MNRAS 432, 2247–2251 (2013) doi:10.1093/mnras/stt634 Advance Access publication 2013 May 9 Stark broadening of resonant Cr II 3d5 –3d4 4p spectral lines in hot stellar atmospheres Z. Simić,1,2‹ M. S. Dimitrijević1,2,3 and S. Sahal-Bréchot3 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia Newton Institute of Chile, Yugoslavia Branch, 11060 Belgrade, Serbia 3 Observatoire de Paris-Meudon, F-92195 Meudon, France 2 Isaac Accepted 2013 April 3. Received 2013 March 18; in original form 2013 February 13 ABSTRACT New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes. Key words: atomic data – line: profiles – stars: atmospheres – white dwarfs. 1 I N T RO D U C T I O N Chromium lines are interesting for astrophysics due to their presence in stellar atmospheres, where they are identified in a large number, so that data on their profiles are obviously of interest for example to determine chromium abundance and investigate chromium stratification in stellar atmospheres (Dimitrijević et al. 2005, 2007) as well as for the diagnostics and modelling of stellar plasma and for analysis and synthesis of stellar spectra. They have been identified in A-type star spectra, such as e.g. in o Peg (Adelman 1991), 7 Sex (Adelman & Philip 1996), φ Aqu (Caliskan & Adelman 1997) and Przybylski’s star (Cowley et al. 2000), which are also chemically peculiar stars. Namely the majority of chemically peculiar stars are of A spectral type. As an example, in the spectrum of φ Aqu, Caliskan & Adelman (1997) identified 28 Cr II spectral lines and noted an overabundance of log[Cr/H] = −5.82 ± 0.27, in comparison with the Solar value of −6.26. Also for Przybylski’s star, Cowley et al. (2000) identified 15 Cr II lines and noted an overabundance with the value log [Cr/H] = −5.92 ± 0.26. Cr II spectral lines are before Fe II and Ti II in number and intensity in the Ae/Be Herbig star V380 Ori, where 25 Cr II lines were found (Shevchenko 1994). Since in stellar atmospheres, layers, where the Stark broadening contribution to the line profiles is important, exist (Lanz et al. 1988; Popović, Dimitrijević & Tankosić 1999a; Popović, Dimitrijević & Ryabchikova 1999b; Popović, Milovanović & Dimitrijević 2001; Tankosić, Popović & Dimitrijević 2003; Dimitrijević et al. 2003a, 2004, 2007; Dimitrijević, Jovanović & Simić 2003b; Simić et al. 2005, 2006; Hamdi et al. 2008; Simić, Dimitrijević & Kovačević 2009b), Stark broadening parameters for singly ionized chromium spectral lines are obviously of astrophysical interest. E-mail: [email protected] Dimitrijević et al. (2007) calculated Stark broadening parameters for Cr II spectral lines of seven multiplets belonging to 4s–4p transitions and applied the obtained results to the analysis of Cr II line profiles observed in the spectrum of the Cr-rich star HD 133792. There is only one experimental result on the Stark broadening of Cr II spectral lines, obtained by Rathore et al (1984). The Stark widths and shifts of Cr II 3120.36, 3124.94 and 3132.05 Å of the multiplet 5 (4s 4 D−4p 4 F o ) have been measured in a T-tube plasma. These results have been compared with values predicted from established systematic trends and regularities. Using regularities and systematic trends, Lakićević (1983) also made an attempt to estimate Stark broadening parameters of the Cr II 2065.65 Å