.01
0.01
1-00
0. I0
10.00
100.00
FREQUENCY ( H Z I
SODA LAKE 2 . 0 KM N
W TI
:ALCUATED
DATA
EASURED DATA
rn
H z -
- -
DATA VARIENCE ESTIMATE
LAYER
RESISTIVITYIOH(-Hl
THICKFLSS(W1
HR
X
I
12.90*
.OO
232.3
HZ
*
2
I.66t
.0I
1236.
3
50.00t
0.
3
.IBBBE*II*
I.
35.
e.
45.89
XBL 806-10153
67
COMPARSION
OF CALCULATED AND MEASURED DATA
300.00
280. 00
260.00
240.00
8
220.00
a
I
a
200.00
-1
c"
180.00
N
160.00
5
I
p
4
a
2
0
t
LT
w
>
140.00
120.00
I00.00
80.60
68.00
40.00
20.00
0.00
0.01
0.10
I .OO
10.00
I0W.BB
100.00
FREQUENCY ( H Z I
SODA LAKE 2.0
CALCWATED DATA
CEASUKD DATA
Wt
H
t
X
I
Hz
*
2
I.&*
3
50.00:
&
7
DATA
L
KM M TI
-
- VARlENCE ESTIUATE
LAYER
RESISTIVITYICNU-U)
12.90*
THICKFESSIM)
.BB
232.3
.ell
1236.
0.
*
.leeBE*ll*
1.
35.
0.
45.89
XBL 806- 10245
68
r
COMPARSION OF CALCULATED AND MEASURED DATA
I .OO
0.80
0.60
0.40
0.20
-
>
c
V
I
0.00
-i
n
-1
-1
- .20
w
-.a
- .60
- .88
-1.00
0.01
0. I0
I .OO
100.00
10.00
l000.00
FREQUENCY ( H Z )
SODA
LAKE 2.0 KM NW TI
CALCWATED DATA
ELLIPTICITY
DATA
L
-
MEASURED DATA
ELLIPTICITY
LAYER
X
I
RESISTIVITY(OH4-M) THICKPLSS(M1
12.%*
2
1.661
3
S0.00*
.OO
.0I
0.
232.3
1236.
f
:
.leeBE*ll:
1.
35.
e.
VARIENCE ESTICUTE 45.89
XBL 806-10248
n
-- . . . . . .
69
COMPARSION OF CALCULATED AND MEASURED D A T A
100.00
88.00
68.00
40.00
20.00
1 1 ill
I
I 1 jij
0.00
0.01
0. I0
I .OO
10.00
l0ee.W
100.00
FREOUENCY ( H Z )
SODA
LAKE 2.0 KM Nw T I
CALCULATED DATA
E A S W DATA
T I L T ANGLE
T I L T ANGLE
DATA VARlENCE
L
~
ESTIMATE 45.89
LAYER
X
I
RESISTIVITY(OHI-C)
12.9B*
2
1.661
3
50.00*
MICKKSlM(,
-00
232.3
t
I.
.0I
1236.
f
35.
.leaeE*ll.
0.
0.
XBL 806-10246
70
r
1
AND
COWARSION OF CALCl!LATED
MEASURED DATA
10.88
w
0
I .OO
c
i
Y
0 . I0
W
>
0.01
0.01
0 . I0
I .OO
SODA LAKE
CALCULATED DATA
MEASURED DATA
rn
X
I
HZ
f
2
-
(HZ)
D-D 2.8 KM SE TI
Is
Hi!
188.88
10.00
FREQUENCY
- -
LAYER
3
DATA VARIENCE ESTIMATE
RESISTIVITY(OCbl-U)
16.19*
I.31*
S0.00t
THICKFLSS(M1
.W
371.8
.02
939.5
0.
*
.IBBBE+ll*
3.
24.
e.
45.64
XBL 806-10126
L
71
7
6
COMPARSION OF CALCULATED AND MEASURED DATA
388.00
280.00
260.00
240.00
220.00
200.00
180.00
160.00
140.00
120.00
100.00
80.m
60.00
40.00
20.00
0.00
0.01
0. I0
IO.OO
I .OO
FREOUENCY
100.00
1000.88
[HZ)
SODA LAKE D-D 2.8 KM SE TI
CALCVLATED DATA
MEASURED DATA
I+?
