An Atlas of Matrices Examples suitable for working by hand Dave Bayer c 2006, 2007 by Dave Bayer All rights reserved Projective Press New York, NY USA http://projectivepress.com/LinearAlgebra Dave Bayer Department of Mathematics Barnard College Columbia University New York, New York Draft of December 25, 2006 Contents Contents i Preface 1 iii Functions of matrices 1.1 2 × 2 matrices with distinct eigenvalues . 1.2 2 × 2 singular matrices . . . . . . . . . . . 1.3 2 × 2 symmetric matrices . . . . . . . . . . 1.4 2 × 2 matrices with a repeated eigenvalue 1.5 3 × 3 matrices with distinct eigenvalues . 1.6 3 × 3 singular matrices . . . . . . . . . . . 1.7 3 × 3 symmetric matrices . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . 12 . 23 . 34 . 45 . 57 . 69 Preface This is an early draft of examples in Linear Algebra, to accompany the text Linear Algebra. I am making these drafts available in incomplete form for the benefit of my linear algebra students at Barnard College and Columbia University. This is a draft of December 25, 2006. The most recent drafts of these texts may be downloaded from: http://projectivepress.com/LinearAlgebra iii Chapter 1 Functions of matrices 1.1 2 × 2 matrices with distinct eigenvalues For each matrix below, the second form can be used to compute functions of matrices, such as the matrix exponential. For example, if 1 2 −1 2 −1 0 −3 2 A = = 3 2 1 3 0 4 1 1 /5 then A = An = e At = 3 −2 −1 −3 3 3 −2 (−1)n −3 3 3 −2 e−t −3 3 /5 /5 /5 2 3 + 4n 2 3 + e4t 2 3 + 4 2 3 /5 2 3 /5 2 3 /5 The following 2 × 2 matrices have nonzero integer entries, are nonsingular, have distinct integer eigenvalues, and are not symmetric: 1 1 −1 1 −2 0 −1 1 = 3 −1 3 1 0 2 3 1 /4 1 −1 3 1 = −2 + 2 −3 3 /4 3 1 /4 1 3 2 2 = = 2 2 1 3 = = −1 1 0 −3 2 4 1 1 /5 3 −2 2 2 −1 + 4 −3 2 /5 3 3 /5 −1 1 2 3 −1 0 1 0 0 −2 1 4 1 1 /3 2 −1 1 1 1 + 4 −2 1 /3 2 2 /3 1 2 2 Functions of matrices 2 3 2 1 = = −1 3 1 1 = = 3 2 1 2 = = −1 2 3 −2 = = 3 2 3 −2 = = −2 −2 2 3 = = −2 2 3 −1 = = −2 3 2 3 = = −2 −1 3 2 = = −2 3 0 −1 1 4 3 2 /5 3 2 2 −2 + 4 −1 3 2 /5 −3 3 /5 −1 1 −1 2 −2 3 −1 3 −2 −1 1 2 −1 1 −2 1 −1 −1 1 3 1 1 −1 0 −2 0 1 0 −4 0 −3 0 −1 0 −4 0 −3 0 −1 0 0 −3 1 2 1 1 /4 3 −1 1 1 −2 + 2 −3 1 /4 3 3 /4 1 3 0 −1 1 4 2 1 /3 1 −1 2 1 1 + 4 −2 2 /3 2 1 /3 1 1 0 −1 1 1 3 2 /5 2 −2 3 2 −4 + 1 −3 3 /5 3 2 /5 1 1 0 −1 2 4 3 1 /7 1 −2 6 2 −3 + 4 −3 6 /7 3 1 /7 2 1 0 −2 −1 2 1 2 /3 4 2 −1 −2 −1 + 2 −2 −1 /3 2 4 /3 0 −3 2 1 1 1 /5 3 −2 2 2 −4 + 1 −3 2 /5 3 3 /5 2 3 0 −3 1 4 1 2 /7 6 −2 1 2 −3 + 4 3 6 /7 −3 1 /7 1 3 0 −3 −1 1 1 1 /2 3 1 −1 −1 −1 + 1 −3 −1 /2 3 3 /2 1.1. 2 × 2 matrices with distinct eigenvalues 1 −2 1 4 = = 1 −1 2 4 = = 1 4 1 1 = = 1 1 4 −2 = = 1 2 4 −1 = = 1 4 2 3 = = 1 4 3 2 = = 2 3 1 4 = = 2 1 4 −1 = = 3 −2 −1 1 1 2 0 −1 −1 1 2 2 0 −1 2 −1 0 −1 4 −3 0 −1 2 −3 0 −1 1 −1 0 −1 1 −2 0 −1 1 1 0 −1 4 −2 0 −1 −1 1 2 2 2 −1 −2 2 + 3 −1 −1 1 2 0 3 −2 −1 1 1 2 1 −1 −1 2 + 3 −2 −1 2 2 0 3 0 −2 1 3 2 1 /4 2 −1 2 1 −1 + 3 −4 2 /4 4 2 /4 1 2 0 −1 1 2 4 1 /5 1 −1 4 1 −3 + 2 −4 4 /5 4 1 /5 1 1 0 −1 1 3 2 1 /3 1 −1 2 1 −3 + 3 −2 2 /3 2 1 /3 1 1 0 −2 1 5 1 1 /3 2 −1 1 1 −1 + 5 −2 1 /3 2 2 /3 1 2 0 −4 3 5 1 1 /7 4 −3 3 3 −2 + 5 −4 3 /7 4 4 /7 3 4 0 −3 1 5 1 1 /4 3 −1 1 1 1 + 5 3 3 /4 −3 1 /4 1 3 0 −1 1 3 4 1 /5 1 −1 4 1 −2 + 3 −4 4 /5 4 1 /5 1 1 4 Functions of matrices 2 4 3 1 = = 2 4 3 3 = = 2 3 4 −2 = = −1 3 2 4 = = −1 −2 3 4 = = −1 4 1 2 = = −1 1 4 −1 = = −1 4 2 1 = = −1 4 3 3 = = −3 4 −2 0 0 −1 1 5 4 3 /7 4 3 3 −3 + 5 −2 4 3 /7 −4 4 /7 −1 1 −1 0 −1 2 −4 0 −2 1 1 3 −2 0 −1 −2 1 3 1 0 −1 1 −2 0 −1 2 −3 0 −1 1 −3 0 −3 2 −3 0 1 1 0 −4 3 6 1 1 /7 4 −3 3 3 −1 + 6 −4 3 /7 4 4 /7 3 4 0 −2 3 4 2 1 /8 2 −3 6 3 −4 + 4 −4 6 /8 4 2 /8 3 2 0 −3 1 5 1 2 /7 6 −2 1 2 −2 + 5 −3 1 /7 3 6 /7 −3 −2 1 1 3 2 −2 −2 1 + 2 −3 −2 3 3 0 2 0 −4 1 3 1 1 /5 4 −1 1 1 −2 + 3 −4 1 /5 4 4 /5 1 4 0 −2 1 1 2 1 /4 2 −1 2 1 −3 + 1 −4 2 /4 4 2 /4 1 2 0 −2 1 3 1 1 /3 2 −1 1 1 −3 + 3 2 2 /3 −2 1 /3 1 2 0 −2 1 5 2 3 /8 6 −3 2 3 −3 + 5 −4 2 /8 4 6 /8 1 2 1.1. 2 × 2 matrices with distinct eigenvalues −1 3 4 −2 = = 3 2 1 4 = = 3 3 2 4 = = 3 4 1 3 = = 3 4 2 1 = = 3 4 3 2 = = 3 3 4 −1 = = −2 4 1 1 = = −2 −1 4 3 = = 5 −3 4 0 −1 1 2 4 3 /7 4 3 3 −3 + 2 −5 4 3 /7 −4 4 /7 −1 1 −1 1 −1 2 −1 2 −3 4 −1 2 −1 1 −1 −1 1 4 1 1 −5 0 2 0 1 0 1 0 −1 0 −1 0 −3 0 −3 0 −1 0 0 −2 1 5 1 1 /3 2 −1 1 1 2 + 5 −2 1 /3 2 2 /3 1 2 0 −3 2 6 1 1 /5 3 −2 2 2 1 + 6 −3 2 /5 3 3 /5 2 3 0 −2 1 5 2 1 /4 2 −1 2 1 1 + 5 −4 2 /4 4 2 /4 1 2 0 −1 1 5 2 1 /3 1 −1 2 1 −1 + 5 −2 2 /3 2 1 /3 1 1 0 −1 1 6 4 3 /7 3 −3 4 3 −1 + 6 −4 4 /7 4 3 /7 1 1 0 −2 3 5 2 1 /8 2 −3 6 3 −3 + 5 −4 6 /8 4 2 /8 3 2 0 −4 1 2 1 1 /5 4 −1 1 1 −3 + 2 4 4 /5 −4 1 /5 1 4 0 −4 −1 2 1 1 /3 4 1 −1 −1 −1 + 2 −4 −1 /3 4 4 /3 6 Functions of matrices −2 4 3 2 = = −2 3 4 −1 = = 4 −2 1 1 4 2 1 3 4 −1 2 1 = 4 3 1 2 4 2 3 −1 = = = 4 3 2 3 = = 4 4 1 4 −1 1 1 1 −1 −1 −1 2 1 2 −1 −2 −1 3 −1 3 −2 3 −1 2 2 = = −4 0 3 4 −5 0 2 0 2 0 2 0 1 0 −2 0 1 0 2 0 −1 2 1 −1 2 2 −2 + 3 2 1 −1 2 1 0 3 0 −1 1 5 2 1 /3 1 −1 2 1 2 + 5 −2 2 /3 2 1 /3 = = 1 2 0 −4 3 2 1 1 /7 4 −3 3 3 −5 + 2 −4 3 /7 4 4 /7 = −3 2 = = 0 −2 1 4 2 3 /8 2 3 6 −3 + 4 −4 4 6 /8 −4 2 /8 = 2 1 1 −1 1 2 −1 1 2 −1 + 3 2 2 −1 1 1 0 3 0 −1 1 5 3 1 /4 1 −1 3 1 1 + 5 −3 3 /4 3 1 /4 1 1 0 −1 2 5 3 1 /7 1 −2 6 2 −2 + 5 −3 6 /7 3 1 /7 2 1 0 −1 1 6 3 2 /5 2 −2 3 2 1 + 6 3 2 /5 −3 3 /5 1 1 0 −2 1 6 2 1 /4 2 −1 2 1 2 + 6 −4 2 /4 4 2 /4 1 2 1.1. 2 × 2 matrices with distinct eigenvalues 1 3 4 −3 = = 2 2 3 −3 = = −1 −3 2 4 = = −1 2 4 −3 = = −2 −3 1 2 = = −2 1 2 −3 −2 3 4 −3 4 2 4 −3 −3 1 2 −2 −5 0 0 −2 3 3 2 1 /8 6 3 2 −3 + 3 −5 4 2 /8 −4 6 /8 −1 3 2 1 −4 0 −3 −1 2 1 1 0 −1 2 −5 0 −3 −1 1 1 −1 0 −1 2 −3 4 −1 4 = = −1 1 3 2 0 −1 2 3 3 1 /7 1 −2 6 2 −4 + 3 −3 6 /7 3 1 /7 −1 −1 2 3 3 3 −2 −3 1 + 2 −2 −2 2 3 0 2 0 −1 1 1 2 1 /3 1 −1 2 1 −5 + 1 −2 2 /3 2 1 /3 1 1 0 −1 −1 1 1 3 /2 3 3 −1 −3 −1 + 1 −1 −1 /2 1 3 /2 −4 0 −1 1 0 −1 2 1 /3 1 −1 2 1 = −4 − 1 −2 2 /3 2 1 /3 = −1 2 = = 7 1 1 0 −1 1 1 4 3 /7 3 −3 4 3 −6 + 1 −4 4 /7 4 3 /7 1 1 −6 0 −4 0 0 −1 2 5 4 1 /9 1 −2 8 2 −4 + 5 4 1 /9 −4 8 /9 2 1 −4 0 −2 1 = 0 −1 1 1 /3 2 −1 1 1 = −4 − 1 −2 1 /3 2 2 /3 1 2 8 Functions of matrices −3 −2 2 2 = = −3 −3 2 4 = = −3 3 2 2 = = −3 −2 3 4 = = −3 1 4 −3 −3 2 4 −1 −3 4 2 4 = = = −3 −1 4 2 = = −3 4 3 1 −2 −1 1 2 −3 −1 1 2 −2 1 −2 −1 1 3 −1 2 −1 1 −2 1 −1 −1 1 4 −3 2 −2 0 0 −2 −1 1 1 2 /3 −1 −2 4 2 + 1 −2 2 4 /3 −2 −1 /3 −2 0 −4 0 −2 0 0 −2 −1 3 1 3 /5 6 3 −1 −3 −2 + 3 −2 −1 /5 2 6 /5 0 −3 1 3 1 2 /7 6 −2 1 2 −4 + 3 −3 1 /7 3 6 /7 1 3 0 −3 −1 3 1 2 /5 6 2 −1 −2 −2 + 3 −3 −1 /5 3 6 /5 −5 0 −2 1 = 0 −1 2 1 /4 2 −1 2 1 = −5 − 1 −4 2 /4 4 2 /4 = = = 1 2 0 −2 1 1 1 1 /3 2 −1 1 1 −5 + 1 −2 1 /3 2 2 /3 1 2 −5 0 −4 0 −2 0 −5 0 0 −4 1 5 1 2 /9 8 −2 1 2 −4 + 5 −4 1 /9 4 8 /9 1 4 0 −4 −1 1 1 1 /3 4 1 −1 −1 −2 + 1 4 4 /3 −4 −1 /3 0 −2 1 3 2 3 /8 6 −3 2 3 −5 + 3 −4 2 /8 4 6 /8 1 2 1.1. 2 × 2 matrices with distinct eigenvalues −3 3 4 −2 = = −3 −2 4 3 1 −3 1 5 1 −1 3 5 = = = 1 4 3 5 = = 1 1 5 −3 = = 1 2 5 −2 = = 1 5 2 4 = = 1 3 5 −1 −1 1 3 4 −6 0 0 −4 3 1 1 1 /7 3 3 4 −3 + 1 −6 4 4 /7 −4 3 /7 −1 −1 1 2 −1 0 −3 −1 1 1 2 0 −1 −1 1 3 2 0 −3 2 −1 0 −1 5 −4 0 −2 5 −4 0 −1 1 −1 0 −3 5 −4 0 −2 −1 = 1 1 2 1 −1 −1 = −1 + 1 −2 −1 2 2 = 9 = = 0 1 0 −1 −1 4 1 3 /2 3 3 −1 −3 2 + 4 −1 −1 /2 1 3 /2 0 −3 −1 4 1 1 /2 3 1 −1 −1 2 + 4 −3 −1 /2 3 3 /2 0 −2 1 7 2 3 /8 6 −3 2 3 −1 + 7 −4 2 /8 4 6 /8 1 2 0 −1 1 2 5 1 /6 1 −1 5 1 −4 + 2 −5 5 /6 5 1 /6 1 1 0 −1 1 3 5 2 /7 2 −2 5 2 −4 + 3 −5 5 /7 5 2 /7 1 1 0 −5 2 6 1 1 /7 5 −2 2 2 −1 + 6 5 5 /7 −5 2 /7 2 5 0 −1 1 4 5 3 /8 3 −3 5 3 −4 + 4 −5 5 /8 5 3 /8 1 1 10 Functions of matrices 1 5 3 3 = = 1 5 4 2 = = 2 −2 1 5 = = 2 −1 2 5 = = 2 4 1 5 = = 2 1 5 −2 = = 2 2 5 −1 = = 2 5 3 4 = = 2 5 4 1 = = −1 1 −2 0 0 −5 3 6 1 1 /8 3 3 5 −3 + 6 −2 5 5 /8 −5 3 /8 −1 1 4 5 −3 0 −2 −1 1 1 3 0 −1 −1 1 2 3 0 −1 1 1 0 −1 5 −3 0 −2 5 −3 0 −1 1 −1 0 −4 5 −3 0 3 5 0 −5 4 6 1 1 /9 5 −4 4 4 −3 + 6 −5 4 /9 5 5 /9 −1 −1 1 2 2 2 −1 −2 3 + 4 −1 −1 1 2 0 4 −2 −1 1 1 2 1 −1 −1 3 + 4 −2 −1 2 2 0 4 0 −4 1 6 1 1 /5 4 −1 1 1 1 + 6 −4 1 /5 4 4 /5 1 4 0 −1 1 3 5 1 /6 1 −1 5 1 −3 + 3 −5 5 /6 5 1 /6 1 1 0 −1 1 4 5 2 /7 2 −2 5 2 −3 + 4 −5 5 /7 5 2 /7 1 1 0 −5 3 7 1 1 /8 5 −3 3 3 −1 + 7 5 5 /8 −5 3 /8 3 5 0 −1 1 6 5 4 /9 4 −4 5 4 −3 + 6 −5 5 /9 5 4 /9 1 1 1.1. 