line. In order to enlarge and complete Stark broadening data for astrophysically interesting Cr II lines, we have determined Stark broadening parameters for nine resonant Cr II 3d5 –3d4 4p multiplets in the visible and UV wavelength range (2060–6073 Å). There are no other available theoretical or experimental data for considered multiplets. The obtained results have also been used to analyse the influence of Stark broadening on Cr II spectral lines in a hot A-type star and DB white dwarf atmospheres. 2 THEORETICAL REMARKS For the determination of Stark broadening parameters the semiclassical perturbation (SCP) formalism (Sahal-Bréchot 1969a,b) has been used. For updates see Fleurier, Sahal-Bréchot & Chapelle (1977), Sahal-Bréchot (1974, 1991), Dimitrijević, Sahal-Bréchot & Bomier (1991), Dimitrijević & Sahal-Bréchot (1996) and the review article of Dimitrijević (1996). The full width at half-maximum intensity (FWHM) (W = 2w) and shift (d) of an isolated spectral line broadened by electron impacts can be expressed (in angular frequency units), for an ionized emitter, in terms of cross-sections C 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2248 Z. Simić, M. S. Dimitrijević and S. Sahal-Bréchot for elastic and inelastic processes as ⎞ ⎛ σii (v) + σff (v) + σel ⎠ , W = N vf (v) dv ⎝ d =N i =i f =f RD 2πρ dρ sin(2ϕp ). vf (v) dv (1) R3 In the above equations, N is the electron density, f (υ) the Maxwellian velocity distribution function for electrons, ρ the impact parameter of the incoming electron, i (respectively, f ) denotes the perturbing levels of the initial state i (respectively, final state f), σii (υ) [respectively, σff (υ)] is the inelastic crosssection, and here it is expressed by an integral over the impact parameter ρ of the transition probability Pii (ρ, υ) [respectively, Pff (ρ, υ) ] as RD 1 σii (υ) = πR12 + 2πρ dρ Pii (ρ, υ). (2) 2 R1 i =i i =i The elastic cross-section is RD σel = 2πR22 + 2πρ dρ sin2 δ + σr , R2 δ= (ϕp2 + 1 ϕq2 ) 2 . (3) The phase shifts ϕp and ϕq due, respectively, to the polarization potential (r−4 ) and to the quadrupolar potential (r−3 ) are given in section 3 of chapter 2 in Sahal-Bréchot (1969a) and RD is the Debye radius. The cut-offs R1 , R2 and R3 are described in section 1 of chapter 3 in Sahal-Bréchot (1969b). We denote by σr the contribution of the Feshbach resonances (Fleurier et al. 1977). For the determination of the ion-impact widths and shifts, the corresponding equations are analogous to equations (1)–(3), but without the Feshbach resonance contribution to the width. Also, in comparison with electrons different are and hyperbolic paths, since for electrons the Coulomb force is attractive and for perturbing ions repulsive. 3 R E S U LT S A N D D I S C U S S I O N The atomic energy levels which are needed for the determination of Stark broadening parameters are from Wiese & Musgrove (1989). The needed oscillator strengths have been determined by using the method of Bates & Damgaard (1949) and the tables of Oertel & Shomo (1968), while for higher levels, the calculations have been performed as in van Regemorter, Hoang Binh & Prud’homme (1979). Within the method of Bates and Damgaard, only oscillator strengths for transitions allowed in the LS coupling are different from zero. For simpler spectra it is usually enough to take