If?
X
HZ
*
H z -
- -
DATA VARIENCE ESTIMATE
LAYER
1
RESISTIVITY(DHW-M)
16.19*
2
I.31*
3
50.00t
THICKPLSS(M)
.OO
371.8
t
.02
939.5
t
0.
.IBBBE*ll*
3.
24.
0.
45.64
XBL 806-10125
.
72
r
1
COMPARSION OF C A L ~ L A T E D AND MEASURED DATA
I .OO
0.80
0.60
f
-t
0.40
0.20
0.00
- .20
-.40
- .60
- .80
- I .OO
B.01
0. I 0
I .ma
10.00
I000.W
188.00
FREOUENCY ( H Z )
SODA LAKE D-D 2.8 KM SE T I
CALClhATED DATA
ELLIPTICITY
-
DATA VARJENCE ESTIUATE
L
MASURED DATA
ELLIPTICITY
LAYER
X
RESISTIVITY(OH(-H) THICKFESS(M1
1
16.19*
.OO
371.8
2
1.31*
.02
939.5
3
50.00t
0.
3.
*
24.
.IEBBE*II*
e.
45.64
XBL 806-10124
r
73
COMPARSION OF CALCULATED AND MEASURED DATA
100.00
80.00
60.00
W
40.00
20.00
0.00
0.01
0. I0
I .OO
100.00
10.00
1000.00
FREQUENCY ( H Z )
SODA LAKE D-D 2.8 KM SE T I
CALCULATED DATA
TILT
ANGLE
DATA VARIENCE ESTIMATE
L
MEASURED DATA
___
TILT ANGLE
LAYER
X
I
RESISTIVITY(OHM-MI
16.19*
2
I.31*
3
50.00i
THICKFLSSIMI
.OO
371.8
*
3.
.02
939.5
i
24.
0.
.I000E*ll*
0.
45.64
XBL 806-10123
74
1
COMPARSION OF CALCULATED AND EASURED DATA
w
c3
3
I .00
LT
0
I
2
4
0. I0
n
w
N
0.01
0.01
SODA
100.00
10.00
1888.88
(HZ)
LAKE E-E 1.3 KM SW T2
CALCCllATED DATA
EASURED DATA
H?
H7
X
I
II.30*
.OO
204.0
HZ
*
2
I.80*
.BI
.188BE*ll*
f f z -
- -
DATA VARIENCE ESTIMATE
L
I .OO
FREQUENCY
0. I0
LAYER
RESISTIVITY(OCb(-M)
THICKKSSIMI
*
I.
e.
52.81
XBL 806-10134
75
r
6d
-1
COMPARSION OF CALCULATED
AM) MEASURED DATA
388.00
280.00
260.00
240.00
W
cn
220.00
2
200.00
a
-1
a
188.00
I-
Z
0
N
160.00
LT
0
I
140.00
4
a
120.00
-1
100.00
4
V
I-
80.m
LT
w
>
60.00
40.00
20.00
0.00
0.01
I .OO
10.00
FREOUENCY (HZ)
0. I0
100.00
1000.00
SODA LAKE E-E 1.3 KM SW T2
CALCULATED DATA
MZASIRED DATA
HR
H7
X
I
HZ
*
2
H Z -
- -
DATA VARIENCE ESTIMATE
L
LAYER
RESISTIVITY(OH(-l4I
11.30:
I.E0*
THICKt€SS(Ml
*
.OO
204.0
.01
.leBBE*lI*
I.
0.
52.81
XBL 806-10133
76
COMPARSION OF CALCULATED AND MEASURED DATA
0.01
0. I0
I
.OO
1888.88
100.88
10.00
FREQUENCY (HZ)
SODA LAKE E-E 1.3 KM SW T 2
CALCULATED DATA
ELLIPTICITY
-
DATA VARIENCE ESTIMATE
L
MASURED DATA
ELLIPTICITY
LAYER
X
RESISTIVITY(0l-M-U)
THICKFESS(U1
*
I
II.30*
-00
204.0
2
I.80*
.0I
.IB88E+ll*
1.
e.