2 × 2 matrices with distinct eigenvalues 2 5 4 3 = = −1 −2 4 5 = = −1 5 1 3 = = −1 5 2 2 = = −1 5 3 1 = = −1 3 5 −3 = = −1 4 5 −2 = = 11 −1 1 4 5 −2 0 0 −5 4 7 1 1 /9 4 4 5 −4 + 7 −2 5 5 /9 −5 4 /9 −1 −1 1 2 1 0 −1 1 −2 0 −1 1 −3 0 −1 1 −4 0 −3 5 −6 0 −4 5 −6 0 −2 −1 1 1 2 1 −1 −1 1 + 3 −2 −1 2 2 0 3 0 −5 1 4 1 1 /6 5 −1 1 1 −2 + 4 −5 1 /6 5 5 /6 1 5 0 −5 2 4 1 1 /7 5 −2 2 2 −3 + 4 −5 2 /7 5 5 /7 2 5 0 −5 3 4 1 1 /8 5 −3 3 3 −4 + 4 −5 3 /8 5 5 /8 3 5 0 −1 1 2 5 3 /8 3 −3 5 3 −6 + 2 −5 5 /8 5 3 /8 1 1 0 −1 1 3 5 4 /9 4 −4 5 4 −6 + 3 −5 5 /9 5 4 /9 1 1 12 1.2 Functions of matrices 2 × 2 singular matrices For each matrix below, the second form can be used to compute functions of matrices, such as the matrix exponential. For example, if 2 1 −1 1 0 0 −1 1 A = = 2 1 2 1 0 3 2 1 /3 then A = An = e At = 1 −1 2 0 + 3 −2 2 /3 2 1 −1 2 0n + 3n −2 2 /3 2 1 −1 2 e0t + e3t −2 2 /3 2 1 1 /3 1 1 /3 1 1 /3 The following 2 × 2 matrices have nonzero integer entries, are singular, have distinct integer eigenvalues, and are not symmetric: 1 1 −1 1 0 0 −2 1 = 2 2 1 2 0 3 1 1 /3 2 −1 1 1 = 0 + 3 −2 1 /3 2 2 /3 2 2 1 1 = = −1 −1 2 2 = = 1 3 1 3 = = 2 3 2 3 = = −1 2 1 1 0 0 −1 −1 1 2 0 0 −1 1 0 0 −1 1 0 0 0 −1 1 3 2 1 /3 1 −1 2 1 0 + 3 −2 2 /3 2 1 /3 −2 −1 1 1 2 1 −1 −1 0 + 1 −2 −1 2 2 0 1 0 −3 1 4 1 1 /4 3 −1 1 1 0 + 4 −3 1 /4 3 3 /4 1 3 0 −3 2 5 1 1 /5 3 −2 2 2 0 + 5 −3 2 /5 3 3 /5 2 3 1.2. 2 × 2 singular matrices −1 −1 3 3 13 = = 3 3 1 1 = = 3 3 2 2 = = −1 −2 1 2 = = −1 1 2 −2 = = −2 −2 1 1 −2 1 2 −1 −1 −1 1 3 0 0 0 −3 −1 2 1 1 /2 −1 −1 3 1 + 2 0 3 3 /2 −3 −1 /2 −1 3 0 0 −2 3 1 1 0 0 −2 −1 1 1 0 0 −1 2 1 1 −3 0 −2 −1 1 1 −1 0 −1 1 1 2 −3 0 −1 −1 1 2 −1 0 −1 −2 1 3 0 0 0 −1 1 4 3 1 /4 1 −1 3 1 0 + 4 −3 3 /4 3 1 /4 −2 −2 3 3 −1 −1 1 2 2 2 −1 −2 0 + 1 −1 −1 1 2 0 1 0 0 −2 −1 1 1 2 1 −1 −1 = −1 + 0 −2 −1 2 2 = 0 −2 1 0 1 1 /3 2 −1 1 1 −3 + 0 −2 1 /3 2 2 /3 = = 0 −1 1 0 2 1 /3 1 −1 2 1 −3 + 0 −2 2 /3 2 1 /3 −1 −1 1 2 2 2 −1 −2 = −1 + 0 −1 −1 1 2 = −2 −1 2 1 1 1 0 −1 1 5 3 2 /5 2 −2 3 2 0 + 5 −3 3 /5 3 2 /5 = = 0 0 −3 −2 1 1 3 2 −2 −2 0 + 1 −3 −2 3 3 0 1 14 Functions of matrices 1 4 1 4 = = 2 4 1 2 = = 2 4 2 4 = = −1 −2 2 4 = = −1 −1 4 4 = = 3 4 3 4 = = −2 1 4 −2 = = −2 −2 4 4 = = 4 4 1 1 = = −1 1 0 0 0 −4 1 5 1 1 /5 1 1 4 −1 + 5 0 4 4 /5 −4 1 /5 −1 2 0 0 −1 1 0 0 −2 −1 1 2 0 0 −1 −1 1 4 0 0 −1 1 0 0 −1 2 1 2 −4 0 −1 −1 1 2 0 0 −1 4 0 0 1 4 0 −2 1 4 2 1 /4 2 −1 2 1 0 + 4 −4 2 /4 4 2 /4 1 2 0 −2 1 6 1 1 /3 2 −1 1 1 0 + 6 −2 1 /3 2 2 /3 1 2 0 −2 −1 3 1 2 /3 4 2 −1 −2 0 + 3 −2 −1 /3 2 4 /3 0 −4 −1 3 1 1 /3 4 1 −1 −1 0 + 3 −4 −1 /3 4 4 /3 0 −4 3 7 1 1 /7 4 −3 3 3 0 + 7 −4 3 /7 4 4 /7 3 4 0 −2 1 0 2 1 /4 2 −1 2 1 −4 + 0 −4 2 /4 4 2 /4 −2 −1 1 1 2 1 −1 −1 0 + 2 −2 −1 2 2 0 2 0 −1 1 5 4 1 /5 1 −1 4 1 0 + 5 −4 4 /5 4 1 /5 1 1 1.2. 2 × 2 singular matrices 4 4 2 2 15 = = 4 4 3 3 = = −1 −3 1 3 = = −1 1 3 −3 = = −2 −3 2 3 = = −2 2 3 −3 = = −3 −3 1 1 = = −3 −3 2 2 −3 1 3 −1 −1 2 0 0 0 −1 1 6 2 1 /3 2 1 1 −1 + 6 0 2 1 /3 −2 2 /3 −3 4 0 0 −3 −1 1 1 0 0 −1 3 1 1 −4 0 −3 −1 2 1 0 0 −2 3 −5 0 −3 −1 1 1 −2 0 −3 −1 2 1 −1 0 −1 1 −4 0 1 1 0 −1 1 7 4 3 /7 3 −3 4 3 0 + 7 −4 4 /7 4 3 /7 1 1 0 −1 −1 2 1 3 /2 3 3 −1 −3 0 + 2 −1 −1 /2 1 3 /2 0 −1 1 0 3 1 /4 1 −1 3 1 −4 + 0 −3 3 /4 3 1 /4 −1 −1 2 3 3 3 −2 −3 0 + 1 −2 −2 2 3 0 1 0 −1 1 0 3 2 /5 2 −2 3 2 −5 + 0 −3 3 /5 3 2 /5 1 1 0 −1 −1 0 1 3 /2 3 3 −1 −3 −2 + 0 −1 −1 /2 1 3 /2 −1 −1 2 3 3 3 −2 −3 = −1 + 0 −2 −2 2 3 = = = 0 0 0 −3 1 0 1 1 /4 3 −1 1 1 −4 + 0 −3 1 /4 3 3 /4 1 3 16 Functions of matrices −3 2 3 −2 = = −3 −1 3 1 = = −3 −2 3 2 −3 −3 4 4 1 5 1 5 2 5 2 5 = = = = −1 −1 5 5 = = 3 5 3 5 = = −2 −2 5 5 −5 0 0 −3 2 0 1 1 /5 2 2 3 −2 + 0 −5 3 3 /5 −3 2 /5 −1 −1 1 3 −2 0 −1 −2 1 3 −1 0 −1 −3 1 4 0 0 −1 1 0 0 −1 1 0 0 −1 −1 1 5 0 0 −1 1 0 0 −1 −2 1 5 0 0 2 3 0 −3 −1 0 1 1 /2 3 1 −1 −1 −2 + 0 −3 −1 /2 3 3 /2 −3 −2 1 1 3 2 −2 −2 = −1 + 0 −3 −2 3 3 = −1 1 = = = = 0 0 −4 −3 1 1 4 3 −3 −3 0 + 1 −4 −3 4 4 0 1 0 −5 1 6 1 1 /6 5 −1 1 1 0 + 6 −5 1 /6 5 5 /6 1 5 0 −5 2 7 1 1 /7 5 −2 2 2 0 + 7 −5 2 /7 5 5 /7 2 5 0 −5 −1 4 1 1 /4 5 1 −1 −1 0 + 4 −5 −1 /4 5 5 /4 0 −5 3 8 1 1 /8 5 −3 3 3 0 + 8 5 5 /8 −5 3 /8 3 5 0 −5 −2 3 1 1 /3 5 2 −2 −2 0 + 3 −5 −2 /3 5 5 /3 1.2. 2 × 2 singular matrices 4 5 4 5 17 = = −3 −3 5 5 = = 5 5 1 1 = = 5 5 2 2 = = 5 5 3 3 = = 5 5 4 4 = = −1 −4 1 4 = = −1 1 4 −4 = = −2 −4 2 4 = = −1 1 0 0 0 −5 4 9 1 1 /9 4 4 5 −4 + 9 0 5 5 /9 −5 4 /9 −1 −3 1 5 0 0 −1 5 0 0 −2 5 0 0 −3 5 0 0 −4 5 0 0 −4 −1 1 1 0 0 −1 4 1 1 −5 0 −2 −1 1 1 0 0 4 5 0 −5 −3 2 1 1 /2 5 3 −3 −3 0 + 2 −5 −3 /2 5 5 /2 0 −1 1 6 5 1 /6 1 −1 5 1 0 + 6 −5 5 /6 5 1 /6 1 1 0 −1 1 7 5 2 /7 2 −2 5 2 0 + 7 −5 5 /7 5 2 /7 1 1 0 −1 1 8 5 3 /8 3 −3 5 3 0 + 8 −5 5 /8 5 3 /8 1 1 0 −1 1 9 5 4 /9 4 −4 5 4 0 + 9 −5 5 /9 5 4 /9 1 1 0 −1 −1 3 1 4 /3 4 4 −1 −4 0 + 3 −1 −1 /3 1 4 /3 0 −1 1 0 4 1 /5 1 −1 4 1 −5 + 0 4 1 /5 −4 4 /5 −1 −1 1 2 2 2 −1 −2 0 + 2 −1 −1 1 2 0 2 18 Functions of matrices −2 2 4 −4 = = −3 −4 3 4 = = −3 3 4 −4 = = −4 −4 1 1 = = −4 −2 2 1 = = −4 −4 2 2 −4 −4 3 3 −4 1 4 −1 −4 2 4 −2 −1 2 1 1 −6 0 0 −1 1 0 2 1 /3 2 1 1 −1 + 0 −6 2 1 /3 −2 2 /3 −4 −1 3 1 0 0 −3 4 −7 0 −4 −1 1 1 −3 0 −2 −1 1 2 −3 0 −2 −1 1 1 −2 0 0 0 −4 −1 3 1 −1 0 0 0 −1 1 −5 0 −1 1 −6 0 −1 −1 3 4 4 4 −3 −4 0 + 1 −3 −3 3 4 0 1 1 1 0 −1 −1 0 1 4 /3 4 4 −1 −4 −3 + 0 −1 −1 /3 1 4 /3 0 −2 −1 0 1 2 /3 4 2 −1 −2 −3 + 0 −2 −1 /3 2 4 /3 −1 −1 1 2 2 2 −1 −2 = −2 + 0 −1 −1 1 2 −1 −1 = 3 4 4 4 −3 −4 = −1 + 0 −3 −3 3 4 = = = 0 −1 1 0 4 3 /7 3 −3 4 3 −7 + 0 −4 4 /7 4 3 /7 = = 0 −4 1 0 1 1 /5 4 −1 1 1 −5 + 0 −4 1 /5 4 4 /5 1 4 0 −2 1 0 1 1 /3 2 −1 1 1 −6 + 0 −2 1 /3 2 2 /3 1 2 1.2. 2 × 2 singular matrices −4 −1 4 1 19 = = −4 3 4 −3 = = −4 −2 4 2 −4 −3 4 3 −4 −4 5 5 1 3 2 6 1 6 1 6 2 4 3 6 2 6 1 3 0 −4 −1 0 1 1 /3 −1 −1 4 1 + 0 −3 4 4 /3 −4 −1 /3 −1 1 3 4 −7 0 −1 −1 1 2 −2 0 0 0 −1 −3 1 4 −1 0 0 0 −1 −4 1 5 0 0 −2 1 0 0 −1 1 0 0 −3 2 0 0 −1 2 0 0 0 −4 3 0 1 1 /7 4 −3 3 3 −7 + 0 −4 3 /7 4 4 /7 −4 −3 1 1 4 3 −3 −3 = −1 + 0 −4 −3 4 4 = = = = = −3 0 = = −2 −1 1 1 2 1 −1 −1 = −2 + 0 −2 −1 2 2 = −1 −1 1 4 = = = = −5 −4 1 1 5 4 −4 −4 0 + 1 −5 −4 5 5 0 1 0 −3 1 7 1 2 /7 6 −2 1 2 0 + 7 −3 1 /7 3 6 /7 1 3 0 −6 1 7 1 1 /7 6 −1 1 1 0 + 7 −6 1 /7 6 6 /7 1 6 0 −2 1 8 2 3 /8 6 −3 2 3 0 + 8 −4 2 /8 4 6 /8 1 2 0 −3 1 5 2 1 /5 3 −1 2 1 0 + 5 −6 2 /5 6 3 /5 1 3 20 Functions of matrices 2 6 2 6 = = −1 −3 2 6 = = −1 −2 3 6 = = −1 −1 6 6 = = 3 6 1 2 = = 3 6 2 4 = = 3 6 3 6 = = −2 −4 3 6 = = −2 −3 4 6 = = −1 1 0 −3 1 8 1 1 /4 1 1 3 −1 + 8 0 3 3 /4 −3 1 /4 −3 −1 1 2 −2 −1 1 3 −1 −1 1 6 −1 3 −2 3 −1 1 −2 −2 1 3 −3 −1 2 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 5 1 3 /5 6 3 −1 −3 0 + 5 −2 −1 /5 2 6 /5 0 −3 −1 5 1 2 /5 6 2 −1 −2 0 + 5 −3 −1 /5 3 6 /5 0 −6 −1 5 1 1 /5 6 1 −1 −1 0 + 5 −6 −1 /5 6 6 /5 0 −2 1 5 3 1 /5 2 −1 3 1 0 + 5 −6 3 /5 6 2 /5 1 2 0 −2 1 7 3 2 /7 4 −2 3 2 0 + 7 −6 3 /7 6 4 /7 1 2 0 −2 1 9 1 1 /3 2 −1 1 1 0 + 9 −2 1 /3 2 2 /3 1 2 0 −3 −2 4 1 2 /4 6 4 −2 −4 0 + 4 3 6 /4 −3 −2 /4 0 −2 −1 4 2 3 /4 6 3 −2 −3 0 + 4 −4 −2 /4 4 6 /4 1.2. 2 × 2 singular matrices −2 1 6 −3 21 = = −2 −1 6 3 = = −2 −2 6 6 = = 4 6 2 3 = = 4 6 4 6 −3 1 6 −2 −3 2 6 −4 = = = −1 3 1 2 −5 0 −1 −1 2 3 0 0 −1 −1 1 3 0 0 −1 2 2 3 0 0 −1 1 2 3 0 0 3 −2 2 + 10 −3 2 /5 3 −1 2 −1 2 −3 −1 6 2 −3 −2 6 4 −3 −1 2 1 3 1 −2 −1 0 + 1 −6 −2 6 3 0 1 0 −3 2 7 2 1 /7 3 −2 4 2 0 + 7 −6 4 /7 6 3 /7 0 −5 0 2 3 −7 0 −1 −1 2 3 −1 0 −2 −1 3 2 0 0 0 10 −3 1 2 1 /5 2 3 /5 0 −3 1 0 2 1 /5 3 −1 2 1 −5 + 0 −6 2 /5 6 3 /5 1 3 0 −3 2 0 2 1 /7 3 −2 4 2 −7 + 0 −6 4 /7 6 3 /7 −3 −1 2 1 3 1 −2 −1 = −1 + 0 −6 −2 6 3 = = = 0 −3 −1 4 1 1 /2 3 1 −1 −1 0 + 4 −3 −1 /2 3 3 /2 = = 0 −2 1 0 3 1 /5 3 1 2 −1 + 0 −5 6 2 /5 −6 3 /5 = 0 0 −2 −1 3 2 4 2 −3 −2 0 + 1 −6 −3 6 4 0 1 22 Functions of matrices −3 −3 6 6 = = 5 6 5 6 −1 −1 1 2 0 0 0 3 −1 1 0 0 0 11 −2 −1 1 1 2 1 −1 −1 0 + 3 −2 −1 2 2 = 5 6 = −4 2 6 −3 = = −4 −2 6 3 −4 −4 6 6 6 3 2 1 6 4 3 2 −2 3 1 2 −7 0 −2 −1 3 2 −1 0 −1 −2 1 3 0 0 −1 3 0 0 −1 2 0 0 5 1 /11 5 6 /11 0 −2 1 0 3 2 /7 4 −2 3 2 −7 + 0 −6 3 /7 6 4 /7 −2 −1 3 2 4 2 −3 −2 = −1 + 0 −6 −3 6 4 = = = 6 −5 5 0 + 11 −6 5 /11 6 = = −6 1 = = 0 0 −3 −2 1 1 3 2 −2 −2 0 + 2 −3 −2 3 3 0 2 0 −1 2 7 3 1 /7 1 −2 6 2 0 + 7 −3 6 /7 3 1 /7 2 1 0 −2 3 8 2 1 /8 2 −3 6 3 0 + 8 −4 6 /8 4 2 /8 3 2 1.3. 2 × 2 symmetric matrices 1.3 23 2 × 2 symmetric matrices For each matrix below, the second form can be used to compute functions of matrices, such as the matrix exponential. For example, if 2 1 −1 1 1 0 −1 1 A = = 1 2 1 1 0 3 1 1 /2 then A = An = e At = 1 −1 1 1 + 3 −1 1 /2 1 1 −1 1 1n + 3n −1 1 /2 1 1 −1 1 et + e3t −1 1 /2 1 1 1 /2 1 1 /2 1 1 /2 The following 2 × 2 matrices have nonzero integer entries, are nonsingular, have distinct integer eigenvalues, and are symmetric: 1 2 −1 1 −1 0 −1 1 = 2 1 1 1 0 3 1 1 /2 1 −1 1 1 = −1 + 3 −1 1 /2 1 1 /2 2 1 1 2 = = 2 2 2 −1 = = −1 2 2 2 = = −1 2 2 −1 = = −1 1 −1 2 −2 1 −1 1 1 0 −2 0 −2 0 −3 0 0 −1 1 3 1 1 /2 1 −1 1 1 1 + 3 −1 1 /2 1 1 /2 1 1 0 −1 2 3 2 1 /5 1 −2 4 2 −2 + 3 −2 4 /5 2 1 /5 2 1 0 −2 1 3 1 2 /5 4 −2 1 2 −2 + 3 −2 1 /5 2 4 /5 1 2 0 −1 1 1 1 1 /2 1 −1 1 1 −3 + 1 1 1 /2 −1 1 /2 1 1 24 Functions of matrices 1 3 3 1 = = 2 3 3 2 = = −1 3 3 −1 = = 3 1 1 3 = = 3 2 2 3 = = 1 2 2 −2 = = −2 1 1 −2 = = −2 2 2 1 = = −2 3 3 −2 = = −1 1 0 −1 1 4 1 1 /2 1 1 1 −1 + 4 −2 1 1 /2 −1 1 /2 −1 1 −1 1 −1 1 −1 1 −1 2 −1 1 −2 1 −1 1 1 1 −2 0 −1 0 −4 0 2 0 1 0 −3 0 0 −1 1 5 1 1 /2 1 −1 1 1 −1 + 5 −1 1 /2 1 1 /2 1 1 0 −1 1 2 1 1 /2 1 −1 1 1 −4 + 2 −1 1 /2 1 1 /2 1 1 0 −1 1 4 1 1 /2 1 −1 1 1 2 + 4 −1 1 /2 1 1 /2 1 1 0 −1 1 5 1 1 /2 1 −1 1 1 1 + 5 −1 1 /2 1 1 /2 1 1 0 −1 2 2 2 1 /5 1 −2 4 2 −3 + 2 −2 4 /5 2 1 /5 2 1 −3 0 −1 1 0 −1 1 1 /2 1 −1 1 1 −3 − 1 −1 1 /2 1 1 /2 1 1 0 −2 1 2 1 2 /5 4 −2 1 2 −3 + 2 2 4 /5 −2 1 /5 1 2 −3 0 −5 0 0 −1 1 1 1 1 /2 1 −1 1 1 −5 + 1 −1 1 /2 1 1 /2 1 1 1.3. 