all perturbing levels with n = 0, ±1and ± 2, but for a particular transition we add the perturbing levels until the corresponding sum rules are satisfied. Concerning the use of a set of Bates and Damgaard’s oscillator strengths, which is complete according to the corresponding sum rules, Ben Nessib, Dimitrijević & Sahal-Bréchot (2004) and Hamdi et al. (2007), who calculated line widths and shifts of Si V and Ne V ions, compared SCP ab initio Stark widths obtained with Bates and Damgaard oscillator strengths and with SUPERSTRUCTURE (Thomas– Fermi–Dirac interaction potential model with relativistic corrections; Eissner, Jones & Nussbaumer 1974) oscillator strengths. They obtained that the difference between the two sets of calculations did not exceed 30 per cent. Since the accuracy of the SCP method is about 20 per cent, such a difference, due to different sets of oscillator strengths used in Stark broadening calculation, is not crucial. Electron-, proton- and helium ion-impact broadening parameters – W (FWHM) and d (shift for five resonant Cr II 3d5 –3d4 4p multiplets) – are shown in Table 1, together with the results of present calculations of helium ion-impact broadening parameters for additional four resonant lines. For these lines in Table 1 are included electron- and proton-impact broadening parameters, previously communicated on a conference and published in the corresponding proceedings (Simić et al. 2009a). This table shows Cr II Stark broadening parameters, for a perturber density of 1017 cm−3 and temperatures from 5000 to 100 000 K. The quantity C (given in Å cm−3 ), when divided by the corresponding full width at halfmaximum, gives an estimate for the maximum perturber density for which tabulated data may be used. The obtained data could not be compared with experimental results, but in Dimitrijević et al. (2007) the Stark broadening parameters for other Cr II lines, obtained with the same method, have been compared with the experimental results of Rathore et al (1984) and an acceptable agreement has been obtained. Also, they are successfully used in the same article for the synthesis of stellar Cr II lines and their comparison with the observed ones, which indirectly indicates that the present results are also correct. The largest Stark widths are for resonant Cr II 6073.4, 5279.6 and 4588.2 Å spectral lines, corresponding to transitions with the lower term 3d5 4 F. Fig. 1 shows the full width at half-maximum intensity as a function of the temperature for electron-impact broadening. In order to show how the obtained results may be used for the investigation of the influence of the Stark broadening mechanism for Cr II spectral lines in stellar plasma conditions, we have compared Doppler and Stark widths for Cr II multiplets 3d5 4 F–3d4 4p 4 o F (λ = 5279.6 Å) and 3d5 4 F–3d4 4p 4 Po (λ = 6073.4 Å) for a Kurucz (1979) A-type star atmosphere model with Teff = 8500 K and log g = 4.0 (Fig. 2). Due to the characteristics of the Lorentz distribution function describing the Stark broadening contribution and the Gauss distribution function describing the Doppler contribution even when the Stark width is smaller than the Doppler one, Stark broadening will contribute to the line wings, so that it is obvious that layers where the Stark broadening influence is not negligible