52.81
XBL 806-10131
77
COMPAFSION
OF CALCULATED AND MEASURED DATA
1w.w-
8B.W-
68.86-
28.66-
0.m0.01
0 . I0
I .BB
18.88
Iwe.88
lBB.66
FREQUENCY ( H Z )
SODA LAKE E-E 1.3 KM SW T2
CALCUATED DATA
T I L T ANGLE
-
DATA VARIENCE ESTIMATE
L
LAYER
CEASLRED DATA
TILT ANGLE
X
RESISTIVITY(OH(-U)
MICKPESSIM)
I
II.3B*
.BB
284.8
2
I.W*
.@I
.IBBBE*ll*
f
I.
e.
52.81
XBL 806-10132
78
COMPARSION OF CALCULATED AND MEASURED DATA
10.00
w
n
3
I-
-I
Q:
I .OO
z
0
N
I
lx
0
I
0 . I0
i
Y
w
>
0
0.01
0.01
I .00
0. I0
10.00
100.00
FREQUENCY (HZ)
SODA LAKE E-E 2.8 KM
CALCULATED DATA
MEASURED DATA
t
s
HR
X
I
*=*******
.OO
80.63
i
0.
HZ
*
2
I.32*
.02
474.6
f
6.
3
50.00*
HZ
-
-
-
DATA VARIENCE ESTIUATE
L
NE T2
LAYER
RESISTIViTY(0M-MI
0.
THICKNESS(WI
.1000E+IIt
0.
7464.
XBL 806-10107
79
COMPARSION OF CALCULATED AND MEASURED DATA
388.00
280.00
260.00
240.00
220.00
a
a
I
200.00
-1
2
180.00
z
0
E
160.00
e
CK
140.00
n
z
a
120.00
2
100.00
t!
c
lY
w
80.m
>
60.00
40.00
20.00
0.00
0.01
I .OO
0.10
100.00
10.00
18BB.00
FREOUENCY (HZI
SODA LAKE
E-E 2.8 KM NE T2
CALCULATED DATA
KASURED DATA
HI?
l-m
X
I
HZ
*
2
I.32*
3
S0.00t
H z -
- -
DATA VARlENCE ESTIMATE
L
LAYER
RESISTIVITY(W-Ml
****-****
MICKNESS(M1
.00
80.63
t
0.
.a2
474.6
t
6.
0.
.188BE*llt
e.
7464.
I
XBL 806-10108
80
COMPARSION OF CALCULATED AND MEASURED DATA
I .OO
0.80
0.60
0.40
0.20
0.00
- .20
-.40
- .60
- -80
' j I
I
I
1
1
1
-1.00
0.01
0. I0
I .QB
10.00
FREQUENCY ( H Z I
I i ' j j i
I
1
!
Ill&
I !I !I II 1\ /1 \1
!
IQB.OO
1000.00
SODA LAKE E-E 2.8 KM NE T 2
CALCULATED DATA
ELLIPTICITY
DATA VARIENCE ESTIMATE
L
MEASURED DATA
-
ELLIPTICITY
LAYER
X
RESISTIVITY(M-M) THICKlgSS(M)
I
=**=*****
.OO
80.63
f
0.
2
I.32*
.02
474.6
*
6.
3
50.00t
.IBBBE*ll*
e.
0.
7464.
XBL 806-10110
r
81
COMPARSION OF CALCULATED AND MEASURED DATA
100.00
10.00
FREQUENC','
SODA LAKE E-E 2.8 KM
CALCULATED DATA
T I L T ANGLE
DATA VARIENCE ESTIMATE
L
T I L T ANGLE
7464.
10W.00
HZ 1
NE T2
MEASURED DATA
-
(
LA$FR RESISTIVITYIM-M)
X
i
-*-******
2
I.32*
3
50.00t
THICl@i3SSlMI
.00
80.63
t
0.
.a2
474.6
t
6.
0.
.1000E'llt
0.
XBL 806-10109
82
r
COMPARSION OF CALCULATED AND MEASURED DATA
n
z
a
_I
a
0
+
.
tW
>
O
W
N
0.01
0.10
I .OO
10.00
100.ee
FREOUENCY IHZ)
SODA LAKE E-E 2 . 3 KM
SW T2
LAYER
CALCULATED DATA
MEASURED DATA
HR
HR
X
1
HZ
f
2
3
HZ
-
-
-
DATA VARIENCE ESTIMATE
RESISTIViTY(OHM-MI
8.70t
THICKNESSIMI
.OO
189.0
t
2.