2 × 2 symmetric matrices 1 4 4 1 = = 2 4 4 2 = = −1 4 4 −1 = = 3 4 4 3 = = −2 4 4 −2 = = −2 4 4 4 = = 4 1 1 4 = = 4 2 2 4 = = 4 3 3 4 = = 25 −1 1 0 −1 1 5 1 1 /2 1 1 1 −1 + 5 −3 1 1 /2 −1 1 /2 −1 1 −1 1 −1 1 −1 1 −2 1 −1 1 −1 1 −1 1 1 1 −3 0 −2 0 −5 0 −1 0 −6 0 −4 0 3 0 2 0 1 0 0 −1 1 6 1 1 /2 1 −1 1 1 −2 + 6 −1 1 /2 1 1 /2 1 1 0 −1 1 3 1 1 /2 1 −1 1 1 −5 + 3 −1 1 /2 1 1 /2 1 1 0 −1 1 7 1 1 /2 1 −1 1 1 −1 + 7 −1 1 /2 1 1 /2 1 1 0 −1 1 2 1 1 /2 1 −1 1 1 −6 + 2 −1 1 /2 1 1 /2 1 1 0 −2 1 6 1 2 /5 4 −2 1 2 −4 + 6 −2 1 /5 2 4 /5 1 2 0 −1 1 5 1 1 /2 1 −1 1 1 3 + 5 −1 1 /2 1 1 /2 1 1 0 −1 1 6 1 1 /2 1 −1 1 1 2 + 6 1 1 /2 −1 1 /2 1 1 0 −1 1 7 1 1 /2 1 −1 1 1 1 + 7 −1 1 /2 1 1 /2 1 1 26 Functions of matrices 4 4 4 −2 = = 3 4 4 −3 = = −3 1 1 −3 = = −3 2 2 −3 = = −3 4 4 3 = = −3 4 4 −3 = = 1 5 5 1 = = 2 2 2 5 = = 2 5 5 2 = = −1 2 0 −1 2 6 2 1 /5 4 2 1 −2 + 6 −4 2 1 /5 −2 4 /5 −1 2 −1 1 −1 1 −2 1 −1 1 −1 1 −2 1 −1 1 2 1 −4 0 −5 0 0 −1 2 5 2 1 /5 1 −2 4 2 −5 + 5 −2 4 /5 2 1 /5 2 1 −4 0 −1 1 0 −2 1 1 /2 1 −1 1 1 −4 − 2 −1 1 /2 1 1 /2 1 1 −5 0 −1 1 0 −1 1 1 /2 1 −1 1 1 −5 − 1 −1 1 /2 1 1 /2 1 1 0 −2 1 5 1 2 /5 4 −2 1 2 −5 + 5 −2 1 /5 2 4 /5 1 2 −5 0 −7 0 −4 0 1 0 −3 0 0 −1 1 1 1 1 /2 1 −1 1 1 −7 + 1 −1 1 /2 1 1 /2 1 1 0 −1 1 6 1 1 /2 1 −1 1 1 −4 + 6 −1 1 /2 1 1 /2 1 1 0 −2 1 6 1 2 /5 4 −2 1 2 1 + 6 2 4 /5 −2 1 /5 1 2 0 −1 1 7 1 1 /2 1 −1 1 1 −3 + 7 −1 1 /2 1 1 /2 1 1 1.3. 2 × 2 symmetric matrices −1 4 4 5 = = −1 5 5 −1 = = 3 5 5 3 = = −2 5 5 −2 = = 4 5 5 4 = = −3 3 3 5 27 −2 1 −1 1 −1 1 −1 1 −1 1 −3 1 −3 0 0 −2 1 7 1 2 /5 1 2 4 −2 + 7 −3 2 4 /5 −2 1 /5 −6 0 −2 0 −7 0 1 1 −1 0 1 3 −4 0 1 2 0 −1 1 4 1 1 /2 1 −1 1 1 −6 + 4 −1 1 /2 1 1 /2 1 1 0 −1 1 8 1 1 /2 1 −1 1 1 −2 + 8 −1 1 /2 1 1 /2 1 1 0 −1 1 3 1 1 /2 1 −1 1 1 −7 + 3 −1 1 /2 1 1 /2 1 1 0 −1 1 9 1 1 /2 1 −1 1 1 −1 + 9 −1 1 /2 1 1 /2 = = −3 5 5 −3 = = 5 1 1 5 = = 5 2 2 2 = = 0 6 −3 1 9 −3 1 −4 + 6 −3 1 /10 3 −1 1 −1 1 −1 2 −8 0 4 0 1 0 3 9 /10 0 −1 1 2 1 1 /2 1 −1 1 1 −8 + 2 −1 1 /2 1 1 /2 1 1 1 3 /10 0 −1 1 6 1 1 /2 1 −1 1 1 4 + 6 1 1 /2 −1 1 /2 1 1 0 −1 2 6 2 1 /5 1 −2 4 2 1 + 6 −2 4 /5 2 1 /5 2 1 28 Functions of matrices 5 2 2 5 = = 5 3 3 −3 −1 1 1 1 3 0 0 −1 1 7 1 1 /2 1 1 1 −1 + 7 3 1 1 /2 −1 1 /2 −1 3 3 1 −4 0 = 0 6 −1 3 = 5 3 3 5 = = 5 4 4 −1 = = 5 4 4 5 = = 2 4 4 −4 = = 4 3 3 −4 1 −3 9 −4 + 6 −3 9 /10 3 −1 1 −1 2 −1 1 −1 2 −1 3 2 0 −3 0 1 0 2 1 −6 0 3 1 −5 0 1 1 0 −1 2 7 2 1 /5 1 −2 4 2 −3 + 7 −2 4 /5 2 1 /5 2 1 0 −1 1 9 1 1 /2 1 −1 1 1 1 + 9 −1 1 /2 1 1 /2 1 1 0 −1 2 4 2 1 /5 1 −2 4 2 −6 + 4 −2 4 /5 2 1 /5 −4 1 1 −4 = = −4 2 2 −4 = = 3 1 /10 0 −1 1 8 1 1 /2 1 −1 1 1 2 + 8 −1 1 /2 1 1 /2 = = 3 1 /10 0 5 −1 3 1 −3 9 −5 + 5 −3 9 /10 3 −1 1 −1 1 3 1 /10 3 1 /10 −5 0 −1 1 0 −3 1 1 /2 1 −1 1 1 −5 − 3 1 1 /2 −1 1 /2 1 1 −6 0 −1 1 0 −2 1 1 /2 1 −1 1 1 −6 − 2 −1 1 /2 1 1 /2 1 1 1.3. 2 × 2 symmetric matrices −4 3 3 4 −4 3 3 −4 = = −4 4 4 2 = = −4 5 5 −4 = = 1 6 6 1 = = 1 6 6 −4 −3 1 1 9 −3 + 5 3 −3 1 /10 −1 1 −2 1 −1 1 −1 1 −2 3 = = 29 −5 1 3 −5 0 0 5 −3 1 1 1 −6 0 0 −2 1 4 1 2 /5 4 −2 1 2 −6 + 4 −2 1 /5 2 4 /5 −9 0 1 1 −5 0 3 2 −8 0 1 2 0 −1 1 1 1 1 /2 1 −1 1 1 −9 + 1 −1 1 /2 1 1 /2 1 1 0 −1 1 7 1 1 /2 1 −1 1 1 −5 + 7 −1 1 /2 1 1 /2 0 5 −2 3 1 6 6 6 4 −6 9 −8 + 5 −6 9 /13 6 = −3 2 2 3 −3 0 0 10 −3 2 = 2 6 6 2 = = 2 6 6 −3 9 −6 4 −3 + 10 −6 4 /13 6 −1 1 1 1 −4 0 −2 3 3 2 −7 0 3 2 /13 6 4 /13 2 3 /13 6 9 /13 0 −1 1 8 1 1 /2 1 −1 1 1 −4 + 8 1 1 /2 −1 1 /2 = = 3 9 /10 −7 0 −1 1 0 −1 1 1 /2 1 −1 1 1 −7 − 1 −1 1 /2 1 1 /2 = = 1 3 /10 0 6 −2 3 4 −6 9 −7 + 6 −6 9 /13 6 3 2 /13 6 4 /13 30 Functions of matrices −1 6 6 −1 = = −1 6 6 4 0 −1 1 5 1 1 /2 1 1 1 −1 + 5 −7 1 1 /2 −1 1 /2 −1 1 1 1 −7 0 −3 2 2 3 −5 0 = 0 8 −3 2 = 3 2 2 6 = = 3 6 6 3 = = 3 6 6 −2 −2 3 3 6 −2 1 −1 1 2 0 1 1 −3 0 −2 3 3 2 −6 0 4 −6 9 + 7 −6 9 /13 6 −3 1 1 2 0 −1 1 9 1 1 /2 1 −1 1 1 −3 + 9 −1 1 /2 1 1 /2 = −6 = 1 3 −3 0 0 7 0 7 −2 3 −3 1 = −2 6 6 3 9 −3 1 −3 + 7 −3 1 /10 3 = −3 2 2 3 −6 0 0 7 −3 2 = −2 6 6 −2 = = 4 6 6 −1 9 −6 4 −6 + 7 −6 4 /13 6 −1 1 1 1 −8 0 −2 3 3 2 −5 0 3 2 /13 6 4 /13 1 3 /10 3 9 /10 2 3 /13 6 9 /13 0 −1 1 4 1 1 /2 1 −1 1 1 −8 + 4 1 1 /2 −1 1 /2 = = 6 9 /13 0 −2 1 7 1 2 /5 4 −2 1 2 2 + 7 −2 1 /5 2 4 /5 = 9 −6 4 −5 + 8 −6 4 /13 6 2 3 /13 0 8 −2 3 4 −6 9 −5 + 8 −6 9 /13 6 3 2 /13 6 4 /13 1.3. 2 × 2 symmetric matrices 4 6 6 4 −3 6 6 2 −1 1 1 1 −1 + 10 1 −1 1 /2 −3 2 = = 31 −2 = 1 1 2 3 −2 0 −7 0 0 10 0 6 −1 1 −3 2 = −3 6 6 −3 = = −3 6 6 6 = = 5 6 6 5 5 6 6 −4 −4 6 6 1 −1 1 −2 1 = −9 0 1 2 −6 0 −1 1 1 1 −1 0 1 −1 1 + 11 −1 1 /2 1 −1 2 2 1 −7 0 −3 2 2 3 −8 0 −1 1 1 −4 6 6 5 = = −4 6 6 −4 = = 6 9 /13 0 11 −1 1 1 1 /2 1 1 /2 0 −1 2 8 2 1 /5 1 −2 4 2 −7 + 8 −2 4 /5 2 1 /5 = = 2 3 /13 0 −2 1 9 1 2 /5 4 −2 1 2 −6 + 9 −2 1 /5 2 4 /5 = = 1 1 /2 0 −1 1 3 1 1 /2 1 −1 1 1 −9 + 3 −1 1 /2 1 1 /2 = 9 −6 4 −7 + 6 −6 4 /13 6 1 1 /2 0 5 −3 2 9 −6 4 −8 + 5 −6 4 /13 6 −2 1 −1 1 −7 0 −10 0 6 9 /13 0 −2 1 8 1 2 /5 4 −2 1 2 −7 + 8 2 4 /5 −2 1 /5 1 2 2 3 /13 0 −1 1 2 1 1 /2 1 −1 1 1 −10 + 2 −1 1 /2 1 1 /2 1 1 32 Functions of matrices 6 1 1 6 = = 6 2 2 3 = = 6 2 2 6 = = 6 3 3 −2 −1 1 −1 2 −1 1 −1 3 5 0 0 −1 1 7 1 1 /2 1 1 1 −1 + 7 5 1 1 /2 −1 1 /2 2 0 1 1 4 0 3 1 −3 0 1 1 0 −1 2 7 2 1 /5 1 −2 4 2 2 + 7 −2 4 /5 2 1 /5 2 1 0 −1 1 8 1 1 /2 1 −1 1 1 4 + 8 −1 1 /2 1 1 /2 = 0 7 −1 3 = 6 3 3 6 = = 6 4 4 6 1 −3 9 −3 + 7 −3 9 /10 3 −1 1 1 1 3 0 −1 1 1 1 2 0 = 0 10 −1 1 6 5 5 6 1 −1 1 2 + 10 −1 1 /2 1 = −1 1 1 1 1 0 0 11 −1 1 = 6 6 6 1 6 6 6 −3 1 −1 1 1 + 11 −1 1 /2 1 −2 3 4 −6 9 + 10 6 −6 9 /13 −1 2 = = = = 3 1 /10 0 −1 1 9 1 1 /2 1 −1 1 1 3 + 9 −1 1 /2 1 1 /2 = 3 1 /10 −3 3 2 0 10 −2 3 1 1 /2 1 1 /2 1 1 /2 3 2 /13 6 4 /13 0 −1 2 9 2 1 /5 1 −2 4 2 −6 + 9 −2 4 /5 2 1 /5 2 1 −3 0 1 1 /2 −6 0 1.3. 2 × 2 symmetric matrices 1 4 4 −5 = = 3 3 3 −5 33 −1 2 2 1 −7 0 0 −1 2 3 2 1 /5 4 2 1 −2 + 3 −7 2 1 /5 −2 4 /5 −1 3 3 1 −6 0 = = −2 2 2 −5 = = 4 6 6 −5 = = −5 1 1 −5 = = −5 2 2 −2 = = −5 2 2 −5 = = 0 4 −1 3 1 −3 9 −6 + 4 −3 9 /10 3 −1 2 −1 2 −1 1 −2 1 −1 1 3 1 /10 3 1 /10 −6 0 −1 2 0 −1 2 1 /5 1 −2 4 2 −6 − 1 −2 4 /5 2 1 /5 2 1 0 −1 2 7 2 1 /5 1 −2 4 2 −8 + 7 −2 4 /5 2 1 /5 2 1 −8 0 −6 0 −1 1 0 −4 1 1 /2 1 −1 1 1 −6 − 4 −1 1 /2 1 1 /2 1 1 −6 0 −2 1 0 −1 1 2 /5 4 −2 1 2 −6 − 1 −2 1 /5 2 4 /5 1 2 −7 0 −1 1 0 −3 1 1 /2 1 −1 1 1 −7 − 3 −1 1 /2 1 1 /2 1 1 34 Functions of matrices 2 × 2 matrices with a repeated eigenvalue 1.4 For each matrix below, the second form can be used to compute functions of matrices, such as the matrix exponential. For example, if 1 −1 −1 1 2 1 0 1 A = = 1 3 1 0 0 2 1 1 then = A A n 2 = e At 2 n = e2t 0 1 1 0 0 1 1 0 0 1 1 0 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 + + n2 n−1 t e2t + The following 2 × 2 matrices have entries in [−4, 4], and have a repeated integer eigenvalue: −1 −1 −1 1 0 1 0 1 = 1 1 1 0 0 0 1 1 1 0 −1 −1 = 0 + 0 1 1 1 1 −1 1 3 = 3 −1 1 1 −1 −2 2 3 −2 −2 2 2 2 −1 1 4 1 0 0 1 1 1 1 0 1 0 0 1 −2 2 1 0 1 0 0 1 −2 2 1 0 1 0 0 1 −1 1 1 0 1 0 0 1 2 = 1 = = 1 0 = = −1 1 2 = = 0 = = 3 2 0 1 2 + 2 0 + 1 0 0 0 + 3 0 −2 −2 2 2 1 3 −2 −2 2 2 1 0 1 −1 1 −1 1 1 + + −1 −1 1 1 1 2 −1 −1 1 1 1 1 0 1 1 −1 0 1 0 2 1 2 /2 0 2 1 2 /2 0 1 1 1 1.4. 2 × 2 matrices with a repeated eigenvalue −1 −1 4 3 −2 −1 4 2 4 −1 1 2 −2 −3 3 4 −3 −2 2 1 1 0 0 1 −2 4 1 0 1 0 0 1 1 1 1 0 1 0 0 1 −3 3 1 0 1 0 0 1 0 = 3 = = 1 0 = = −2 4 1 = = = 1 −2 2 1 0 = = −1 −3 −3 3 3 = = −3 −1 4 1 0 1 −2 2 5 = 1 −1 4 5 3 1 3 1 −1 1 −1 1 0 1 1 0 1 1 2 /4 0 1 1 −1 −3 −3 3 3 0 3 1 3 /3 −1 1 0 0 −1 4 0 −2 −1 + 1 4 2 1 2 /4 0 0 1 0 + 1 0 1 0 0 1 −2 4 1 0 1 0 0 1 = = 1 0 3 0 −2 −1 4 2 0 4 1 2 /2 −2 2 3 1 2 /4 −1 1 0 0 −1 2 0 −2 −2 + 1 2 2 1 0 + = −2 −1 4 2 0 4 1 3 /3 1 0 1 0 0 0 0 3 −3 3 + 1 0 = 1 1 + −2 4 1 0 + 1 0 = −1 35 3 0 3 0 −2 −2 2 2 1 3 + −3 −3 3 3 1 3 + −2 −1 4 2 0 2 1 2 /2 0 4 1 2 /4 36 Functions of matrices −1 −3 3 5 = 3 −1 1 5 5 −1 1 3 5 −2 2 1 5 −1 4 1 1 −4 1 5 −1 −4 1 3 −2 −4 1 2 −3 −4 1 1 −1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 2 2 1 0 1 0 0 1 2 4 1 0 1 0 0 1 −2 1 1 0 1 0 0 1 −2 1 1 0 1 0 0 1 −2 1 1 0 1 0 0 1 3 = 3 = 3 = 1 = = 0 1 = = 1 0 4 = = = 4 = 1 0 = = −3 3 2 = = 0 −2 1 1 0 = = −1 2 0 1 2 + 4 0 −3 −3 3 3 1 4 + 4 0 3 0 + 3 0 2 −2 2 −2 1 3 + 1 −1 1 −1 1 3 −1 −1 1 1 1 4 + 2 −1 4 −2 1 3 /3 0 1 1 1 0 1 1 −1 0 1 2 −2 /2 0 1 4 −2 /4 0 1 1 2 0 1 1 2 0 1 1 2 −1 1 0 0 −1 1 0 −2 −4 + 1 1 2 1 2 1 0 3 0 1 3 + 1 0 + 0 0 −2 −4 1 2 1 0 + −2 −4 1 2 1 1 0 3 −2 −4 1 2 1.4. 