exist. To show it more clearly, we synthesized the Cr II 4588.2 Å line profile using the SYNTH code (Piskunov 1992) (Fig. 3) and DIPSO program package for the corresponding equivalent width (EW), for Teff = 8 750 K and log g = 4.0 as a function of the chromium abundance. One can see in Fig. 3 that the influence of Stark broadening increases in line wings with the increase of the chromium abundance as expected. Namely with the increase of the abundance of chromium, an element with much lower ionization potential than hydrogen and helium, the usual main constituents of stellar plasma, the electron density increases due to the increase of the degree of plasma ionization and the corresponding Stark line width also increases. It is also important to consider the influence of Stark broadening on the EW of chromium, since it is important to see the possible errors in the chromium abundance determination, if this broadening mechanism is neglected. For this reason, Fig. 4 shows (denoted with a dotted line) the ratio of the EW for the Cr II spectral line 4588.2 Å with (EW2 ) and without (EW1 ) Stark broadening contribution, as a function of the chromium abundance expressed as log[Cr/H]. The full line denotes the ratio of the EW without Stark broadening: with variable chromium abundance (EW2 ) and with the Stark broadening of Cr II spectral lines Table 1. Electron-, proton- and He II-impact broadening parameters for Cr II, 3d5 –3d4 4p spectral lines, for a perturber density of 1017 cm−3 and temperatures from 5 000 to 100 000 K. The calculated wavelength of the transitions (in Å) and parameter C are also given. This parameter when divided by the corresponding Stark width gives an estimate for the maximal perturber density for which the line may be treated as isolated. WIDTH is FWHM. We note that for the first four lines, electronand proton-impact broadening parameters are previously communicated on a conference and published in the corresponding proceedings (Simić et al. 2009a). Perturber density is 1.E+17 cm−3 Perturbers are: Electrons Protons Helium ions Transition T (K) Width (Å) Shift (Å) Width (Å) Shift (Å) Width (Å) Shift (Å) Cr II 6 S−6 Po 2060.4 Å C = 0.15E+21 5000 10 000 20 000 30 000 50 000 100 000 0.514E−01 0.382E−01 0.282E−01 0.238E−01 0.196E−01 0.157E−01 −0.334E−03 −0.379E−03 −0.438E−03 −0.425E−03 −0.460E−03 −0.515E−03 0.148E−02 0.268E−02 0.382E−02 0.431E−02 0.473E−02 0.528E−02 −0.542E−04 −0.120E−03 −0.232E−03 −0.311E−03 −0.405E−03 −0.547E−03 0.219E−02 0.335E−02 0.433E−02 0.468E−02 0.508E−02 0.553E−02 −0.541E−04 −0.118E−03 −0.214E−03 −0.278E−03 −0.355E−03 −0.446E−03 Cr II 4 F−4 Do 4588.2 Å C = 0.40E+21 5000 10 000 20 000 30 000 50 000 100 000 0.382 0.284 0.212 0.182 0.155 0.133 0.718E−01 0.491E−01 0.378E−01 0.319E−01 0.265E−01 0.219E−01 0.102E−01 0.175E−01 0.244E−01 0.268E−01 0.295E−01 0.329E−01 0.117E−02 0.244E−02 0.416E−02 0.505E−02 0.639E−02 0.770E−02 0.147E−01 0.218E−01 0.269E−01 0.290E−01 0.315E−01 0.339E−01 0.115E−02 0.227E−02 0.359E−02 0.439E−02 0.522E−02 0.630E−02 Cr II 4 F−4 Fo 5279.6 Å C = 0.53E+21 5000 10 000 20 000 30 000 50 000 100 000 0.480 0.358 0.268 0.229 0.194 0.165 0.743E−01 0.514E−01 0.399E−01 0.338E−01 0.274E−01 0.229E−01 0.120E−01 0.209E−01 0.293E−01 0.325E−01 0.357E−01 0.398E−01 0.874E−03 0.188E−02 0.337E−02 0.425E−02 0.546E−02 0.679E−02 0.174E−01 