Two integration by parts problems from class.

We had two problems in class on integration that we write up here.
1.
∫ π‘₯ sin π‘₯ cos π‘₯ 𝑑π‘₯
As we started in class, we let 𝑑𝑣 = sin π‘₯ cos π‘₯ 𝑑π‘₯, 𝑒 = π‘₯. Then 𝑣 = sin2 π‘₯ and 𝑑𝑒 = 𝑑π‘₯. By te
integration by parts formula, we have that the original integral is equal to
π‘₯ sin2 π‘₯ βˆ’ ∫ sin2 π‘₯ 𝑑π‘₯.
To solve the remaining integral, we use the half angle formula, sin2 π‘₯ =
Consequently,
1βˆ’cos(2π‘₯)
.
2
1
1
1
1
∫ sin2 π‘₯ 𝑑π‘₯ = ∫ ( ) 𝑑π‘₯ βˆ’ ∫ cos(2π‘₯) 𝑑π‘₯ = π‘₯ βˆ’ sin(2π‘₯) + 𝐢,
2
2
2
4
Where in the first integral we used the power rule in reverse and in the second we used
the substitution 𝑀 = 2π‘₯.
2. ∫ sec 3 π‘₯ 𝑑π‘₯
We approach this by integration by parts using 𝑒 = sec(π‘₯) , 𝑑𝑣 = sec 2 π‘₯ 𝑑π‘₯, and so 𝑑𝑒 =
sec(π‘₯) tan(π‘₯) , 𝑣 = tan(π‘₯). By the integration by parts formula we have
∫ sec 3 π‘₯ 𝑑π‘₯ = sec(π‘₯) tan(π‘₯) βˆ’ ∫ sec(π‘₯) tan2 π‘₯ 𝑑π‘₯.
For the remaining integral, we use the trig identity tan2 π‘₯ = sec 2 π‘₯ βˆ’ 1, transforming the
integral:
∫ sec(π‘₯) tan2 (π‘₯) 𝑑π‘₯ = ∫ sec 3(π‘₯) 𝑑π‘₯ βˆ’ ∫ sec(π‘₯) 𝑑π‘₯.
The first integral here is our original integral so we leave it aside for a moment. We
can evaluate the second integral using a sneaky trick:
∫ sec(π‘₯) 𝑑π‘₯ = ∫
sec(π‘₯) (sec(π‘₯) + tan(π‘₯))
𝑑π‘₯ = ∫(sec 2 (π‘₯) + sec(π‘₯) tan(π‘₯))/(sec(π‘₯) + tan(π‘₯)) 𝑑π‘₯
sec(π‘₯) + tan(π‘₯)
We now use a substitution: 𝑀 = sec(π‘₯) + tan(π‘₯) , 𝑑𝑀 = sec(π‘₯) tan(π‘₯) + sec 2(π‘₯). So,
∫(sec 2(π‘₯) + sec(π‘₯) tan(π‘₯))/(sec(π‘₯) + tan(π‘₯)) 𝑑π‘₯ = ∫ 𝑀 βˆ’1 𝑑𝑀 = ln|𝑀| + 𝐢
= ln | sec(π‘₯) + tan(π‘₯)| + 𝐢.
Putting this all together,
∫ sec 3 π‘₯ 𝑑π‘₯ = sec(π‘₯) tan(π‘₯) βˆ’ ∫ sec 3(π‘₯)𝑑π‘₯ + ln|sec(π‘₯) + tan(π‘₯)| + 𝐢.
Solving for the original integral yields,
1
∫ sec 3 π‘₯ 𝑑π‘₯ = (sec(π‘₯) tan(π‘₯) + ln|sec(π‘₯) + tan(π‘₯)|) + 𝐢.
2
Note this is a tricky problem. If we were to put such a problem on an exam, there
would be lots of hints.