2 × 2 matrices with a repeated eigenvalue −3 −4 4 5 5 −4 1 1 −4 −3 3 2 −4 4 1 0 1 0 0 1 2 1 1 0 1 0 0 1 1 = = = = 3 −3 3 1 0 −4 −4 4 4 = −4 4 1 0 1 0 0 1 2 −4 1 6 −2 1 1 0 1 0 0 1 −2 2 1 0 1 0 0 1 −2 4 1 0 1 0 0 1 −4 4 1 0 1 0 0 1 −1 1 1 0 1 0 0 1 = = 2 −2 2 6 2 −1 4 6 = −2 −4 4 6 = 4 −1 1 6 4 = = 4 = 4 = 0 2 = = 5 1 1 3 0 −4 −4 4 4 1 3 + = 1 0 + 1 0 = = −1 37 2 −4 1 −2 0 4 0 1 1 −2 −1 1 0 0 −1 3 0 −3 −3 + 1 3 3 0 0 1 0 + 4 0 4 0 + 4 0 + 2 0 5 0 −4 −4 4 4 1 5 −2 −1 4 2 1 2 + −2 −2 2 2 1 4 −2 −4 1 2 1 4 + −4 −4 4 4 1 4 + −1 −1 1 1 1 4 /4 1 3 /3 0 4 1 4 /4 0 1 1 2 0 2 1 2 /2 0 4 1 2 /4 0 4 1 4 /4 0 1 1 1 38 Functions of matrices 6 −1 1 4 = 6 −4 1 2 6 −2 2 2 6 −1 4 2 −4 −5 5 6 −5 −3 3 1 1 0 0 1 2 1 1 0 1 0 0 1 2 2 1 0 1 0 0 1 2 4 1 0 1 0 0 1 −5 5 1 0 1 0 0 1 = 4 = 4 = = 4 = 1 0 = = 1 1 5 = = 1 −5 −4 4 3 −5 −5 5 5 = 1 −3 3 7 = 4 1 4 4 0 2 −2 2 −2 1 4 2 −1 4 −2 0 1 2 −2 /2 0 1 4 −2 /4 −2 1 0 0 −2 3 0 −3 −3 + 1 3 3 1 3 /3 1 0 1 4 /4 1 1 1 0 −5 5 1 0 1 0 0 1 −3 3 1 0 1 0 0 1 0 1 1 −2 1 0 1 0 + = 2 −4 1 −2 1 5 /5 −4 4 0 4 0 0 1 1 −1 0 5 = 1 −1 1 −1 1 4 + 1 0 = −1 4 0 + = + −3 3 = −2 1 5 + = 5 0 −5 −5 5 5 −1 1 0 0 −1 4 0 −4 −4 + 1 4 4 0 0 1 0 + 4 0 + −5 −5 5 5 1 4 −3 −3 3 3 0 5 1 5 /5 0 3 1 3 /3 1.4. 2 × 2 matrices with a repeated eigenvalue −1 −4 4 7 3 −4 1 7 3 −2 2 7 3 −1 4 7 −3 −5 5 7 5 −1 1 7 7 −1 1 5 7 −4 1 3 7 −2 2 3 −2 1 1 0 1 0 0 1 −2 2 1 0 1 0 0 1 −2 4 1 0 1 0 0 1 −5 5 1 0 1 0 0 1 −1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 2 1 1 0 1 0 0 1 2 2 1 0 1 0 0 1 5 = 2 = 6 = 6 = = 0 1 = = 1 0 5 = = = 5 = 1 0 = = −4 4 3 = = = 5 = = 5 39 3 0 1 3 + 5 0 + 5 0 5 0 + 2 0 6 0 + 6 0 + 5 0 5 0 2 −4 1 −2 1 5 1 −1 1 −1 1 5 + −1 −1 1 1 1 6 −5 −5 5 5 1 6 −2 −1 4 2 1 2 + −2 −2 2 2 1 5 −2 −4 1 2 1 5 + + −4 −4 4 4 1 5 2 −2 2 −2 0 4 1 4 /4 0 1 1 2 0 2 1 2 /2 0 4 1 2 /4 0 5 1 5 /5 0 1 1 1 0 1 1 −1 0 1 1 −2 0 1 2 −2 /2 40 Functions of matrices 7 −3 3 1 = 7 −1 4 3 −5 −6 6 7 −6 −4 4 2 1 0 1 0 0 1 2 4 1 0 1 0 0 1 −6 6 1 0 1 0 0 1 = 5 = = 3 3 4 = = 1 −6 −5 5 4 −6 −6 6 6 = 2 −3 3 8 = −1 −2 8 7 −2 −5 5 8 3 1 5 /5 1 0 1 0 0 1 −3 3 1 0 1 0 0 1 −4 8 1 0 1 0 0 1 −5 5 1 0 1 0 0 1 = = −6 6 3 1 0 = = 1 4 /4 1 0 5 2 −1 4 −2 1 0 1 0 1 1 0 1 4 −2 /4 −2 1 0 0 −2 4 0 −4 −4 + 1 4 4 = −5 5 0 1 5 + = 3 −3 3 −3 0 1 3 −3 /3 1 6 /6 1 0 = −1 5 0 0 6 = + −4 4 = −2 1 4 + = 4 0 −6 −6 6 6 −1 1 0 0 −1 5 0 −5 −5 + 1 5 5 0 0 1 0 + 5 0 + 3 0 3 0 −4 −2 8 4 1 3 −3 −3 3 3 1 3 + + −6 −6 6 6 1 5 −5 −5 5 5 0 6 1 6 /6 0 3 1 3 /3 0 8 1 4 /8 0 5 1 5 /5 1.4. 2 × 2 matrices with a repeated eigenvalue −2 −2 8 6 4 −4 1 8 4 −2 2 8 4 −1 4 8 −3 −2 8 5 −4 −6 6 8 −4 −2 8 4 6 −1 1 8 −5 −2 8 3 −2 1 1 0 1 0 0 1 −2 2 1 0 1 0 0 1 −2 4 1 0 1 0 0 1 −4 8 1 0 1 0 0 1 −6 6 1 0 1 0 0 1 −4 8 1 0 1 0 0 1 −1 1 1 0 1 0 0 1 6 = 1 = 2 = 0 = = 0 1 = = 1 0 6 = = = 6 = 1 0 = = −4 8 2 = = = 7 −4 8 1 0 = = −1 41 2 0 1 2 + 6 0 + 6 0 6 0 + 1 0 2 0 + 0 0 + 7 0 −1 −1 1 1 0 8 1 4 /8 0 1 1 2 0 2 1 2 /2 0 4 1 2 /4 0 8 1 4 /8 0 6 1 6 /6 0 8 1 4 /8 0 1 1 1 −1 1 0 0 −1 8 0 −4 −2 + 1 8 4 1 0 −4 −2 8 4 1 7 −6 −6 6 6 1 0 −4 −2 8 4 1 2 −2 −1 4 2 1 1 + −2 −2 2 2 1 6 −2 −4 1 2 1 6 + + −4 −2 8 4 1 6 1 4 /8 42 Functions of matrices −6 −2 8 2 −4 8 1 0 1 0 −2 1 0 0 −2 8 0 −4 −2 + 1 8 4 1 1 1 0 1 0 0 1 2 1 1 0 1 0 0 1 2 2 1 0 1 0 0 1 3 3 1 0 1 0 0 1 2 4 1 0 1 0 0 1 −7 7 1 0 1 0 0 1 = = −2 8 −1 1 6 = = 8 −4 1 4 = = 8 −2 2 4 8 −3 3 2 = 8 −1 4 4 = −6 −7 7 8 = −7 −4 4 1 6 = = 5 = 6 = 6 = 7 1 −4 4 1 0 −5 5 1 0 = = −3 −7 −5 5 3 = = −2 7 0 1 7 + 6 0 1 −1 1 −1 1 6 + 6 0 + 5 0 6 0 + 3 −3 3 −3 1 6 2 −2 2 −2 1 5 + 2 −4 1 −2 1 6 2 −1 4 −2 0 1 1 −1 0 1 1 −2 0 1 2 −2 /2 0 1 3 −3 /3 0 1 4 −2 /4 0 7 1 7 /7 −3 1 0 0 −3 4 0 −4 −4 + 1 4 4 1 4 /4 1 5 /5 1 0 1 0 1 1 + 1 4 /8 −7 −7 7 7 −2 1 0 0 −2 5 0 −5 −5 + 1 5 5 1 0 1.4. 2 × 2 matrices with a repeated eigenvalue −7 −6 6 5 −6 6 1 0 = = −1 −7 −7 7 7 = = −7 −2 8 1 0 1 −4 4 9 1 −2 8 9 1 −1 9 7 2 −1 9 8 −1 −5 5 9 −1 −1 9 5 0 1 −4 8 1 0 1 0 0 1 −3 9 1 0 1 0 0 1 −3 9 1 0 1 0 0 1 −5 5 1 0 1 0 0 1 −3 9 1 0 1 0 0 1 4 = = 2 1 4 /8 1 0 = = −3 1 0 0 −3 8 0 −4 −2 + 1 8 4 1 0 + 5 1 0 = = 0 1 1 7 /7 0 0 5 0 + 5 0 4 0 + 5 0 + 4 0 2 0 −5 −5 5 5 1 2 −3 −1 9 3 1 4 + −3 −1 9 3 1 5 −4 −2 8 4 1 4 −4 −4 4 4 1 5 + + −7 −7 7 7 1 5 1 6 /6 0 7 −4 4 4 1 0 = = 1 0 5 1 0 = = −7 7 −1 1 0 0 −1 6 0 −6 −6 + 1 6 6 1 0 5 −4 8 = = 1 0 = = −3 43 −3 −1 9 3 0 4 1 4 /4 0 8 1 4 /8 0 9 1 3 /9 0 9 1 3 /9 0 5 1 5 /5 0 9 1 3 /9 44 Functions of matrices 3 −3 3 9 = 3 −1 9 9 −2 −1 9 4 −3 −6 6 9 −3 −1 9 3 −3 −4 9 9 1 0 0 1 −3 9 1 0 1 0 0 1 −3 9 1 0 1 0 0 1 −6 6 1 0 1 0 0 1 −3 9 1 0 1 0 0 1 −6 9 1 0 1 0 0 1 = 1 = 3 = = 6 = 1 0 = = −3 3 6 = = 0 = = 3 6 0 1 6 + 6 0 + 1 0 3 0 + 0 0 3 0 −3 −1 9 3 1 3 −6 −6 6 6 1 0 + −3 −1 9 3 1 3 −3 −1 9 3 1 1 + + −3 −3 3 3 1 6 −6 −4 9 6 0 3 1 3 /3 0 9 1 3 /9 0 9 1 3 /9 0 6 1 6 /6 0 9 1 3 /9 0 9 1 6 /9 1.5. 3 × 3 matrices with distinct eigenvalues 1.5 45 3 × 3 matrices with distinct eigenvalues The following 3 × 3 matrices have nonzero integer entries, are nonsingular, have distinct integer eigenvalues, and are not symmetric: 1 1 −1 4 −2 0 −1 0 0 0 −2 2 1 1 2 = −5 1 1 0 1 0 −8 −4 4 /16 1 2 1 3 1 1 0 0 3 8 10 6 0 −8 8 16 8 −8 0 0 0 4 10 6 10 −10 = −1 0 + 1 −8 −4 + 3 8 /16 /16 /16 −8 −4 4 8 10 6 0 −6 6 2 −5 −1 4 = 2 3 5 −5 −5 4 4 = −1 −4 + /12 −3 3 3 0 2 0 0 −1 0 4 3 3 2 −3 −3 1 −2 −1 = 5 −2 0 0 2 2 1 1 0 6 −12 −6 15 15 −15 20 10 10 10 −10 = −2 −10 + 1 /30 −4 8 4 −5 −5 5 0 1 0 0 −2 0 −5 3 9 + 3 0 2 0 0 −1 0 4 3 3 0 1 0 0 −2 0 5 3 9 + 3 1 1 1 1 1 1 1 1 −1 2 4 4 0 8 8 0 −4 −4 + 3 /12 0 1 −1 −1 1 −5 −1 = 3 1 4 5 −5 −5 3 3 + = −1 −3 /12 −4 4 4 1 1 1 1 −1 0 0 1 0 1 1 0 2 2 −1 1 −1 1 0 0 0 1 0 1 2 4 0 4 −4 0 −4 8 0 + 3 /12 8 1 −3 3 1 −2 −1 = 2 −1 1 0 −1 5 2 0 0 15 −15 15 6 −6 −12 5 −5 4 8 = −2 −4 + 1 −5 /30 10 −10 10 −10 10 20 1 1 1 1 1 1 2 2 −1 2 −1 2 = −3 /30 /30 1 −4 /12 9 −3 9 0 0 /12 −3 9 1 8 −3 3 0 3 2 5 /30 21 −3 21 0 0 /30 −3 21 4 −5 −3 9 0 9 1 −4 9 3 3 0 1 8 /12 −3 9 −3 9 −3 /12 0 0 4 5 /30 −3 21 −3 21 −3 /30 0 0 2 −5 21 9 9 0 2 0 −2 2 −3 0 0 0 2 = −1 1 1 0 −1 0 −2 −1 1 1 1 0 0 3 2 0 0 0 4 −4 −4 4 0 4 −4 2 2 − 1 −2 + 3 2 /8 /8 0 −4 4 −2 2 2 2 −4 2 2 4 2 2 4 2 /8 2 4 2 /8 2 46 Functions of matrices 1 1 1 −1 1 2 = −1 1 −4 −2 0 −1 2 = −3 1 1 0 1 5 1 1 0 0 8 −8 16 −8 8 0 6 −6 4 −4 + 1 −8 /16 0 −10 10 −8 4 −4 0 1 0 0 0 0 −8 3 8 + 3 1 1 2 2 −5 1 1 −1 −1 = 4 −2 0 0 1 3 1 1 0 10 0 −10 −4 −8 4 0 8 16 −8 = −1 −8 + 1 8 /16 −6 0 6 −4 −8 4 0 1 0 1 1 2 0 2 0 1 1 1 1 −1 −1 1 −1 −1 = 1 −2 −1 0 2 1 1 3 0 5 −4 −3 4 4 4 3 8 = −1 −5 + 2 8 /12 −5 4 3 −4 −4 1 1 −1 1 1 2 1 1 2 1 2 1 1 1 2 1 2 −1 /16 −2 4 6 0 8 8 2 −4 /16 10 0 0 6 10 /16 6 10 0 −2 0 0 −4 −8 3 10 8 10 8 0 + 3 0 /16 10 8 2 4 /16 6 6 0 /16 6 0 −5 0 −4 3 3 0 0 0 3 0 /12 3 3 −3 /12 9 4 −4 0 0 3 0 + 3 −3 /12 0 9 2 −1 −1 5 −1 1 = 0 −2 4 0 1 1 1 3 0 −8 −6 −4 8 −4 0 0 16 −8 + 1 −8 /16 8 6 4 −8 4 0 1 0 0 −10 8 0 4 −8 3 2 0 10 0 0 + 3 8 /16 6 0 6 4 /16 2 10 8 /16 6 2 −7 1 1 −1 −1 = 4 −1 0 0 1 5 1 1 0 7 0 −7 −4 −12 4 0 4 12 −4 = −1 −4 + 2 4 /12 −5 0 5 −4 −12 4 0 2 0 0 −1 0 0 −4 −12 3 9 12 9 12 0 + 3 0 /12 9 12 1 4 /12 3 3 0 /12 3 0 2 0 0 −7 0 4 3 3 5 4 /12 3 9 12 /12 3 1 1 −1 10 = −1 0 −10 = −1 7 0 −7 2 −1 −1 3 −1 1 = 0 −3 4 0 1 1 1 1 0 −4 −5 −4 4 −4 0 0 12 −12 + 2 −12 /12 4 5 4 −4 4 9 + 3 12 /12 3 4 −4 0 0 0 0 1.5. 3 × 3 matrices with distinct eigenvalues 47 1 1 2 1 −1 −1 3 −2 −1 = 2 −1 −1 0 2 1 1 7 0 6 −10 −4 15 10 −5 20 8 10 −5 = −2 −12 + 1 15 /30 −6 10 4 −15 −10 5 0 1 0 1 1 2 2 −3 1 1 −1 −1 = 2 −1 0 0 1 1 1 1 0 3 0 −3 −2 −4 2 0 2 4 −2 = −1 −2 + 1 2 /4 −1 0 1 −2 −4 2 0 1 0 1 1 2 2 −8 0 1 −2 −1 = 5 −1 0 0 1 7 1 1 0 8 −8 −8 0 0 0 5 5 15 −5 = −2 −5 + 2 5 /20 −7 7 7 −5 −15 5 0 2 0 1 1 2 2 −2 2 1 −1 −1 = 1 −1 0 0 1 1 2 1 0 2 0 −2 −2 −6 2 0 1 3 −1 = −1 −1 + 2 1 /3 −1 0 1 −2 −6 2 0 2 0 0 1 0 5 5 /15 0 0 0 /15 0 0 0 −4 0 −15 −10 3 15 12 0 0 12 + 3 15 /30 30 24 2 5 /30 9 0 9 /30 18 1 −1 −1 2 1 2 2 1 −1 2 2 2 2 −2 2 −1 = 1 −1 −1 2 1 6 2 −10 5 = −2 −3 −1 + 1 /15 −6 −2 10 1 1 2 1 1 2 2 2 2 2 −1 2 = −2 3 −2 1 0 2 0 0 −20 0 10 0 −10 0 −6 10 0 −15 −10 3 3 0 9 0 0 + 3 −3 /30 21 0 0 −1 0 −2 3 3 3 + 3 0 /4 3 0 −4 4 4 0 4 1 2 /4 1 1 0 /4 1 0 −1 1 0 −5 −15 3 12 8 12 8 0 + 3 0 /20 12 8 1 5 /20 8 8 0 /20 8 0 −1 0 −1 3 3 3 + 3 0 /3 3 1 1 /3 0 0 0 /3 0 0 −3 6 6 0 6 0 −3 −1 0 0 −10 3 3 6 10 9 18 −5 6 + 3 3 /15 5 6 12 −1 5 −2 0 −2 2 = −7 1 1 0 2 1 2 2 0 0 −20 10 30 20 −10 0 28 −14 5 + 1 −15 −10 /30 0 −4 2 −30 −20 10 4 5 /30 3 9 −3 /30 21 0 1 0 48 Functions of matrices 1 1 2 −1 1 1 = −1 6 0 −6 2 −1 −1 3 −1 1 = 0 2 4 0 1 1 1 5 0 8 −10 4 −8 4 0 0 16 −8 + 1 −8 /16 −8 10 −4 8 −4 2 −3 −1 = 4 1 5 6 0 −6 0 8 = −1 −8 + /16 −10 0 10 1 1 2 1 1 2 −1 1 −1 −1 2 1 = −1 5 0 −5 1 −1 0 0 1 0 1 2 1 1 4 8 4 8 16 8 1 1 1 2 4 4 4 1 1 0 0 −1 1 0 1 0 −1 2 −1 −1 4 2 = −5 2 3 4 −4 4 5 −5 = −1 −5 + /12 3 −3 3 1 1 −1 1 1 1 1 −1 0 0 1 0 2 8 8 0 12 12 12 4 4 0 1 1 2 + 3 /16 6 8 10 0 1 0 0 −2 0 4 3 6 0 2 0 0 −5 0 −4 3 3 −8 8 0 10 −4 /16 2 0 6 0 8 /16 0 10 2 −4 /16 10 −8 10 0 0 /16 −8 10 0 8 −8 6 0 6 −4 4 0 3 + 3 12 /12 9 7 −4 /12 3 0 3 0 12 /12 0 9 0 −1 0 1 0 4 12 −4 /12 3 3 −12 9 −4 3 −12 9 −4 0 0 + 3 0 /12 /12 −4 3 −12 9 0 2 0 0 2 0 0 1 0 8 3 −3 −4 0 −4 + 3 −3 /12 0 −3 1 0 −2 4 −1 2 = −1 −1 5 0 1 1 1 3 0 0 0 0 16 −8 −8 10 −6 = −1 −8 + 1 8 −4 −4 /16 8 −10 6 −8 4 4 1 1 −1 0 −6 0 −4 3 2 −4 −8 + 3 /16 −4 2 −1 −1 1 −1 1 = 0 3 4 0 1 1 1 3 0 4 −7 4 −4 4 0 0 12 −12 + 2 −12 /12 −4 7 −4 4 −4 2 −5 −1 = 4 1 7 5 0 −5 0 4 = −1 −4 + /12 −7 0 7 1 1 2 0 1 0 −1 4 3 1 −4 /12 9 0 0 3 9 /12 3 9 0 8 −10 0 −8 4 3 0 2 0 8 10 + 3 0 /16 0 6 0 1 0 6 4 /16 2 8 10 /16 6 1.5. 