0.261E−01 0.326E−01 0.352E-01 0.383E−01 0.414E−01 0.868E−03 0.180E−02 0.304E−02 0.370E−02 0.464E−02 0.556E−02 Cr II 4 F−4 Po 6073.4 Å C = 0.70E+21 5000 10 000 20 000 30 000 50 000 100 000 0.793 0.577 0.425 0.357 0.294 0.255 0.264 0.197 0.155 0.134 0.110 0.920E−01 0.144E−01 0.258E−01 0.368E−01 0.414E−01 0.459E−01 0.521E−01 0.411E−02 0.806E−02 0.127E−01 0.156E−01 0.184E−01 0.221E−01 0.210E−01 0.320E−01 0.408E−01 0.442E−01 0.483E−01 0.528E−01 0.397E−02 0.742E−02 0.111E−01 0.132E−01 0.152E−01 0.182E−01 Cr II 4 D−4 Do 3378.0 Å C = 0.25E+21 5000 10 000 20 000 30 000 50 000 100 000 0.159 0.120 0.903E−01 0.774E−01 0.654E−01 0.547E−01 0.646E−02 0.399E−02 0.383E−02 0.355E−02 0.352E−02 0.356E−02 0.543E−02 0.929E−02 0.130E−01 0.142E−01 0.156E−01 0.174E−01 0.322E−03 0.695E−03 0.125E−02 0.161E−02 0.205E−02 0.257E−02 0.781E−02 0.116E−01 0.143E−01 0.154E−01 0.168E−01 0.181E−01 0.320E−03 0.669E−03 0.114E−02 0.138E−02 0.176E−02 0.212E−02 Cr II 4 D−4 Fo 3738.4 Å C = 0.26E+21 5000 10 000 20 000 30 000 50 000 100 000 0.218 0.168 0.129 0.111 0.951E−01 0.822E−01 0.344E−01 0.240E−01 0.183E−01 0.155E−01 0.126E−01 0.106E−01 0.585E−02 0.103E−01 0.144E−01 0.160E−01 0.176E−01 0.196E−01 0.431E−03 0.929E−03 0.167E−02 0.211E−02 0.270E−02 0.336E−02 0.851E−02 0.128E−01 0.161E−01 0.174E−01 0.189E−01 0.204E−01 0.429E−03 0.891E−03 0.151E−02 0.183E−02 0.230E−02 0.276E−02 5000 10 000 20 000 30 000 50 000 100 000 5000 10 000 20 000 30 000 50 000 100 000 0.309 0.229 0.168 0.141 0.115 0.994E−01 0.152 0.114 0.854E−01 0.731E−01 0.625E−01 0.539E−01 0.916E−01 0.799E−01 0.730E−01 0.654E−01 0.592E−01 0.498E−01 0.363E−01 0.253E−01 0.195E−01 0.164E−01 0.138E−01 0.114E−01 0.514E−02 0.932E−02 0.136E−01 0.154E−01 0.174E−01 0.201E−01 0.440E−02 0.756E−02 0.106E−01 0.116E−01 0.128E−01 0.144E−01 0.245E−02 0.463E−02 0.701E−02 0.836E−02 0.972E−02 0.116E−01 0.669E−03 0.137E−02 0.227E−02 0.277E−02 0.341E−02 0.409E−02 0.742E−02 0.114E−01 0.147E−01 0.161E−01 0.177E−01 0.197E−01 0.633E−02 0.942E−02 0.116E−01 0.126E−01 0.137E−01 0.147E−01 0.233E−02 0.411E−02 0.603E−02 0.683E−02 0.794E−02 0.945E−02 0.655E−03 0.126E−02 0.195E−02 0.238E−02 0.278E−02 0.334E−02 5000 10 000 20 000 30 000 50 000 100 000 0.160 0.120 0.904E−01 0.775E−01 0.657E−01 0.563E−01 0.315E−01 0.216E−01 0.168E−01 0.143E−01 0.116E−01 0.968E−02 0.424E−02 0.745E−02 0.105E−01 0.117E−01 0.128E−01 0.143E−01 0.444E−03 0.939E−03 0.165E−02 0.200E−02 0.258E−02 0.313E−02 0.618E−02 0.930E−02 0.117E−01 0.126E−01 0.137E−01 0.149E−01 0.439E−03 0.886E−03 0.144E−02 0.176E−02 0.214E−02 0.257E−02 Cr II 4 P−4 Po 3637.7 Å C = 0.32E+21 Cr II 4 P−4 Do 3046.9 Å C = 0.20E+21 Cr II 4 G−4 Fo 3197.6 Å C = 0.19E+21 2249 2250 Z. Simić, M. S. Dimitrijević and S. Sahal-Bréchot Figure 1. Stark widths for resonant Cr II 4588.2, 5279.6 and 6073.4 Å spectral lines as a function of temperature. Figure 4. Ratio of EW for Cr II 4588.2 Å as a function of log[Cr/H]. Dotted line – ratio of EW2 (the EW with Stark broadening included) and EW1 (without it). Full line – ratio of the EW without Stark broadening contribution: EW2 denotes the EW with variable chromium abundance and EW1 the EW with the Solar value of chromium abundance. Figure 2. Thermal Doppler and Stark widths for Cr II multiplets 3d5 4 F– 3d4 4p 4 Fo (λ = 5279.6 Å) and 3d5 4 F–3d4 4p 4 Po (λ = 6073.4 Å), for an A-type star atmosphere model with Teff = 8500 