2.20t
.01
1119.
f
52.
52.00.
83.67
. I000E. I I
i
0.
105.1
XBL 806-10146
,
COMPARSION OF CALCULATED AND MEASURED DATA
w
cn
Q
I
a
-I
a
kz
-
0
N
LT
0
I
n
Z
a
-I
-a
0
kLT
w
>
SODA LAKE E - E 2.3 KM SW T2
CALCULATED DATA
MEASURED DATA
HR
HZ
HR
X
HZ
*
-
-
_
DATA VARlENCE ESTIMATE
L
LAYER
1
RESISTIViTYlOHM-MI
8.70:
THICKNESSIMI
.0Q
189.0
t
2.
1119.
f
52.
. I000E* I I *
0.
2
2.20t
.O1
3
52.00*
83.67
105.1
XBL 806-10143
84
COMPARS I OK 3F CALCGLATEL) AP'3 MEASURED DATA
SODA L A K E
E-E 2.3 KM
SW
T2
CALCULATED DATA
MEASURED DATA
ELLIPTICITY
ELLIPTICITY
~
LAYER
X
I
2
3
DATA VARIENCE ESTIMATE
RESISTIViTY(OHM-Ml THIiKNESS(M1
8.70t
.OO
189.0
t
2.
2.20t
.01
1119.
t
52.
. I000E*I I
t
52.00* 83.67
0.
105.1
XBL 806-10145
85
r
COMPARSION OF CALCULATED AND MEASURED DATA
.
.
.
.
. . ..
.
.
,
.
.
.
,
.
.
. . . ..
.
.
.
.
. ..
..
..
w
-1
(3
z
a
.
. . . . . ..
.
.
.
. .
+-
...
-1
c
~
0.01
0. I 0
10.00
I .OO
. . . ...,
. . .. .
. -
. . . ...
.
. . .-
.
100.00
.. .
1000.00
FREQUENCY ( H Z I
SODA LAKE E - E 2.3
SW
T2
CALCULATED DATA
MEASURED DATA
TILT ANGLE
TILT ANGLE
~
DATA VARIENCE ESTIMATE
L
KM
LAYER
X
RESISTIViTY(0HM-MI THICKNESS(M1
I
8.70*
.OO
189.0
i
2.
2
2.20i
.01
1119.
i
52.
3
52.00t
83.67
.I000E*II* 0 .
105.1
XBL 806-10144
86
r
1
COMPARSION OF CALCULATED AND MEASURED DATA
10.00
I .OB
-1
4
2
c
0 . I0
Ir
W
>
0.01
0.
SODA LAKE F-F 0.6 KM SE T2
CALCULATED DATA
MEASURED DATA
HR
HR
X
I
2.I0t
.OO
58.00
HZ
*
2
I.I0t
.0I
. I B B B E - I I ~e.
HZ
-
-
-
DATA VARIENCE ESTIHATE
L
LAYER
RESISTIVITYIOHM-MI THICKNESSIUI
t
I.
578.1
XBL 806-10111
a7
r
1
cs
COMPARSION
OF CALCULATED AND MEASURED DATA
388.00
280.00
260.00
240.00
220.00
200.00
180.00
160.00
[r
0
140.00
I
Q
z
120.00
-I
100.00
4
a
80.M
60.00
40.00
20.00
0.00
0.01
I .OO
10.00
FREQUENCY ( H Z )
0. I0
I00.M
1000.00
SODA LAKE F-F 0.6 KM SE T2
CALCULATED DATA
MEASURED DATA
m
HR
X
I
2.I0*
.OO
58.00
HZ
*
2
:.10*
.0I
.1888~+11i
H Z DATA VARIENCE
-
-
ESTIMATE
LAYER
RESISTIVITY(OHW-M) THICKMSSIMI
i
I.
e.
578.1
XBL 806-10118
L
88
r
I
COMF'ARSION OF CALCULATED
AND
MEASURED DATA
-1
-1
w
SODA LAKE F-F 0 . 6 KM SE T2
CALCULATED DATA
MEASURED DATA
ELLIPTICITY
ELLIPTICITY
~
DATA VARIENCE ESTIMATE
L
LAYER
X
RESISTIVITYIOHH-HI
THICKMSSIW)
I
2.I0t
.OO
58.00
2
I.IQt
.0I
.1000E'llt
*
I.
e.