3 × 3 matrices with distinct eigenvalues 49 −1 1 −2 −1 −1 1 = −1 −1 1 0 2 1 1 3 0 4 −5 3 8 8 5 −3 4 = −1 −4 + 2 4 /12 4 −5 3 −4 −4 0 2 0 0 4 0 −4 3 0 0 2 0 0 4 0 −4 3 0 −1 4 −1 0 −1 1 = −3 0 1 0 1 5 1 1 0 4 −4 4 8 4 −4 3 −3 0 0 = −1 −3 + 2 0 /12 5 −5 5 −8 −4 4 0 2 0 0 1 0 −8 3 3 + 3 0 1 0 −1 3 2 0 2 0 0 2 −2 4 + 2 2 /6 −2 1 3 −4 0 2 0 0 2 −2 9 4 3 + 2 2 /6 3 −2 −5 3 2 1 1 −1 1 1 2 −1 1 −2 1 2 = −1 −1 3 1 1 1 1 4 −3 5 8 3 −5 = −1 −4 + 2 4 /12 4 −3 5 −4 1 1 −1 1 2 1 1 1 −1 −1 0 0 0 0 0 −8 −4 + 3 /12 4 1 2 2 1 1 −1 1 2 2 = −1 0 0 + 3 /12 0 −1 2 −1 = 1 −1 5 2 −2 2 1 −1 1 + /6 5 −5 5 1 −1 2 0 1 0 0 1 1 0 1 −9 −9 0 3 3 1 2 −1 −1 1 −1 = −1 2 1 2 −5 −1 5 1 = −1 −2 + /6 2 −5 −1 1 1 −1 1 −1 2 −2 −1 −1 0 1 0 3 1 1 1 0 0 0 9 3 3 0 0 0 0 0 0 0 3 3 3 0 /12 3 −3 3 /12 9 3 9 3 5 4 /12 3 3 9 /12 3 0 9 9 1 4 /12 3 0 3 /12 3 −1 −4 9 0 1 0 0 1 0 −3 3 9 −3 0 3 0 1 0 −9 2 4 0 4 3 + 2 8 /6 3 4 −1 1 −3 −2 −1 2 = −1 1 −1 0 −1 1 1 1 0 2 1 5 0 −9 −9 3 3 = −1 −2 −1 −5 + 1 0 /6 2 1 5 0 3 3 1 1 −1 /12 −5 −4 3 2 4 2 8 4 −4 −4 −2 2 1 3 /6 −2 −2 −4 /6 −2 5 3 /6 −2 4 2 /6 −2 −1 3 /6 4 −8 −4 /6 4 50 Functions of matrices −1 −2 2 = 5 2 1 2 −2 2 5 −5 = −1 −5 + /6 −1 1 −1 1 1 −1 1 −1 −1 −1 −1 1 0 2 0 0 −1 0 9 2 −4 0 4 3 + 2 −4 /6 3 −8 0 1 0 1 3 −2 0 4 0 −4 3 0 0 + 3 0 /8 0 −6 4 2 0 2 0 0 5 0 −5 3 0 −8 0 4 −1 5 −1 1 −1 1 = −3 0 1 0 1 4 1 0 0 5 −5 5 4 −4 −8 3 −3 0 0 = −1 −3 + 2 0 /12 4 −4 4 −4 4 8 0 2 0 0 1 0 −4 3 3 + 3 −1 3 −3 1 −2 1 = −2 1 1 0 −1 5 2 0 0 6 −6 12 15 −15 −15 4 −8 5 5 = −2 −4 + 1 −5 /30 10 −10 20 −10 10 10 0 1 0 0 2 0 −5 3 9 + 3 0 1 0 0 8 0 −8 3 0 + 3 1 1 −1 2 1 2 0 = −1 −4 4 0 1 1 1 0 9 9 2 0 −2 4 −1 2 = −1 −1 3 0 1 1 1 1 0 0 0 8 −8 −8 6 −2 + 1 4 −4 −4 /8 −6 2 −4 4 4 −1 1 −3 2 2 = −1 −1 3 1 1 1 2 5 −8 7 15 8 −7 = −2 −5 + 2 5 /20 5 −8 7 −5 1 1 −1 1 1 −1 1 1 −1 2 1 2 0 3 3 −2 0 0 0 −15 0 −5 + 3 /20 0 5 2 2 1 2 2 1 −1 0 −2 −4 −1 2 = −1 −1 3 0 1 1 1 5 0 0 0 0 16 8 8 6 −10 4 4 = −1 −8 + 1 8 /16 8 −6 10 −8 −4 −4 1 1 −1 −1 1 2 0 1 0 /12 /30 /16 0 0 0 2 −2 −4 8 6 2 8 12 8 7 5 /20 4 8 12 /20 8 9 9 0 21 21 0 4 5 /30 3 3 3 /30 0 3 3 0 −2 5 21 10 −4 /16 2 −8 −8 6 6 /16 10 10 −6 −4 2 0 0 0 2 4 /8 2 8 6 /8 2 1 8 /12 3 3 3 /12 0 −1 4 9 9 9 0 −1 3 /6 2 −2 2 /6 4 1.5. 3 × 3 matrices with distinct eigenvalues 1 −1 1 −1 −1 = 1 −1 −3 1 1 2 1 5 −3 −4 4 3 4 = −1 −5 + 2 −4 /12 −5 3 4 8 51 0 2 0 0 −5 0 4 3 −3 3 0 −3 1 −1 1 −3 −2 −1 = 1 −1 −7 0 −1 2 1 1 0 6 −4 −10 15 −5 10 4 10 5 −10 = −2 −6 + 1 −15 /30 −12 8 20 15 −5 10 0 1 0 0 −6 0 15 3 −3 4 −5 −3 1 2 1 1 −1 1 5 −1 −1 = 1 −1 3 0 1 0 2 4 0 10 −6 −8 −4 −4 8 6 8 4 −8 = −1 −10 + 1 4 /16 0 0 0 −8 −8 16 0 1 0 1 2 1 1 −1 1 3 −1 −1 = 1 −1 1 0 2 0 3 4 0 7 −5 −4 −4 −4 4 5 4 4 −4 = −1 −7 + 2 4 /12 0 0 0 −12 −12 12 −1 −1 −1 3 −1 1 = 1 1 5 0 1 0 2 4 0 6 −10 8 4 4 −8 10 −8 8 = −1 −6 + 1 −4 −4 /16 0 0 0 −8 −8 16 0 1 0 1 2 1 1 2 1 1 2 1 1 2 −1 −1 0 0 0 0 0 4 3 −4 + 3 9 /12 8 −3 1 2 −1 2 1 1 2 1 1 2 1 1 −1 −1 −1 1 −1 1 = 1 1 3 0 2 0 3 4 0 5 −7 4 4 4 −4 7 −4 4 = −1 −5 + 2 −4 −4 /12 0 0 0 −12 −12 12 1 2 1 2 1 1 9 + 3 21 /30 −3 3 9 −3 4 4 /12 0 0 0 /12 0 10 10 /30 0 9 0 21 0 /30 −3 0 0 −10 6 0 −4 −4 3 2 2 10 10 6 + 3 6 /16 8 8 8 8 /16 0 0 0 /16 0 0 2 0 0 −7 0 −4 3 3 + 3 4 4 /12 0 0 0 /12 0 /12 9 3 12 5 −4 3 9 3 12 0 −6 0 −4 3 2 10 −4 2 0 2 0 0 −5 0 −4 3 3 7 −4 3 + 3 6 + 3 10 /16 8 /12 3 9 12 −8 8 /16 0 6 0 10 0 /16 8 0 −4 4 /12 0 3 0 9 0 /12 12 0 52 Functions of matrices 1 2 1 2 1 −5 −1 1 −1 1 1 = 3 −1 1 0 −1 1 4 2 0 0 10 −10 0 −4 4 −8 6 0 4 −8 = −1 −6 + 1 −4 /16 −8 8 0 8 −8 16 0 1 0 1 2 1 1 −7 −1 1 −1 1 = 5 −1 1 0 2 4 1 0 0 −7 0 −4 4 −12 5 0 4 −12 + 2 −4 /12 4 0 4 −4 12 0 2 0 0 −1 0 4 3 9 + 3 2 1 −1 2 −3 −1 1 −1 2 = 1 −1 1 0 1 2 1 0 0 −3 0 −2 2 −4 1 0 2 −4 + 1 −2 /4 2 0 2 −2 4 0 1 0 0 −1 0 2 3 3 3 + 3 3 /4 0 1 −2 1 2 1 −1 2 −2 −2 1 −1 2 = 1 −2 1 0 2 1 1 0 0 −2 0 −2 2 −6 1 0 2 −6 + 2 −2 /3 1 0 1 −1 3 0 2 0 0 −1 0 1 3 3 3 + 3 3 /3 0 1 −1 0 2 1 −1 7 = −1 −5 −4 1 2 1 3 = −1 −1 −2 1 2 1 2 = −1 −1 −1 0 −2 2 0 4 −4 3 10 6 10 6 6 + 3 10 /16 0 0 1 2 1 2 −8 0 1 −2 −1 = 7 −1 1 0 1 5 1 0 0 8 −8 −8 0 0 0 7 7 5 −15 = −2 −7 + 2 −5 /20 −5 5 5 5 −5 15 0 2 0 1 2 1 0 1 0 2 1 −1 −1 −3 −1 = 5 1 4 6 −6 0 10 0 = −1 −10 + /16 −8 8 0 2 1 −1 1 −1 1 0 0 0 1 1 2 1 4 4 8 −4 −4 −8 /12 1 −4 3 9 9 0 0 8 /16 8 8 8 /16 0 0 12 /12 12 3 12 3 12 /12 0 0 1 1 0 0 0 0 0 4 /4 4 4 4 /4 0 0 3 /3 6 6 6 /3 0 0 −1 1 1 0 5 −5 15 /20 3 12 8 8 12 8 8 8 8 + 3 12 /20 /20 0 0 0 0 −2 0 4 3 6 8 8 + 3 /16 16 0 8 /16 −8 10 −8 10 −8 /16 0 0 2 −4 10 6 6 0 1.5. 3 × 3 matrices with distinct eigenvalues −1 −5 −1 = 7 2 4 5 −5 0 7 0 = −1 −7 + /12 −4 4 0 1 2 1 2 1 −1 1 −1 1 0 0 0 1 1 1 2 2 −2 −2 2 = 2 −1 2 1 1 6 −10 2 10 −2 = −2 −6 + 1 /15 −3 5 −1 1 2 1 1 2 1 2 −1 −1 −1 2 2 = −2 1 2 2 10 −20 5 −10 + 3 /15 −5 10 5 −5 0 9 6 3 −1 10 /15 6 0 18 0 12 /15 0 6 0 0 0 −4 3 4 0 + 3 4 /4 4 −1 −2 3 2 −1 −1 3 −1 2 = 0 −2 4 0 1 1 1 1 0 −4 −2 −4 4 −4 0 0 8 −8 + 1 −8 /8 4 2 4 −4 4 0 1 0 0 −6 0 4 3 2 6 + 3 8 /8 2 4 −4 0 1 1 −1 6 0 −6 1 1 −1 0 −3 0 0 3 3 0 1 0 2 −1 −1 −1 = 1 −3 1 1 1 8 −5 −7 5 7 = −2 −8 + 2 /20 −8 5 7 1 2 2 3 −2 2 0 1 0 0 0 0 0 1 0 12 12 + 3 /12 12 1 0 −4 12 /12 9 −12 3 9 −12 3 9 −12 /12 0 0 0 −1 2 −1 0 −1 2 = −3 1 1 0 1 1 1 1 0 0 −2 2 4 2 −2 0 3 −3 2 + 1 −4 −2 /4 0 −1 1 −4 −2 2 1 1 2 = −1 −4 −4 −4 0 −1 0 4 3 3 0 1 0 = −1 1 2 2 4 4 4 0 2 0 2 −5 −2 0 −2 2 = −1 2 2 0 −1 7 1 1 0 0 10 −20 30 −10 20 0 2 −4 10 −20 + 1 −30 /30 0 −14 28 −15 5 −10 53 3 −2 2 0 2 0 0 0 0 0 0 0 −15 3 15 −2 4 5 −10 /30 9 12 0 0 0 18 24 + 3 30 /30 /30 15 9 12 0 3 3 0 0 0 0 −8 5 0 0 −5 3 4 0 5 −5 12 0 15 −15 0 + 3 8 /20 −5 5 8 0 0 2 0 1 2 /4 1 0 1 /4 1 2 4 /8 2 6 8 /8 2 7 5 /20 4 12 8 /20 8 54 Functions of matrices 2 −1 −1 1 −1 2 = 0 −3 2 0 1 1 1 0 0 −1 −1 −2 1 −2 0 0 3 −6 + 2 −6 /3 1 1 2 −1 2 0 2 0 2 −3 0 1 −2 2 = −1 −2 2 0 −1 5 1 0 0 6 −3 −6 0 0 0 10 −10 = −2 2 −1 −2 + 1 −20 /15 −10 5 10 10 −5 5 0 1 0 1 2 2 1 2 −1 = −1 1 2 2 1 2 2 1 −1 0 0 −2 0 10 3 9 1 −5 3 1 0 −1 1 −3 0 0 0 2 = −1 1 1 0 −1 0 −2 −1 1 1 1 0 0 3 2 0 0 0 2 −1 −1 2 0 2 −2 1 1 − 1 −2 + 3 2 /4 /4 0 −2 2 −2 1 1 2 −2 1 1 2 0 −2 1 2 −1 1 −1 2 = −3 0 −2 0 2 3 3 3 + 3 6 /3 0 0 0 0 9 + 3 18 /15 0 3 6 0 1 1 1 1 −1 1 3 −1 −1 = 1 −1 1 0 1 0 2 4 0 6 −2 −4 −4 −4 4 2 4 4 −4 = −1 −6 + 1 4 /8 0 0 0 −8 −8 8 0 1 0 0 −6 0 −4 3 2 6 + 3 2 /8 8 2 −4 2 1 −1 1 1 −1 −1 = 1 −1 0 0 2 0 3 2 0 2 −1 −1 −2 −2 1 1 1 2 −1 = −1 −2 + 2 2 /3 0 0 0 −6 −6 3 0 2 0 0 −2 0 −2 3 3 3 + 3 0 /3 6 1 −2 3 0 1 0 0 −12 0 −5 4 2 3 −5 2 + 4 1 2 2 1 2 2 2 1 2 2 1 2 2 −1 1 4 −1 −1 = 1 −2 1 0 2 0 2 5 0 12 −3 −9 −5 −5 5 3 9 10 −10 = −1 −12 + 1 10 /15 0 0 0 −10 −10 10 1 2 2 2 1 2 /15 8 2 10 6 2 8 3 0 6 8 2 10 1 2 /3 3 3 6 /3 0 2 5 /15 6 6 12 /15 0 2 1 /4 1 1 1 /4 1 4 4 /8 0 0 0 /8 0 1 1 /3 0 0 0 /3 0 9 5 /15 1 4 1 /15 5 1.5. 3 × 3 matrices with distinct eigenvalues 55 −1 −1 −1 1 −1 1 = 1 1 3 0 1 0 2 4 0 2 −6 4 4 4 −4 6 −4 4 = −1 −2 + 1 −4 −4 /8 0 0 0 −8 −8 8 0 1 0 0 −2 0 −4 3 2 2 + 3 6 /8 8 6 −4 2 −1 −1 −1 0 −1 1 = 1 1 1 0 2 0 3 2 0 1 −2 1 2 2 −1 2 −1 1 = −1 −1 + 2 −2 −2 /3 0 0 0 −6 −6 3 0 2 0 0 −1 0 −2 3 3 0 + 3 3 /3 6 2 −2 3 −1 −1 −2 1 −1 2 = 1 1 4 0 2 0 2 5 0 3 −12 9 10 10 −10 12 −9 5 = −1 −3 + 1 −5 −5 /15 0 0 0 −10 −10 10 0 1 0 0 −3 0 −5 4 2 12 −5 2 + 4 0 2 0 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 1 −1 1 −1 = 1 −1 1 1 3 8 −7 −5 7 5 = −2 −8 + 2 /20 −8 7 5 1 2 2 2 1 −1 3 −2 2 0 2 0 0 −5 0 5 0 −15 0 3 6 1 2 2 2 2 −4 −1 2 −1 1 2 = 1 −1 2 0 −1 2 3 1 1 0 12 −12 0 −5 10 −10 3 0 10 −10 = −1 −3 + 1 −5 /15 −9 9 0 5 −10 10 0 1 0 1 2 2 0 1 0 2 −4 1 2 −1 −1 = 3 −1 1 0 1 1 1 2 0 12 0 −12 −5 −10 10 0 9 10 −10 = −1 −9 + 1 5 /15 −3 0 3 −5 −10 10 −1 1 /3 0 0 0 /3 0 −9 5 /15 1 2 1 8 4 /15 10 5 0 −8 7 0 0 −5 3 4 4 5 12 12 −5 8 + 3 8 /20 15 8 8 2 2 2 /15 2 8 10 2 6 8 −4 4 /8 0 0 0 /8 0 5 5 /20 0 0 0 /20 0 0 −3 3 0 0 5 −10 10 /15 4 4 1 5 8 2 10 2 10 + 4 8 /15 /15 4 1 5 0 −3 0 3 0 −5 −10 10 /15 4 4 5 1 8 10 2 5 1 + 4 4 /15 /15 8 10 2 56 Functions of matrices 2 −1 −1 4 −1 2 = 0 −2 5 0 1 1 2 1 0 −9 −3 −5 5 −5 0 0 10 −10 + 1 −10 /15 9 3 10 −10 10 1 2 2 2 2 −1 12 = −1 0 −12 1 2 2 2 −1 1 = −2 0 1 0 0 −12 0 5 4 2 9 −5 1 0 0 0 −4 2 8 3 −4 5 8 + 4 10 /15 2 −1 −3 −1 1 −2 0 1 = 5 2 1 0 −1 −1 1 2 1 0 0 0 −9 9 4 4 −8 0 15 −15 16 − 1 −8 −8 /12 /12 0 3 −3 −8 −8 16 + 2 4 5 1 8 8 8 −3 8 /12 −1 5 −1 5 −1 /12 5 −1 1 3 0 1 −2 −1 = −5 −1 0 0 2 1 2 2 0 6 −6 −3 0 0 0 10 5 5 −5 = −2 −10 + 1 10 /15 2 −2 −1 −20 −10 10 0 1 0 0 2 0 −10 3 9 + 3 2 −1 −1 1 −1 2 = 0 2 4 0 1 1 1 3 0 4 −6 4 −4 4 0 0 8 −8 + 1 −8 /8 −4 6 −4 4 −4 0 1 0 0 −2 0 −4 3 2 2 + 3 8 /8 6 −4 4 0 1 −2 −1 0 −1 2 = −1 1 1 0 1 3 1 1 0 2 −2 4 −2 2 1 −1 2 −2 + 1 −4 /4 −3 3 −4 2 −2 0 1 0 0 0 0 −4 3 4 0 + 3 4 /4 4 −1 2 1 1 2 2 1 2 2 2 −1 2 −1 1 1 = −1 1 2 2 2 0 −2 −1 1 2 = −1 0 0 0 /15 9 0 18 3 5 /15 2 8 10 /15 2 −1 5 /15 3 6 3 0 0 /15 12 6 −2 −5 6 0 0 0 0 1 1 6 −4 /8 2 2 8 /8 6 1 −2 /4 3 0 3 /4 3 1.6. 