K and log g = 4.0, as a function of the Rosseland optical depth. Figure 5. Thermal Doppler and Stark widths for Cr II multiplets 3d5 4 F– 3d4 4p 4 Fo (λ = 5279.6 Å) and 3d5 4 F–3d4 4p 4 Po (λ = 6073.4 Å), for a DB white dwarfs atmosphere model (Wickramasinghe 1972) with Teff = 15 000 K and log g = 8.0, as a function of the optical depth. Figure 3. Comparison of the Cr II 4588.2 Å line profile (‘a’) without the Stark broadening contribution and with this contribution for different Cr abundances log[Cr/H]: ‘b’ – Solar one; ‘c’ – (−3.75); ‘d’ – (−3.25); ‘e’ – (−2.75); Teff = 8750 K, log g = 4. [This figure was preliminary reported in a conference and published in the corresponding proceedings (Simić 2010).] Solar value (EW1 ). We can see in Fig. 4 that, in the considered case, the neglecting of Stark broadening will introduce non-negligible errors in abundance determination which increase with the increase of chromium abundance. The influence of the Stark broadening on Cr II spectral lines for DB white dwarf plasma conditions is investigated here for the multiplets 3d5 4 F–3d4 4p 4 Fo (λ = 5279.6 Å) and 3d5 4 F–3d4 4p 4 Po (λ = 6073.4 Å) by using the corresponding model with Teff = 15 000 K and log g = 8 (Wickramasinghe 1972). For the considered model atmosphere of the DB white dwarfs, the pre-chosen optical depth points at the standard wavelength λs = 5150 Å(τ 5150 ) are used in Wickramasinghe (1972) and here as the difference to the A-type star model (Kurucz 1979), where the Rosseland optical depth scale (τ Ross ) was taken. As one can see in Fig. 5, for the DB white dwarf atmosphere plasma conditions, thermal Doppler broadening is much less important than in A-type stars, in comparison with the Stark broadening mechanism, which is the most important one here. Stark broadening of Cr II spectral lines We have demonstrated that the Stark broadening of the considered Cr II lines may be non-negligible in A-type star atmospheres, especially in the line wings and when chromium is overabundant. We also note that it is even more important for the modelling of subphotospheric layers. Its neglection, as the present analysis shows, may contribute to errors in chromium abundance determination. The obtained results also show that it is the principal broadening mechanism in DB white dwarf atmospheres. Also, Stark broadening parameters for nine resonant Cr II multiplets are determined. Cr II Stark broadening parameters given in Table 1 will also be included in the STARK-B data base (Sahal-Bréchot, Dimitrijević & Moreau 2012), a part of Virtual Atomic and Molecular Data Center (Dubernet et al. 2010; Rixon et al. 2011), cf. also SahalBréchot (2010). This data base is devoted to diagnostics modelling and investigations of stellar atmospheres, but also for laboratory, fusion and laser produced plasmas research and modelling. AC K N OW L E D G E M E N T S This work is a part of the project 176002 ‘Influence of collisional processes on astrophysical plasma spectra’ supported by Ministry of Education and Science of Republic Serbia. REFERENCES Adelman J., 1991, MNRAS, 252, 116 Adelman J., Philip A. G., 1996, MNRAS, 282, 1181 Bates D. R., Damgaard A., 1949, Phil. Trans. R. Soc., 242, A101 Ben Nessib N., Dimitrijević M. S., Sahal-Bréchot S., 2004, A&A, 423, 397 Caliskan H., Adelman J., 1997, MNRAS, 