578.1
XBL 806-10116
r
89
COWARSION OF CALCULATED AND MEASURED DATA
0.01
0. I0
I .OO
1000.00
100.00
10.00
FREQUENCY ( H Z I
SODA LAKE F - F 0.6 K M SE T2
CALCULATED DATA
TILT
ANGLE
DATA VARIENCE ESTIMATE
L
MEASURED DATA
T I L T ANGLE
~
LAYER
X
RESISTIVITY(Old4-MI
THICWSS(M)
I
2.10t
.OO
58.00
2
I.I0*
.OI
.I000E+lIt
f
I.
0.
578.1
XBL 806-10117
90
COMPARSION OF CALCULATED
AND
MEASURED DATA
10.00
w
n
3
t-
I
-I
a
3
-1
I .OO
4
z
0
-
N
LT
0
I
n
f
-1
4
V
I
ILT
0. I0
W
>
0
W
N
I
-1
4
r
LT
0
Z
0.01
0.01
I .OO
10.00
FREOUENCY ( H Z )
0. I0
1000.m
100.00
SODA L A K E F-F 2.1 KM SE T 2
CALCULATED DATA
MEASURED DATA
HR
H Z -
- -
DATA VARIENCE ESTIMATE
L
LAYER
RESISTIVITY(OW-WI
THICKNESS(W)
m
X
I
3.00*
.m
82.29
HZ
*
2
I.20*
.0I
460.0
3
S0.00t
19.11
2.
f
.IBBBE*llf
9.
e.
448.1
XBL 806-10106
91
1
COMPARSION OF CALCULATED AND MEASURED DATA
300.00
280.00
260.00
240.00
w
220.00
cn
a
I
a
200.00
-1
4
180.00
c
z
0
c!
160.00
IY
0
140.00
I
n
z
a
120.00
-1
a
u
100.00
IIY
80.Q3
w
>
60.00
40.00
20.00
0.00
0.01
SODA
HR
Z
-
DATA VARIENCE
L
100.00
10.00
IB88.00
(HZI
LAKE F-F 2.1 KM SE T2
CALCULATED DATA
H
I .OO
FREOUENCY
0. I0
- -
E A S U R E D DATA
LAYER
RESISTIVITY(M-Ml
THICMSSIMI
I-R
X
I
3.W*
-00
82.20
*
2.
HZ
*
2
I.20*
.0I
460.0
t
9.
3
50.00t
19.11
.IBBBE+IIt
e.
ESTIMATE 448.1
XBL 806-10105
r
92
COMPARSION OF CALCULATED AND MEASURED DATA
I .OO
0.80
0.60
0.40
0.20
0.00
- .20
- -40
-
.60
- .80
- I .OO
0.01
0. I0
I .OO
FREQUENCY
10.00
100.00
1000.88
(HZ)
SODA LAKE F - F 2.1 KM SE T 2
CALCULATED DATA
ELLIPTICITY
-
DATA VARIENCE ESTIMATE
L
MEASURED DATA
ELLIPTICITY
LAYER
X
RESISTIVITY(OHM-Hl THICKMSS(H1
1
3.00*
-00
82.20
*
2.
2
I.20*
.01
460.0
*
9.
3
50.00*
13.11
.I000E*II* 0.
448.1
XBL 806-10103
r
93
COMI'ARSION
OF CALCULATED AND MEASURED DATA
100.00
80.00
6U.00
40.00
20.00
0.00
0.01
0 . I0
I .OO
100.00
10.00
FREOIUENCY
(
1000.00
HZ 1
SODA LAKE F-F 2.1 KM SE T 2
CALCWATED DATA
T I L T ANGLE
-
DATA VARIENCE ESTIMATE
L
MASURED DATA
T I L T ANGLE
LAYER
X
RESISTIVITY(OHM-U)
THICKNSSIU)
I
3.00*
.BB
82.20
:
2.
2
1.20:
.0I
460.0
t
9.
3
50.00:
19.11
.IBBBE'II*
e.
448.1
XBL 806-10104