3 × 3 singular matrices 1.6 57 3 × 3 singular matrices The following 3 × 3 matrices have nonzero integer entries, are singular, have distinct integer eigenvalues, and are not symmetric: 1 1 2 −2 −3 1 −1 0 0 0 −4 4 1 1 2 = −2 1 1 0 0 0 −5 5 0 /20 1 2 1 3 1 1 0 0 4 5 7 8 0 8 −8 15 −15 0 5 7 8 5 0 7 8 8 −8 = −1 0 + 0 −5 + 4 5 /20 /20 /20 −5 5 0 5 7 8 0 −12 12 1 1 1 2 −3 1 1 1 −2 = 2 1 1 0 −9 0 3 + 1 /12 0 3 1 2 1 9 = 0 −3 −3 1 1 1 2 1 2 0 0 0 = −1 1 1 1 2 2 1 9 = 0 −3 −3 1 1 2 1 1 1 = −1 1 1 2 8 8 −12 1 1 2 = −1 0 8 −8 1 1 1 0 0 0 −4 8 −4 1 2 −3 1 2 = −3 1 1 1 2 1 1 −8 8 15 12 −12 + 0 −5 /20 −8 8 −5 1 −3 −1 1 = 1 −1 2 1 2 −9 0 3 0 + 1 /12 3 0 1 1 1 0 0 0 4 4 −8 0 −3 0 0 4 3 4 3 −8 + 4 3 /12 4 3 0 −4 4 0 0 0 −5 4 5 −4 0 8 0 0 0 0 1 0 −1 0 0 0 0 0 0 −15 0 5 + 4 /20 0 5 4 4 4 5 5 5 0 −3 0 0 4 3 −4 3 −4 + 4 3 /12 8 3 0 0 0 2 −2 1 1 −1 2 = −2 −3 1 0 1 3 1 1 0 5 −5 0 −8 15 0 −8 + 0 −15 /20 5 −5 0 12 0 1 0 0 0 0 0 −4 0 5 4 7 0 0 0 0 −8 0 −15 4 1 + 4 0 0 + 4 /20 0 1 0 −1 5 −1 2 = −1 1 7 0 1 1 0 8 0 0 0 15 −5 −5 8 −12 5 5 + 0 −15 /20 −8 12 0 0 0 /20 3 4 /12 5 5 5 /12 5 8 8 8 0 4 /12 4 4 4 /12 4 3 −4 5 5 5 5 0 −5 5 7 7 7 5 5 5 −8 5 1 5 7 8 4 5 /20 7 7 7 /20 7 4 0 /20 8 8 8 /20 8 12 5 /20 1 5 5 7 7 /20 8 8 58 Functions of matrices 1 1 2 1 1 2 = −1 1 1 2 1 2 1 = 0 1 1 2 = −1 9 0 −9 2 1 1 8 0 −8 1 1 2 12 0 −12 2 2 2 = −1 5 5 −10 2 −1 −1 7 −1 1 = 0 1 5 0 1 1 0 8 0 8 −12 5 −15 5 0 0 15 −5 + 0 −5 /20 −8 12 0 0 0 1 −1 0 3 1 = 0 −1 4 2 1 1 5 −3 −3 0 0 0 0 8 + 1 −4 /12 3 3 4 −8 0 0 0 0 −8 0 −5 4 1 + 4 0 1 0 0 0 0 2 −1 2 1 −1 2 = −1 −3 1 0 1 2 2 1 0 0 −5 6 −6 0 −5 9 + 0 −9 /15 0 10 6 −6 0 0 0 6 6 6 5 0 /15 5 5 5 /15 5 0 8 −12 0 −15 5 4 1 1 5 5 8 + 4 8 /20 7 7 8 5 /20 1 5 8 /20 7 0 0 + 5 /15 0 1 0 −1 5 −1 2 = −1 0 8 0 1 1 1 7 0 0 0 0 15 −5 −5 12 −8 0 0 = −1 −8 + 0 0 /20 8 −12 8 −15 5 5 0 0 0 1 2 1 1 2 1 0 1 0 9 = 0 −9 0 3 4 5 0 −5 0 3 5 4 1 1 2 3 4 /12 1 3 4 /12 5 3 −8 1 8 5 /20 1 8 5 /20 7 1 2 1 0 −9 0 −4 4 1 0 3 −8 + 4 5 /12 8 4 0 0 0 12 −5 /20 1 7 7 5 5 /20 8 8 0 −12 8 0 5 −15 4 1 1 8 8 5 + 4 5 /20 7 7 7 5 8 0 −9 0 4 4 1 0 3 −4 + 4 4 /12 4 5 0 0 0 2 −1 0 8 −1 1 = 0 −1 5 0 1 1 1 7 0 −8 −8 0 0 0 0 0 15 −5 + 0 −5 /20 8 8 5 −15 5 1 −1 0 3 1 = 1 −1 5 2 0 1 4 −3 −3 0 0 3 3 4 + 1 4 /12 0 0 −4 −4 /20 −8 15 1 0 −3 6 4 4 4 3 −4 1 3 5 4 3 8 /12 1 3 5 /12 4 1.6. 3 × 3 singular matrices 59 1 −1 −1 7 −1 2 = 1 0 8 0 1 0 1 5 0 8 −12 8 5 5 −15 12 −8 0 0 = −1 −8 + 0 0 /20 0 0 0 −5 −5 15 0 0 0 0 −8 0 −5 4 1 + 4 2 −1 0 8 −1 1 = 1 −1 7 0 1 0 1 5 0 −8 −8 0 0 0 8 8 5 −15 + 0 5 /20 0 0 −5 −5 15 0 0 0 0 −12 0 −5 4 1 + 4 1 2 −1 1 1 = −3 −1 1 1 2 3 1 −8 0 5 12 0 + 0 5 /20 −8 0 −15 0 0 0 0 4 0 −5 4 7 0 0 0 0 5 0 −3 5 4 0 0 0 0 −4 0 0 4 8 0 0 0 0 −5 0 −6 5 1 + 5 1 2 1 2 1 1 1 2 1 2 1 1 12 = −1 −12 0 1 2 1 2 1 2 8 = −1 −12 8 1 2 1 2 1 2 5 = −1 −10 5 1 2 2 1 1 1 12 = −1 −8 −8 1 2 2 1 2 2 = −1 5 0 −5 2 1 −2 1 2 = −2 −2 1 2 1 3 1 −5 0 6 10 0 + 0 6 /15 −5 0 −9 2 −3 1 1 = 2 −3 1 2 1 0 −12 0 8 + 0 /20 0 8 −1 0 0 0 0 0 −6 −6 + 5 /15 9 1 −1 1 0 1 0 0 0 0 /20 −5 −5 + 4 /20 15 −1 0 0 0 0 0 /20 −5 5 15 −15 + 4 /20 −5 5 2 −1 −1 4 −1 2 = 0 1 6 0 1 1 0 5 0 5 −10 6 −9 6 0 0 9 −6 + 0 −6 /15 −5 10 0 0 0 /15 12 −5 1 −8 15 /20 1 7 7 8 8 /20 5 5 8 −5 1 8 15 /20 1 8 8 7 7 /20 5 5 −4 0 8 8 8 8 0 5 /20 5 5 5 /20 5 5 5 5 0 3 /15 6 6 6 /15 6 5 5 5 4 5 /20 7 7 7 /20 7 7 8 5 8 7 5 7 7 7 −5 0 5 4 4 4 0 −5 5 8 8 8 −5 9 1 4 6 5 10 −6 /15 1 4 4 6 6 /15 5 5 60 Functions of matrices 1 −3 −1 1 = 2 −1 1 2 3 12 −12 0 8 0 = −1 −8 + 0 /20 −8 8 0 1 −1 1 0 1 0 0 0 0 0 −4 0 0 4 8 1 −1 1 0 1 0 0 0 0 0 −5 0 0 5 5 1 −1 −1 4 −1 2 = 1 0 5 0 2 0 1 6 0 5 −10 5 6 6 −9 10 −5 0 0 = −1 −5 + 0 0 /15 0 0 0 −6 −6 9 0 0 0 0 −5 0 −6 5 1 + 5 2 −1 0 5 −1 1 = 1 −1 4 0 2 0 1 6 0 −5 −5 0 0 0 5 5 6 −9 + 0 6 /15 0 0 −6 −6 9 0 0 0 0 −10 0 −6 5 1 + 5 2 −1 0 5 −1 2 = 0 −1 6 0 1 1 1 4 0 −5 −5 0 0 0 0 0 9 −6 + 0 −6 /15 5 5 6 −9 6 0 0 0 0 −10 0 6 5 1 + 5 2 −2 2 1 = 1 −3 1 1 2 0 −10 0 5 + 0 /15 0 5 0 0 0 1 2 2 2 1 1 2 −2 −2 2 = 1 −2 2 1 3 10 −10 0 5 0 = −1 −5 + 0 /15 −5 5 0 1 2 2 2 1 1 1 2 2 1 2 2 2 1 2 10 = −1 −10 0 1 2 2 2 2 1 = −1 0 0 0 6 6 −9 −5 −5 + 4 /20 15 −6 −6 + 5 /15 9 2 1 2 0 5 0 5 0 −15 1 2 2 10 0 −10 2 2 2 10 = −1 −5 −5 1 −1 1 0 1 0 0 0 0 −6 9 −6 /15 /15 /15 0 −5 0 0 5 5 6 −9 + 5 /15 6 7 7 7 0 5 /20 5 5 5 /20 5 4 4 4 0 3 /15 6 6 6 /15 6 4 −5 7 8 8 8 5 −3 4 5 5 5 10 −6 1 −5 9 /15 1 4 4 5 5 /15 6 6 5 −6 1 5 4 6 5 9 /15 1 5 4 /15 6 5 6 4 5 6 /15 1 5 6 /15 4 6 6 6 5 3 /15 4 4 4 /15 4 4 5 6 5 4 6 5 −9 1 5 6 4 0 −3 6 5 5 5 1.6. 3 × 3 singular matrices 2 1 1 = 0 1 1 −2 1 2 = −3 1 1 2 1 1 1 −3 3 8 0 9 −9 0 + 1 −4 /12 −3 3 −4 0 0 0 0 1 0 −1 4 1 = −1 0 3 2 1 1 5 0 0 8 −4 9 −3 0 + 1 0 /12 −9 3 −8 4 0 0 0 1 0 −1 4 2 = −1 1 5 1 1 0 3 0 0 8 −4 3 −9 4 + 1 −8 /12 −3 9 0 0 0 0 0 2 −1 −1 5 1 = 0 1 4 1 1 0 3 3 −9 4 −8 0 0 8 + 1 −4 /12 −3 9 0 0 0 0 0 1 −1 −2 1 1 = −1 1 1 1 3 1 1 3 −3 8 −8 3 −3 4 + 1 −4 /12 −9 9 −4 4 0 0 0 2 −2 −3 1 2 = −2 1 1 2 3 1 1 0 8 −8 15 −15 0 8 −8 5 + 1 −5 /20 0 −12 12 −5 5 0 0 0 1 1 1 2 1 1 0 0 0 1 1 2 0 = 0 −3 3 2 1 1 1 2 1 = 0 2 1 1 = 0 2 1 1 = 0 3 0 −3 1 2 2 0 3 −3 1 2 1 2 1 1 0 0 0 1 2 2 = 0 61 0 0 0 −4 4 4 −8 4 4 + 4 4 /12 4 4 −3 0 3 0 3 0 −8 4 1 −4 4 0 + 4 3 /12 4 5 −9 4 1 0 −3 0 −8 4 1 −4 4 4 + 4 5 /12 0 3 −3 4 1 0 −3 0 −4 4 1 4 5 −4 + 4 4 /12 0 3 −3 8 1 0 0 0 −4 4 4 0 4 0 + 4 4 /12 0 4 −3 4 5 0 0 0 −5 5 5 0 5 0 + 5 5 /20 0 5 −4 5 7 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 3 3 3 4 3 5 4 5 3 5 4 3 5 5 5 7 7 7 3 4 /12 5 5 5 /12 5 3 4 /12 1 4 3 /12 5 9 4 /12 1 4 5 /12 3 9 −4 /12 1 5 4 /12 3 3 0 /12 3 3 3 /12 3 4 0 /20 8 8 8 /20 8 62 Functions of matrices 2 1 1 2 1 1 3 = 0 −3 0 2 1 1 2 2 2 = 0 2 1 2 1 2 1 = 0 2 1 2 = 0 2 1 2 = 0 8 8 −12 1 2 2 3 3 −9 1 2 1 0 0 0 2 1 2 0 8 −8 1 2 2 = 0 8 0 −8 1 −1 −1 5 1 = 1 0 3 2 0 1 4 −9 3 4 4 9 −3 0 + 1 0 /12 0 0 −4 −4 0 −3 0 −4 4 1 −8 5 0 + 4 3 /12 8 4 9 −4 1 1 2 −3 1 0 0 0 0 2 = −3 1 1 0 1 0 −5 2 2 1 1 0 0 5 5 −8 8 15 0 −15 5 12 −12 0 5 + 1 −5 + 5 5 /20 /20 −8 8 −5 0 5 5 −4 0 8 1 −1 1 1 1 = −1 −2 1 1 3 1 1 0 −3 4 0 −3 + 1 −8 /12 0 9 4 2 −2 1 1 2 = −2 −3 1 2 3 1 1 0 −8 5 0 −8 + 1 −15 /20 0 12 5 0 0 0 5 3 4 8 8 8 0 −3 0 4 4 5 0 5 0 + 4 5 /12 0 5 0 −4 4 0 −4 0 5 5 7 0 7 0 + 5 7 /20 0 7 0 −5 5 0 −8 0 −15 5 1 −5 5 5 + 5 7 /20 0 8 −8 5 1 0 −8 0 −5 5 1 5 7 −5 + 5 5 /20 0 8 −8 15 1 0 0 0 −4 8 −4 0 1 0 0 0 0 −5 15 −5 1 0 −1 5 2 = −1 1 7 2 1 0 8 0 0 15 −5 8 −12 5 + 1 −15 /20 −8 12 0 0 0 0 0 2 −1 −1 7 1 = 0 1 5 2 1 0 8 8 −12 5 −15 0 0 15 + 1 −5 /20 −8 12 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 4 4 4 5 5 5 5 7 8 7 5 8 −3 8 /12 1 5 3 /12 4 4 5 /20 7 7 7 /20 7 3 0 /12 3 3 3 /12 3 4 0 /20 8 8 8 /20 8 12 5 /20 1 5 7 /20 8 12 −5 /20 1 7 5 /20 8 1.6. 3 × 3 singular matrices 2 1 2 2 1 2 = −1 0 5 −5 63 2 0 −1 6 −1 2 = −1 1 4 0 1 1 0 5 0 0 0 9 −6 −6 5 −10 6 6 + 0 −9 /15 −5 10 0 0 0 2 −1 0 8 1 = 0 −1 5 2 1 1 7 −8 −8 0 0 0 0 15 + 1 −5 /20 8 8 5 −15 0 0 0 1 1 −1 1 1 = −3 −1 1 2 1 2 1 −3 0 4 0 9 0 0 + 1 4 /12 −3 0 −8 0 0 0 0 1 0 −1 5 2 = −1 0 8 2 1 1 7 0 0 0 15 −5 12 −8 0 = 0 −8 + 1 0 /20 8 −12 8 −15 5 0 0 0 2 1 2 2 2 1 = 0 2 2 1 12 0 −12 1 1 1 3 = 0 −9 3 2 2 1 2 2 1 2 2 1 1 2 2 0 −5 0 −9 5 1 + 5 /15 6 4 5 10 6 /15 1 6 6 4 4 /15 5 5 8 5 /20 1 8 5 /20 7 0 3 0 −4 4 5 −4 5 −4 + 4 5 /12 8 5 3 3 3 0 4 /12 4 4 4 /12 4 0 1 0 0 8 −12 0 −15 5 5 1 1 −5 5 5 0 8 + 5 8 /20 5 7 7 8 5 /20 1 5 8 /20 7 0 5 −10 0 −9 6 5 1 1 6 6 5 + 5 5 /15 4 4 5 6 /15 1 6 5 /15 4 0 1 0 0 1 0 −3 0 3 0 0 0 1 −1 −1 7 0 0 0 −8 2 = 1 0 8 0 1 0 −5 2 0 1 5 0 0 5 1 8 −12 8 5 5 −15 7 12 −8 0 0 = 0 −8 + 1 0 + 5 8 /20 /20 0 0 0 −5 −5 15 5 2 2 1 −5 6 1 0 −12 8 0 5 −15 5 1 1 0 8 8 −5 5 + 5 5 /20 5 7 7 2 0 −1 6 −1 2 = −1 0 5 0 1 1 1 4 0 0 0 0 9 −6 −6 10 −5 0 0 = −1 −5 + 0 0 /15 5 −10 5 −9 6 6 2 1 2 0 0 0 12 −5 1 7 8 5 −8 15 /20 1 7 8 /20 5 64 Functions of matrices 2 2 1 2 2 1 12 = 0 −12 0 2 2 1 2 2 2 8 = 0 −12 8 2 2 2 1 1 2 = −1 2 2 2 12 = 0 −8 −8 2 1 2 0 0 0 = −1 1 2 −1 1 1 = −3 −1 1 2 2 3 1 −8 0 5 0 12 0 0 + 1 5 /20 −8 0 −15 0 −4 0 8 2 −3 1 1 = 2 −3 2 2 1 0 −12 0 8 + 1 /20 0 8 1 2 1 2 2 2 8 −5 1 2 2 1 0 0 0 0 0 0 −3 5 6 0 0 + 5 /15 0 1 1 1 0 5 0 5 0 −15 0 0 0 −1 0 0 −5 3 4 6 6 6 0 1 0 0 0 0 0 0 0 −3 5 6 −9 6 + 5 /15 6 0 0 0 0 −4 0 0 5 8 −5 8 −5 + 5 8 /20 15 8 0 0 0 0 1 0 0 5 /20 5 5 5 /20 5 8 8 8 0 −4 0 0 5 8 −5 5 8 15 −15 + 5 8 /20 −5 5 8 1 1 −3 1 2 = −2 2 1 1 1 2 1 −5 5 9 10 −10 + 0 −6 /15 −5 5 −6 1 −3 −1 1 = 2 −1 2 2 3 12 −12 0 8 0 = 0 −8 + 1 /20 −8 8 0 2 2 2 1 1 1 0 1 0 0 0 0 8 15 /20 1 8 7 /20 5 8 7 5 0 4 0 −5 5 7 −5 7 −5 + 5 7 /20 15 7 0 0 0 2 −1 −3 1 −1 2 = −1 2 1 0 1 2 2 1 0 0 5 −5 9 −9 0 5 −5 6 + 0 −6 /15 0 −10 10 −6 6 2 −1 0 8 0 0 0 −12 1 = 1 −1 7 0 1 0 −5 2 0 1 5 0 0 5 1 −8 −8 0 0 0 8 8 8 5 −15 + 1 5 + 5 7 /20 /20 0 0 −5 −5 15 5 4 4 4 4 5 /20 7 7 7 /20 7 0 −5 5 5 5 5 −5 0 5 6 6 6 5 5 5 4 −5 7 7 7 7 5 0 /15 5 5 5 /15 5 5 3 /15 4 4 4 /15 4 0 5 /20 5 5 5 /20 5 1.6. 