288, 501 Cowley C. R., Ryabchikova T., Kupka F., Bord D. J., Mathys G., Bidelman W. P., 2000, MNRAS, 317, 299 Dimitrijević M. S., 1996, Zh. Prikl. Spektrosk., 63, 810 Dimitrijević M. S., Sahal-Bréchot S., 1996, Phys. Scr., 54, 50 Dimitrijević M. S., Sahal-Bréchot S., Bomier V., 1991, A&AS, 89, 581 Dimitrijević M. S., Ryabchikova T., Popović L. Č., Shylyak D., Tsymbal V., 2003a, A&A, 404, 1099 Dimitrijević M. S., Jovanović P., Simić Z., 2003b, A&A, 410, 735 Dimitrijević M. S., Dačić M., Cvetković Z., Simić Z., 2004, A&A, 425, 1147 Dimitrijević M. S., Ryabchikova T., Popović L. Č., Shulyak D., Khan S., 2005, A&A, 435, 1191 Dimitrijević M. S., Ryabchikova T., Simić Z., Popović L. Č., Dačić M., 2007, A&A, 469, 681 Dubernet M. L. et al., 2010, J. Quant. Spectrosc. Radiat. Transf., 111, 2151 (http://www.vamdc.eu) Eissner W., Jones M., Nussbaumer H., 1974, Comput. Phys. Commun., 8, 270 2251 Fleurier C., Sahal-Bréchot S., Chapelle J., 1977, J. Quant. Spectrosc. Radiat. Transf., 17, 595 Hamdi R., Ben Nessib N., Dimitrijević M. S., Sahal-Bréchot S., 2007, ApJS, 170, 243 Hamdi R., Ben Nessib N., Milovanović N., Popović L. Č., Dimitrijević M. S., Sahal-Bréchot S., 2008, MNRAS, 387, 871 Kurucz R. L., 1979, ApJS, 40, 1 Lakićević I. S., 1983, A&A, 127, 37 Lanz T., Dimitrijević M. S., Artru M. C., 1988, A&A, 192, 249 Oertel G. K., Shomo L. P., 1968, ApJS, 16, 175 Piskunov N., 1992, in Glagolevskij Yu., Romanyuk I., eds, Stellar Magnetism. p. 92 Popović L.Č., Dimitrijević M. S., Tankosić D., 1999a, A&AS, 139, 617 Popović L.Č., Dimitrijević M. S., Ryabchikova T., 1999b, A&A, 350, 719 Popović L. Č., Milovanović N., Dimitrijević M. S., 2001, A&A, 365, 656 Rathore B. A., Lakićević I. S., Ćuk M., Purić J., 1984, Phys. Lett. A, 100, 31 Rixon G. et al., 2011, AIP Conf. Proc. Vol. 1344, Atomic and Molecular Data and their Applications – ICAMDATA-2010. Am. Inst. Phys., New York, p. 107 Sahal-Bréchot S., 1969a, A&A, 1, 91 Sahal-Bréchot S., 1969b, A&A, 2, 322 Sahal-Bréchot S., 1974, A&A, 35, 321 Sahal-Bréchot S., 1991, A&A, 245, 322 Sahal-Bréchot S., 2010, J. Phys. Conf. Ser., 257, 012028 Sahal-Bréchot S., Dimitrijević M. S., Moreau N., 2012, Stark-B data base, Observatory of Paris, LERMA and Astronomical Observatory of Belgrade (http://stark-b.obspm.fr) Shevchenko V. S., 1994, Astron. Zh., 71, 572 Simić Z., 2010, J. Phys. Conf. Ser., 257, 012037 Simić Z., Dimitrijević M. S., Milovanović N., Sahal-Bréchot S., 2005, A&A, 441, 391 Simić Z., Dimitrijević M. S., Popović L. Č., Dačić M., 2006, New Astron., 12, 187 Simić Z., Dimitrijević M. S., Kovačević A., Dačić M., 2009a, in Dimitrijević M. S., Tsvetkov M., Popović L. Č., Golev V., eds, Proc. 6th SerbianBulgarian Astron. Conf., Publ. Astron. Soc. ‘Rudjer Bošković’, Belgrade, Vol. 9, p. 421 Simić Z., Dimitrijević M. S., Kovačević A., 2009b, New Astron. Rev., 53, 246 Tankosić D., Popović L. Č., Dimitrijević M. S., 2003, A&A, 399, 795 van Regemorter H., Hoang Binh D., Prud’homme M., 1979, J. Phys., B12, 1053 Wickramasinghe D. T., 1972, Mem. R. Astron. Soc., 76, 129 Wiese W. L., Musgrove A., 1989, Atomic Data for Fusion Vol. 6, Spectroscopic Data for Titanium, Chromium and Nickel, Vol. 2, Chromium, Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, Oak Ridge This paper has been typeset from a TEX/LATEX file prepared by the author.
© Copyright 2026 Paperzz