3 × 3 singular matrices 1 −1 1 1 −1 = 1 −1 0 1 0 1 1 1 0 −1 −1 0 1 + 1 1 = 0 −1 0 0 0 −1 1 1 1 1 1 1 1 −1 −1 −1 = 1 1 −1 1 0 1 1 −3 3 = −1 −1 −1 + 0 /3 −1 −1 3 65 1 1 1 1 1 1 0 −1 0 1 0 −1 −1 1 2 1 1 0 1 1 1 0 −1 + 2 0 0 0 1 1 1 0 0 0 0 −1 1 −1 2 −1 1 0 1 0 −3 3 0 0 0 0 0 −1 0 0 2 1 3 2 −3 + 2 1 /3 0 1 −1 3 1 0 −1 0 −5 3 2 −1 5 2 0 0 0 2 −1 −1 2 −2 2 = −1 1 2 0 −1 2 0 1 0 1 1 −4 5 −5 1 −4 5 = −2 1 + 0 −5 /10 −2 −2 8 0 0 1 1 1 1 1 1 2 −1 1 1 −1 = 1 −2 0 2 0 1 1 2 0 −2 −1 0 2 = 0 −2 + 1 2 /2 0 0 0 −1 1 1 1 1 1 1 1 1 1 1 1 1 = 0 0 1 0 −1 −1 −1 0 1 = 1 1 1 1 0 1 1 0 −1 1 1 0 1 −1 + 1 −1 0 0 0 −1 −1 2 −1 1 −1 −1 0 0 0 0 0 + 3 /10 0 0 1 0 1 1 1 4 4 2 0 −1 1 1 0 1 4 0 /10 2 4 4 /10 2 2 1 /2 1 1 0 /2 1 0 0 1 −1 0 −1 −1 1 2 1 1 0 −1 0 0 0 1 + 2 1 1 0 1 1 1 0 0 0 0 −1 1 −1 1 −1 1 = −1 1 2 0 −1 1 0 1 0 −1 −1 3 3 0 −3 1 −3 0 3 = −1 1 + 0 −3 /3 −1 −1 3 0 0 0 1 1 1 4 4 2 0 −2 0 −1 3 1 1 1 −2 + 3 0 /2 1 1 0 0 0 2 1 1 3 −3 /3 0 0 0 /3 0 0 1 0 0 −1 0 −3 2 1 1 + 2 2 /3 1 0 0 0 −1 0 1 1 2 1 3 3 /3 0 0 0 /3 0 66 Functions of matrices 1 1 1 1 1 1 = 0 −1 −1 −2 0 2 = 1 1 1 2 0 1 1 0 −2 2 2 0 2 −2 + 1 −1 /2 0 0 0 −1 2 −1 −1 0 0 0 −1 3 1 −2 0 1 + 3 1 /2 1 1 0 0 0 1 −1 −1 1 1 = 0 −1 1 1 1 1 0 1 −1 0 −1 1 0 0 + 1 −1 1 = 0 0 −1 1 0 1 −1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 −1 = 0 1 1 0 1 0 /3 1 1 1 /3 0 0 −1 1 0 2 −2 2 3 −1 −4 3 −1 −4 + 2 3 −1 /2 2 0 0 0 2 /2 4 4 4 /2 0 1 1 −1 1 1 1 3 1 −2 2 −3 −2 1 2 = −1 −2 1 1 2 1 0 −3 0 −4 4 −1 0 4 + 1 −4 /2 2 0 2 −2 0 0 0 1 1 −1 1 1 1 1 1 −1 −1 −1 = 1 0 = 0 −1 −1 0 1 1 0 1 1 1 1 1 0 0 + 1 0 1 1 0 1 1 1 −1 −1 −1 1 −3 1 0 1 0 2 −2 −1 1 −1 0 0 −2 2 = −2 −3 1 0 0 0 3 −1 3 2 0 0 0 2 5 4 −4 −4 −3 3 0 5 9 0 = −1 4 −4 −4 + 0 −9 + 2 5 /6 /6 −6 6 6 6 −6 0 0 1 1 1 0 1 1 −2 1 /2 1 0 1 /2 1 0 −1 1 0 0 1 −1 1 2 1 0 1 −1 1 0 1 −1 + 2 1 0 1 1 0 0 0 1 1 −1 1 −1 0 1 −1 0 0 −1 1 = −1 −1 1 0 0 0 3 −1 3 1 0 0 0 2 2 1 −1 −1 0 0 0 2 3 0 = −1 1 −1 −1 + 0 −3 + 2 2 /3 /3 −3 3 3 3 −3 0 0 1 1 1 2 −1 1 0 0 0 2 −3 1 1 1 0 2 0 /6 4 4 4 /6 0 0 −1 1 0 0 1 −1 1 2 0 1 −1 1 0 1 −1 1 + 2 0 1 −1 1 0 0 0 0 1 0 1.6. 3 × 3 singular matrices 1 −1 1 −1 −1 −1 −1 = −1 −1 −3 1 1 1 = 1 1 3 67 1 1 3 1 0 1 1 1 + 0 /3 3 1 −1 1 0 0 0 3 0 3 2 −5 1 1 −1 = 3 −1 0 2 1 1 1 5 0 −5 −3 0 3 = 0 −3 + 2 3 /6 −1 0 1 −3 1 1 1 1 2 1 −6 6 −6 −1 3 −2 0 1 = −2 1 1 1 1 1 1 0 −6 6 6 0 4 −4 + 1 −3 /6 0 −2 2 −3 −1 4 −3 0 2 = −3 1 1 2 1 1 1 0 −12 12 12 0 9 −9 + 1 −4 /12 0 −3 3 −4 1 2 2 = 0 1 1 1 1 2 2 = 0 0 −1 0 −3 3 4 3 4 −3 + 3 0 /6 3 4 0 −6 6 0 −6 0 4 3 2 −3 0 3 0 0 0 −1 0 0 1 2 1 1 1 1 1 −3 2 −3 0 −3 −1 1 4 1 2 = −1 −3 3 −1 1 1 1 −6 −3 15 16 3 −15 = −1 6 + 0 −12 /12 −6 −3 15 4 1 1 1 0 −1 0 3 2 1 0 1 0 + 2 1 /3 0 0 1 −1 1 0 2 0 0 0 0 0 −16 0 12 + 3 /12 0 −4 2 2 0 6 0 6 2 6 2 −2 −3 5 0 0 0 −4 4 4 12 −12 0 −4 4 + 4 4 /12 −4 4 4 −3 −4 7 6 −3 −3 0 0 0 0 1 0 0 1 0 0 1 0 −3 2 2 2 + 2 0 /3 2 0 0 0 1 0 /3 −1 −1 −1 /3 0 1 3 /6 2 2 0 /6 2 15 −4 /12 1 3 1 9 3 /12 3 1 0 0 0 −3 3 3 −6 0 3 + 3 3 /6 3 3 0 0 0 1 1 0 1 −1 −1 = −3 −1 0 0 1 1 1 1 0 1 −1 −1 0 0 0 3 3 0 −3 = −1 −3 + 0 3 /3 1 −1 −1 −3 0 3 1 1 1 0 0 0 0 5 5 0 7 7 −1 0 1 1 0 1 2 3 /6 1 0 1 /6 1 3 4 /12 5 0 5 /12 5 −1 3 /3 1 1 0 /3 1 68 Functions of matrices 2 1 −1 1 −1 = −4 −3 0 2 1 2 1 3 −3 −3 4 12 12 = −1 −12 + 0 12 /12 3 −3 −3 −8 1 1 1 1 1 1 1 −1 1 1 −1 1 = −2 −1 1 1 = −2 −1 1 0 −1 1 0 2 −2 + /3 0 −1 1 −1 0 0 0 0 −3 −3 0 0 0 1 −1 2 2 0 −2 6 −2 2 = −2 0 4 0 2 1 1 7 0 0 0 0 36 −12 −24 40 −16 0 0 = −2 −8 + 0 0 /48 4 −20 8 −18 6 12 0 0 0 1 1 1 1 −1 −1 0 0 0 1 = −1 −1 −1 −1 0 −1 = 1 −1 1 0 0 0 2 1 = −2 −1 + /3 −1 2 1 1 1 1 1 −1 −1 0 0 0 3 0 −3 3 −2 1 0 1 0 1 0 1 0 0 0 0 −3 0 −3 5 0 5 0 0 0 −3 1 3 0 3 3 + 1 3 /3 3 3 1 1 1 2 −1 1 0 1 0 −3 0 3 0 0 0 1 −1 −1 1 = 1 0 1 1 1 −3 1 3 −1 + 0 /3 3 −1 0 3 0 −4 3 5 0 −4 0 −12 + 3 /12 0 8 1 −2 1 0 1 0 0 1 1 0 0 0 −3 4 /12 7 3 7 0 0 /12 3 7 −1 0 1 1 1 1 1 3 /3 −1 −1 −1 /3 −1 0 4 −20 8 0 −18 6 12 /48 4 2 2 4 12 12 24 8 16 + 4 8 /48 /48 14 14 28 0 −1 0 0 2 1 −3 2 0 + 2 1 /3 3 1 3 −3 0 0 −1 0 0 1 1 3 3 0 + 1 1 /3 3 1 2 −3 1 0 0 0 0 0 0 3 1 1 −1 3 /3 1 2 1 /3 1 1 3 /3 −1 −3 −1 /3 −1 1.7. 3 × 3 symmetric matrices 1.7 69 3 × 3 symmetric matrices The following 3 × 3 matrices have nonzero integer entries, are nonsingular, have distinct integer eigenvalues, and are symmetric: 1 1 2 −1 1 1 −1 0 0 −3 0 3 1 2 1 = 0 −2 1 0 1 0 1 −2 1 /6 2 1 1 1 1 1 0 0 4 2 2 2 3 0 −3 1 −2 1 2 2 2 4 −2 2 2 0 0 = −1 0 + 1 −2 + 4 2 /6 /6 /6 1 −2 1 2 2 2 −3 0 3 1 2 1 2 1 1 3 = −1 −3 0 1 2 2 2 2 1 4 = −1 −2 −2 2 1 1 1 1 2 0 0 0 = −1 2 1 2 1 2 2 = −1 2 2 1 1 1 −2 2 1 2 1 = −1 −2 1 1 −1 −1 1 −1 1 1 −1 1 0 = 2 0 2 1 0 −3 0 1 1 −2 3 0 1 −2 + 1 1 /6 0 0 −2 −2 4 0 1 0 0 −3 0 −1 4 2 2 + 4 2 /6 2 3 −1 2 2 −2 0 1 = 1 −1 2 1 1 −2 −2 1 1 + 1 /6 1 1 0 1 0 0 −2 0 0 5 2 0 2 −3 2 + 5 /6 3 2 1 −3 2 0 0 0 −2 4 2 2 + 4 2 /6 2 −3 1 2 2 −1 −1 1 −1 0 0 −1 2 = −1 1 1 0 1 0 −3 1 2 0 1 0 0 5 2 3 −3 0 2 1 −2 3 0 1 −2 + 1 −3 + 5 2 /6 /6 0 0 0 2 −2 4 −1 3 2 1 1 −1 1 −1 2 = −2 0 1 0 2 1 1 1 0 −2 1 3 0 −3 4 −2 0 0 + 1 0 /6 −2 1 −3 0 3 −2 0 2 1 −1 1 0 1 0 0 0 0 0 3 −3 1 0 −2 1 −1 2 = −1 1 1 0 1 1 1 1 0 4 −2 −2 0 0 1 1 3 −3 + 1 −2 /6 −2 1 1 −3 3 0 1 0 0 1 0 −3 5 2 2 + 5 2 /6 2 0 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 /6 2 2 2 /6 2 1 3 /6 2 2 2 /6 2 3 1 /6 2 2 2 /6 2 2 0 /6 2 2 2 /6 2 1 3 /6 2 2 2 /6 2 70 Functions of matrices 1 −1 1 1 −2 −1 = 1 −1 1 0 −1 2 1 0 0 1 −1 −2 2 −2 2 1 2 2 −2 = −2 −1 + 1 −2 /6 −2 2 4 2 −2 2 1 1 1 1 1 1 1 −1 1 = −2 0 −1 0 2 2 3 3 + 2 3 /6 0 1 −2 3 1 0 −1 2 −2 0 0 0 1 = −1 1 1 0 −1 0 −2 −1 1 1 1 0 0 2 2 0 0 0 2 −2 −2 4 0 3 −3 2 2 − 1 −2 + 2 2 /6 /6 0 −3 3 −2 2 2 2 −3 2 1 1 1 −1 0 1 0 3 3 0 2 1 1 1 −1 −1 1 −2 −1 = 2 −1 0 0 1 1 1 1 0 1 −2 −1 2 2 −2 4 2 2 −2 = −2 −2 + 1 2 /6 −1 2 1 −2 −2 2 0 1 0 0 −1 0 −2 2 3 3 + 2 0 /6 3 2 −2 0 0 1 0 0 1 0 −2 2 3 3 + 2 3 /6 0 −1 2 3 0 2 0 −2 4 0 0 + 4 0 /6 0 −2 −1 3 0 1 0 2 2 −3 2 3 2 + 2 0 /6 2 −3 −2 2 0 1 1 1 1 −1 −1 −1 1 −1 1 −2 1 = −1 1 1 0 −1 2 1 0 0 1 −1 2 2 −2 −2 1 −2 2 2 = −2 −1 + 1 −2 /6 2 −2 4 −2 2 2 1 1 −1 1 1 1 −1 1 −2 0 −1 2 = −1 −1 1 0 2 1 1 1 0 2 −2 2 4 2 −2 2 −2 1 −1 = −1 −2 + 2 2 /6 2 −2 2 −2 −1 1 1 1 −1 1 2 2 −1 1 1 = −2 1 1 1 −2 1 4 −2 = −2 −2 + /6 1 −2 1 1 1 −1 1 −1 1 −1 −2 0 0 1 0 1 1 1 1 2 2 2 2 2 2 0 2 0 0 1 0 0 0 0 3 3 0 0 3 3 0 0 0 2 2 /6 0 0 0 /6 0 3 2 /6 1 2 1 /6 1 1 2 /6 3 3 0 /6 3 2 2 /6 0 0 0 /6 0 2 1 /6 3 0 3 /6 3 1 2 /6 3 −3 0 /6 3 1.7. 3 × 3 symmetric matrices 1 1 −1 1 −1 −1 = −2 −1 0 1 −2 −2 0 0 0 −1 = 1 −1 −1 0 −1 0 2 −1 1 1 1 0 0 2 −2 0 0 0 2 −2 2 4 0 3 3 2 −2 − 1 −2 + 2 2 /6 /6 0 3 3 2 −2 2 −2 −1 −1 −1 = 1 2 0 3 −3 0 3 0 = −1 −3 + /6 0 0 0 1 2 −1 2 1 −1 71 −1 −1 −1 0 1 0 1 1 2 1 1 1 2 1 1 2 0 −3 0 1 4 −2 2 2 2 + 4 2 /6 4 −2 3 1 −2 0 2 0 −3 4 1 1 + 4 2 /6 1 −2 0 2 0 1 0 0 −1 0 2 2 −3 2 3 2 + 2 −3 /6 2 0 −1 2 3 2 2 2 1 −1 1 = −1 −1 2 1 1 −2 1 −2 = −2 1 + /6 −2 −2 4 1 −1 1 1 −1 1 −1 1 1 −1 2 2 = −1 1 −1 1 2 2 −2 −1 −1 1 = −2 1 2 −1 −1 −2 1 0 0 0 1 1 1 1 2 2 2 2 2 2 2 1 −1 0 1 0 −1 1 −1 1 −2 2 = −1 0 2 0 1 1 1 1 0 2 −2 2 3 0 −3 2 −2 0 0 = −2 −2 + 2 0 /6 2 −2 2 −3 0 3 1 2 −1 3 −2 −1 0 2 0 2 2 −2 2 4 2 −3 3 0 1 −1 2 0 −1 2 = −1 −1 1 0 2 1 1 1 0 2 −2 4 −2 2 2 −2 1 −1 + 2 −2 /6 −2 2 2 −1 1 0 2 0 0 −2 0 2 4 0 0 + 4 0 /6 0 −2 −1 3 1 −1 −1 1 −2 1 = −2 1 0 0 1 1 1 1 0 2 −1 2 −2 −2 4 −2 2 2 + 1 −2 /6 −2 1 −2 2 2 0 1 0 0 −1 0 −2 2 3 3 + 2 0 /6 3 −2 2 0 0 3 3 0 0 0 3 2 /6 1 −2 −1 /6 1 0 2 /6 2 −2 −2 /6 2 2 3 /6 1 1 2 /6 1 2 2 /6 0 0 0 /6 0 2 1 /6 3 0 3 /6 3 1 2 /6 3 3 0 /6 3 72 Functions of matrices 1 −1 1 −1 −1 −1 = −2 1 −1 2 −1 1 2 = −2 1 0 −1 2 −2 0 0 0 −1 = 1 −1 −1 0 −1 0 −2 −1 1 1 1 0 0 2 2 0 0 0 2 2 −2 4 0 3 3 2 −2 − 1 2 + 2 −2 /6 /6 0 3 3 −2 −2 2 2 3 −2 −1 2 −1 −1 1 −2 0 0 −2 2 = −1 1 1 0 2 0 −3 2 1 0 2 0 0 4 1 2 −2 3 −3 0 1 2 −2 3 0 + 2 −3 + 4 1 /6 /6 −2 2 0 0 0 2 −2 3 1 2 2 −2 2 −1 −1 = 0 1 1 3 0 −3 0 0 = −1 0 + /6 −3 0 3 1 −1 2 1 −1 −1 −1 2 −1 −1 1 −1 = −2 1 −1 −1 −1 −1 1 = −2 1 −1 −1 −1 −1 −1 = −2 1 −1 −1 0 1 0 1 2 1 1 1 2 1 2 4 2 0 −3 0 1 4 2 1 2 2 + 4 −2 /6 1 2 −2 −2 1 0 1 0 1 1 1 1 2 2 2 2 2 2 1 1 2 0 1 0 0 2 −2 0 1 0 −2 2 −3 3 + 2 −3 /6 0 1 −2 3 0 0 0 −1 0 2 0 2 −2 2 4 2 + 2 −2 /6 2 −2 −3 2 1 −1 1 −1 −1 −2 −1 = 1 −1 1 0 −1 2 1 0 0 1 1 2 2 2 −2 1 1 2 2 −2 + 1 2 /6 2 2 4 −2 −2 2 −1 0 1 = −1 −1 1 0 0 0 0 3 −3 − /6 0 −3 3 −2 1 −1 −1 1 1 −1 −2 −1 = 2 −1 0 0 1 1 1 1 0 1 2 1 2 −2 2 2 4 2 2 −2 + 1 −2 /6 1 2 1 2 −2 2 0 1 0 0 1 0 2 2 −3 3 + 2 0 /6 −3 0 1 0 −2 2 −2 −3 3 0 −2 1 1 2 −2 0 0 0 0 3 2 /6 1 2 −1 /6 1 2 0 /6 2 2 2 /6 4 3 1 /6 2 2 −2 /6 2 2 2 /6 0 0 0 /6 0 3 2 /6 1 −2 1 /6 1 1 2 /6 3 −3 0 /6 3 1.7. 3 × 3 symmetric matrices 73 2 −1 −1 1 −1 −1 = 1 −2 0 0 2 1 1 1 0 2 −2 −2 1 2 −1 2 2 4 −2 = −1 −2 + 2 2 /6 −2 2 2 −1 −2 1 0 2 0 0 −2 0 −1 4 3 3 + 4 0 /6 3 2 −2 0 2 −1 −1 1 −2 −1 = 2 −1 0 0 2 1 1 1 0 1 −2 −1 2 2 −2 4 2 2 −2 = −2 −2 + 1 2 /6 −1 2 1 −2 −2 2 0 1 0 0 −1 0 −2 4 3 3 + 4 0 /6 3 2 −2 0 1 −1 1 1 −1 −1 = 1 −1 1 0 1 1 2 0 0 2 −2 −2 1 −1 2 2 2 1 −2 = −1 −2 + 2 −1 /6 −2 2 2 2 −2 4 0 2 0 0 −2 0 1 4 3 3 + 4 3 /6 0 2 −1 3 1 −1 1 1 −2 −1 = 1 −1 1 0 −1 2 1 0 0 1 −1 −2 2 −2 2 1 2 2 −2 = −2 −1 + 1 −2 /6 −2 2 4 2 −2 2 0 1 0 0 −1 0 2 4 3 3 + 4 3 /6 0 1 −2 3 0 2 0 0 −2 0 0 4 2 0 4 −3 + 4 2 /6 3 2 2 −3 1 0 2 0 −1 4 3 3 + 4 3 /6 0 −2 1 3 2 1 2 2 1 2 2 2 1 2 2 1 1 1 −1 1 −1 −1 2 2 −1 2 2 −1 2 −1 0 −1 = 1 −1 1 1 1 2 −2 −2 2 2 = −2 −2 + 2 /6 −2 2 2 2 2 2 2 1 −1 2 −2 1 0 1 0 0 0 0 0 3 −3 −1 1 −1 1 −1 1 = −1 1 1 0 1 1 2 0 0 2 −2 2 1 −1 −2 2 −2 1 2 = −1 −2 + 2 −1 /6 2 −2 2 −2 2 4 2 2 −1 2 2 1 0 2 0 0 0 0 0 0 0 3 3 0 3 3 0 2 1 1 3 3 0 2 1 /6 3 3 0 /6 3 1 2 /6 3 3 0 /6 3 2 2 /6 0 0 0 /6 0 2 2 /6 0 0 0 /6 0 2 3 /6 1 2 1 /6 1 2 2 /6 0 0 0 /6 0 74 Functions of matrices −1 1 −1 1 −2 1 = −1 1 1 0 −1 2 1 0 0 1 −1 2 2 −2 −2 1 −2 2 2 = −2 −1 + 1 −2 /6 2 −2 4 −2 2 2 2 2 −1 2 2 1 0 1 0 0 1 0 −2 4 3 3 + 4 3 /6 0 −1 2 3 3 3 0 2 −1 −1 1 −1 1 = −1 2 0 0 2 1 1 1 0 2 −2 1 −2 −1 2 −2 4 2 + 2 −2 /6 −2 2 −1 2 1 0 2 0 0 −2 0 −1 4 3 3 + 4 0 /6 3 −2 2 0 2 −1 −1 1 −2 1 = −2 1 0 0 2 1 1 1 0 2 −1 2 −2 −2 4 −2 2 2 + 1 −2 /6 −2 1 −2 2 2 0 1 0 0 −1 0 −2 4 3 3 + 4 0 /6 3 −2 2 0 0 0 0 2 4 −2 2 2 1 + 4 −2 /6 1 −2 −3 1 2 1 −1 1 1 −2 0 0 −3 1 = 0 −1 2 0 −1 0 2 −1 1 1 1 0 0 2 1 3 0 −3 2 −2 2 1 0 0 2 −2 = −2 0 − 1 −2 + 2 2 /6 /6 −3 0 3 2 −2 2 1 0 −2 2 2 −1 2 −1 1 1 = −1 2 −1 2 −1 −1 1 = −2 2 −1 −1 2 2 −2 1 2 −1 −1 1 2 = −1 −1 1 1 −1 0 2 = −1 1 1 0 0 0 0 3 −3 + /6 0 −3 3 1 4 2 2 2 1 1 0 1 0 1 1 1 1 −2 −1 = 1 1 1 4 −2 −2 1 1 = −2 −2 + /6 −2 1 1 −1 1 1 −1 −1 1 0 1 0 2 1 1 1 1 −1 0 −2 −1 0 1 0 1 1 1 1 2 2 2 2 2 2 0 −2 0 2 2 0 2 0 2 + 2 0 /6 2 0 0 1 0 0 0 0 0 0 0 −2 2 2 2 4 2 1 2 −3 0 3 −3 2 2 /6 0 0 0 /6 0 2 1 /6 3 3 0 /6 3 1 2 /6 3 3 0 /6 3 3 1 /6 2 −2 2 /6 2 3 2 /6 1 1 2 /6 1 1 2 /6 3 0 −3 /6 3 1.7. 3 × 3 symmetric matrices −1 1 1 1 −1 1 3 = −2 −3 0 75 1 −1 −1 1 −2 0 0 −3 1 = 1 −1 1 0 −1 0 −2 1 0 1 2 0 0 2 1 −3 0 2 2 −2 1 3 0 2 −2 − 1 2 + 2 1 /6 /6 0 0 −2 −2 2 2 −1 2 −1 0 −2 1 = −1 −1 1 0 1 1 1 1 0 4 −2 2 2 2 −2 1 −1 2 −2 = −2 −2 + 1 2 /6 2 −1 1 −2 −2 2 −1 1 −1 −1 1 −1 = −2 −1 1 −1 −1 = 0 1 −1 1 1 3 0 3 0 0 0 − 1 /6 3 0 3 −1 −2 −2 0 1 0 2 −2 −2 −2 2 2 −1 −2 3 0 0 3 −1 0 −2 0 2 −1 −2 1 2 + 2 2 /6 2 −1 0 2 −2 −1 2 −1 0 −2 2 = −1 −1 1 0 2 1 1 1 0 4 −2 2 2 2 −2 1 −1 2 −2 = −2 −2 + 1 2 /6 2 −1 1 −2 −2 2 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 = −2 4 2 −2 −1 −2 −1 0 2 0 1 1 1 1 2 2 2 2 2 2 0 1 0 0 3 3 2 4 −2 0 2 0 −2 4 0 0 + 4 0 /6 0 −1 −2 3 0 0 −3 −1 0 2 0 2 −1 2 1 2 + 2 1 /6 2 −2 3 2 −1 1 2 2 −1 −1 −1 = 1 1 0 3 −3 0 3 0 = −2 −3 − /6 0 0 0 −1 1 −1 1 1 2 0 2 0 −2 2 0 0 + 2 0 /6 0 1 1 1 1 1 −1 3 −2 1 1 −2 1 0 −2 1 = −1 −1 1 0 1 1 1 1 0 2 −2 2 −2 2 1 −1 2 −2 + 1 −2 /6 −1 1 2 −2 2 0 1 0 0 −2 0 2 2 0 0 + 2 0 /6 0 0 1 0 0 3 3 1 1 −2 −1 −2 3 0 3 3 0 2 /6 2 2 2 /6 4 1 2 /6 3 0 3 /6 3 3 2 /6 1 −1 −2 /6 1 1 2 /6 3 0 3 /6 3 0 2 /6 2 −2 −2 /6 4 1 2 /6 3 0 3 /6 3 76 Functions of matrices 1 −1 −1 = 0 −1 1 3 0 −3 0 0 = −2 0 − /6 −3 0 3 −1 −1 1 −1 −1 1 −1 1 −1 −1 2 2 = −2 −1 −1 1 = −2 −1 −1 −1 −1 1 1 = −2 −1 −1 −1 −1 1 −1 = −2 −1 −1 −1 −1 −1 1 = −2 1 2 2 2 2 2 2 0 0 −3 −1 0 2 0 2 1 2 1 2 + 2 −2 /6 2 1 1 −2 1 0 −2 2 = −1 −1 1 0 2 1 1 1 0 2 −2 2 −2 2 1 −1 2 −2 + 1 −2 /6 −1 1 2 −2 2 0 2 −2 −2 4 −2 0 −2 0 2 4 0 0 + 4 0 /6 0 −1 −2 3 1 1 −1 1 −2 0 0 3 −1 = 1 1 −1 0 −1 0 −2 1 0 1 2 0 0 2 1 3 3 0 2 −2 −2 1 3 3 0 2 2 − 1 −2 + 2 −1 /6 /6 0 0 0 −2 2 2 2 3 2 −1 −1 1 −1 −1 −2 0 0 3 1 = 0 −1 2 0 −1 0 −2 −1 1 1 1 0 0 2 −1 3 0 3 2 2 −2 1 0 0 0 2 −2 − 1 2 + 2 −2 /6 /6 3 0 3 −2 −2 2 −1 0 −2 2 −1 2 −1 0 −2 −1 = 1 1 −1 0 1 1 1 1 0 4 2 2 2 −2 −2 2 1 1 2 2 + 1 −2 /6 2 1 1 −2 2 2 0 2 0 −2 2 0 0 + 2 0 /6 0 1 2 −3 −1 1 1 −1 −2 0 0 3 1 = 1 −1 1 0 −1 0 2 1 0 1 2 0 0 2 −1 3 3 0 2 −2 2 1 3 3 0 2 −2 − 1 −2 + 2 −1 /6 /6 0 0 0 2 −2 2 −2 3 −2 1 4 2 −2 −1 −1 −1 1 −2 −2 0 1 0 1 1 1 0 1 0 0 1 0 0 3 3 −1 1 −2 −2 4 2 0 3 −3 −1 1 2 3 2 /6 1 1 −2 /6 1 1 2 /6 3 0 3 /6 3 0 2 /6 2 2 −2 /6 4 3 2 /6 1 −1 2 /6 1 1 2 /6 3 0 −3 /6 3 0 2 /6 2 −2 2 /6 4 1.7. 3 × 3 symmetric matrices 77 −1 1 −2 0 −1 3 = −1 −1 1 0 3 1 1 1 0 2 −2 2 4 2 −2 2 −2 1 −1 = −1 −2 + 2 2 /6 2 −2 2 −2 −1 1 1 1 −1 1 3 3 1 1 3 1 3 1 = −2 1 −1 1 −1 3 3 = −1 1 −1 3 2 2 −2 −1 1 3 = −3 3 0 −3 2 2 −2 −1 3 −1 1 3 1 3 1 1 3 = −2 −3 0 0 2 0 −2 6 0 0 + 6 0 /6 0 −2 −1 3 0 3 3 3 −1 1 1 −2 1 = 0 −2 1 0 1 1 1 1 0 0 −3 1 −2 1 0 0 4 −2 + 2 −2 /6 0 3 1 −2 1 0 2 0 0 −3 0 1 5 2 2 + 5 2 /6 2 0 −2 2 1 −1 2 0 −1 3 = −1 −1 1 0 3 1 1 1 0 2 −2 4 −2 2 2 −2 1 −1 + 2 −2 /6 −2 2 2 −1 1 0 2 0 0 −2 0 2 6 0 0 + 6 0 /6 0 −2 −1 3 3 −1 −1 1 −3 0 0 −2 3 = −1 1 1 0 2 0 −3 3 1 0 2 0 0 6 1 2 −2 3 −3 0 1 2 −2 3 0 + 2 −3 + 6 1 /6 /6 −2 2 0 0 0 2 −2 3 1 3 −1 −1 = 0 1 1 3 0 −3 0 0 = −2 0 + /6 −3 0 3 1 −1 3 0 2 0 1 −2 −1 0 1 0 1 2 1 2 1 2 1 2 4 2 0 −3 0 1 5 2 1 2 2 + 5 −2 /6 1 2 1 −1 −1 1 −2 1 = 1 −1 1 0 3 0 2 1 0 −3 0 1 1 −2 3 0 1 −2 + 2 1 /6 0 0 −2 −2 4 2 2 2 0 3 3 1 1 2 0 2 0 0 2 −2 0 −3 0 −1 5 2 2 + 5 2 /6 2 3 −1 2 0 2 0 −2 2 −2 2 2 2 2 1 /6 3 0 3 /6 3 3 1 /6 2 2 2 /6 2 2 1 /6 3 0 3 /6 3 2 0 /6 2 2 2 /6 4 3 1 /6 2 2 −2 /6 2 0 2 /6 2 2 2 /6 2 78 Functions of matrices −1 −1 −1 = 1 3 0 3 −3 0 3 0 = −2 −3 + /6 0 0 0 1 3 −1 3 1 −1 −1 −2 −1 0 1 0 1 1 2 0 −3 0 1 5 −2 2 2 2 + 5 2 /6 4 −2 0 2 0 3 1 −2 0 2 0 −3 6 1 1 + 6 2 /6 1 −2 0 2 0 2 0 0 −2 0 0 7 2 0 2 −3 + 7 2 /6 3 2 1 −3 2 0 3 0 0 2 0 −3 5 1 1 + 5 2 /6 1 −2 0 2 0 −3 0 1 7 2 2 + 7 2 /6 2 0 −2 2 2 −1 −1 1 −1 0 0 −2 2 = −1 1 1 0 3 0 −3 3 1 0 2 0 0 5 1 2 −2 3 −3 0 1 2 −2 3 0 + 3 −3 + 5 1 /6 /6 −2 2 0 0 0 2 −2 3 1 2 1 1 2 1 1 2 −1 1 −1 1 −3 3 = −1 0 2 0 1 1 1 1 0 2 −2 2 3 0 −3 2 −2 0 0 = −3 −2 + 2 0 /6 2 −2 2 −3 0 3 1 3 −1 3 3 3 1 3 3 3 3 1 4 = −2 −2 −2 3 −2 0 1 = 1 −1 3 1 1 −2 −2 1 1 + 2 /6 1 1 1 −2 1 0 1 0 0 0 0 0 3 −3 −1 1 −1 1 −1 2 = −1 0 2 0 2 1 1 1 0 2 −2 2 3 0 −3 2 −2 0 0 = −1 −2 + 3 0 /6 2 −2 2 −3 0 3 2 2 −1 2 3 2 2 2 3 2 3 2 = −1 2 −1 2 3 0 −3 −1 2 2 = −1 2 2 −2 3 −1 1 1 −1 2 = 0 −2 1 0 2 1 1 1 0 0 −3 1 −2 1 0 0 4 −2 + 1 −2 /6 0 3 1 −2 1 0 2 0 0 1 0 2 2 −2 2 4 2 2 2 2 2 4 2 2 2 2 1 1 2 0 2 /6 2 −2 −2 /6 2 2 3 /6 1 1 2 /6 1 1 3 /6 2 2 2 /6 2 2 3 /6 1 1 2 /6 1 3 1 /6 2 2 2 /6 2 2 0 /6 2 2 2 /6 4 1.7. 3 × 3 symmetric matrices 2 3 2 3 2 2 3 = −1 −3 0 2 3 3 3 3 2 4 = −1 −2 −2 79 2 −1 −1 1 −1 2 = 1 −1 1 0 3 0 2 1 0 −3 0 1 1 −2 3 0 1 −2 + 1 1 /6 0 0 −2 −2 4 0 1 0 0 −3 0 −1 7 2 2 + 7 2 /6 2 3 −1 2 3 −2 0 2 = 1 −1 3 1 1 −2 −2 1 1 + 1 /6 1 1 0 1 0 0 −2 0 0 8 2 0 2 −3 + 8 2 /6 3 2 1 −3 2 0 2 0 −2 6 0 0 + 6 0 /6 0 −1 −2 3 3 −1 −1 1 −3 0 0 −2 3 = −1 1 1 0 −2 0 −3 3 1 0 2 0 0 6 1 2 −2 3 −3 0 1 2 −2 3 0 − 2 −3 + 6 1 /6 /6 −2 2 0 0 0 2 −2 3 1 1 −1 1 0 1 0 0 0 0 0 3 −3 −1 2 −1 0 −2 3 = −1 −1 1 0 3 1 1 1 0 4 −2 2 2 2 −2 1 −1 2 −2 = −2 −2 + 1 2 /6 2 −1 1 −2 −2 2 −1 1 −1 −1 1 3 1 3 3 1 −1 3 = −3 2 2 −2 3 −1 1 1 −4 1 = 0 −1 2 0 −1 1 1 1 0 3 0 −3 2 −2 2 0 0 2 −2 = −4 0 + 1 −2 /6 −3 0 3 2 −2 2 −1 1 3 −1 2 2 1 3 1 2 −1 2 3 = −3 −3 0 0 1 0 2 2 2 2 2 2 0 3 3 1 1 2 0 −3 0 2 4 1 1 + 4 2 /6 1 0 −2 2 2 −1 −1 1 −3 0 0 −3 2 = 1 −1 1 0 −1 0 −2 3 0 1 2 0 0 5 1 −3 0 2 2 −2 1 3 0 2 −2 − 1 2 + 5 1 /6 /6 0 0 −2 −2 2 2 3 −2 1 0 1 0 2 4 2 1 1 2 0 2 /6 2 2 2 /6 2 1 3 /6 2 2 2 /6 2 1 2 /6 3 0 3 /6 3 2 0 /6 2 2 2 /6 4 3 2 /6 1 1 2 /6 1 0 2 /6 2 2 2 /6 4 80 Functions of matrices 2 −1 1 1 −3 0 0 −3 2 = 0 −1 2 0 −1 0 2 −1 1 1 1 0 0 5 1 3 0 −3 2 −2 2 1 0 0 2 −2 = −3 0 − 1 −2 + 5 2 /6 /6 −3 0 3 2 −2 2 1 −1 2 2 2 3 2 2 4 2 0 −2 0 2 6 0 0 + 6 0 /6 0 −1 −2 3 0 1 0 0 −3 0 2 4 1 2 1 2 + 4 −2 /6 2 1 0 2 −2 0 −3 0 −2 4 1 1 + 4 1 /6 2 3 −2 1 1 1 −1 1 −3 0 0 2 3 = −1 0 2 0 −2 0 −3 −1 1 1 1 0 0 6 1 2 −2 2 3 0 −3 1 2 −2 0 0 = −3 −2 − 2 0 + 6 2 /6 /6 2 −2 2 −3 0 3 1 −2 0 2 −1 −1 1 −1 3 3 = −2 4 2 −2 1 −2 1 0 −2 3 = −1 −1 1 0 3 1 1 1 0 2 −2 2 −2 2 1 −1 2 −2 + 1 −2 /6 −1 1 2 −2 2 0 −2 2 3 −1 −1 = 0 −1 1 3 0 −3 0 0 = −4 0 + /6 −3 0 3 −1 −1 3 −1 3 1 −1 3 −1 3 −1 1 3 = −4 −3 0 −1 3 1 3 3 3 1 −4 −2 0 1 0 1 1 1 1 2 2 2 2 2 2 1 −1 −1 1 −4 1 = 1 −1 1 0 3 0 1 2 0 −3 0 2 2 −2 3 0 2 −2 + 1 2 /6 0 0 −2 −2 2 0 1 0 0 1 0 0 3 3 −2 4 −2 1 1 2 2 4 2 3 2 /6 1 1 2 /6 1 1 2 /6 3 0 3 /6 3 3 2 /6 1 1 −2 /6 1 0 2 /6 2 2 2 /6 4 2 3 /6 1 1 2 /6 1
© Copyright 2025 Paperzz