Turbulence Dispersion Force – Physics, Model Derivation and Evaluation– J.-M. Shi1, T. Frank2, A. Burns3 1 Institute of Safety Research, FZ Rossendorf [email protected] 2 ANSYS CFX Germany 3 ANSYS CFX FZR–ANSYS CFX Workshop on Multiphase Flow 29-30.06.2004, Dresden FORSCHUNGSZENTRUM ROSSENDORF Institut für Sicherheitsforschung Contents Physics Modeling approaches • Eulerian approach • Lagrangian approach A new model derivations Evaluation 1 Turbulent dispersion (TD) A result of the (dispersed phase) particle–eddy (continuous phase) interaction Important for dispersed phase with small St ′ ′ Turbulent mass diffusion (αk uk) and interphase momentum transfer Turbulent mass diffusion is usually modeled by a mass diffusion term The interphase momentum transfer due to turbulent dispersion is often separated as an “interfacial force”, to be calculated from the temperal correlation of the interfacial force fluctuations. Usually, only the drag contribution is essential. 2 Eulerian model – mass diffusion • Reynolds averaging ∂ (ρk αk ) + ∇ · (ρk αk Uk) = 0 ∂t ′ applying φ = φ + φ ∂ ′ ′ (ρk αk ) + ∇ · (ρk αk Uk) = −∇ · (ρk αk uk) ∂t νk,t ′ ′ (1) ⇒ with αk uk ∼ − ∇αk (2) σk • Adopting Favré-averaged velocity ′ ′ α k uk αk Uk Ũk = = Uk + αk αk ′′ ′ Uk = Ũk + uk + uk, ′ ′′ uk = − (3) ′ α k uk αk 6= 0 (4) ∂ (ρk αk ) + ∇ · (ρk αk Ũk) = 0 ∂t (5) • Using Favré-averaged velocity simplifies the equation system 3 Eulerian model – turbulent dispersion force The Favré-Averaged Drag Force (FAD) model, Drag: 6 αf 1 FD = Cf p(Up − Uf ) = CD ρf |Up − Uf | (Up − Uf ) |8 {z } dp | {z } Af p Df p Reynolds averaging: ′ ′ α f uf ′ (6) ´ ³ FD = Cf p Ũp − Ũf + FTD ′ αpuf EDH νf,t FTD = Cf p − −→ Cf p αf αp σf à ∇αf ∇αp − αp αf (7) ! (8) For details refer to A. Burns, T. Frank, I. Hamill and J.-M. Shi, ICMF2004, Paper No. 392 4 Lagrangian method tracking trajectories of each particle, parcel n = xn xn+1 p + Vp δt p à !n n+1 n − Vp Vp 3 ρf C D 1 = |Vp − Vf | (Vp − Vf ) + Fother δt 4 ρp dp ρpδV (9) (10) construct fluid fluctuating velocity for particle-eddy interaction n+1 , t) + v Vfn+1 = Uf (xn+1 p f à ! δt a = exp − ∗ , TL b= à , 2kf 3 !1 q 2 1 − a2 , |e|n ∈ N (0, 1) (11) (12) Lagrangian time step P n+1 Fpn+1 F n+1 Pn = Fn vfn+1 = avfn + ben , where Eulerian time step 5 A new TD force model derivation (1) Ensemble average for a cell △V at time tj n(t ) n(t ) i 1 Xj i 1 Xj 3 CD i − Vi |(Vi − Vi )δV i (13) FD(tj ) = ρf i |Vp fD(tj ) = p f f △V i=1 △V i=1 4 dp Time averaged drag ) N n(t Xj 3 C i 1 1 X i − Vi |(Vi − Vi )δV iδt FD = ρf D | V p p f f △V TE j=−N i=1 4 dip (14) TE (macro time scale) ≫ τe = C kǫ (eddy life time); δt ≪ τe n(t−N ) n(t−j ) n(t0 ) n(tj ) n(tN ) △V t−N = t − TE /2 t−j = t − jδt t0 = t tj = t + jδt tN = t + TE /2 6 Model derivation (2) Converting into the Eulerian frame • Eulerian variables n(t ) 1 Xj αp(tj ) = δV i △V i=1 (15) Pn(tj ) i Pn(tj ) i i Φ δV Φ δV i 1 i=1 i=1 Φ(tj ) = P = n(tj ) △V αp(tj ) i i=1 δV (16) • Reynolds averaging operator N 1 t+TE /2 1 X Φ(tj )δt Φ(t) = Φ(θ)dθ = TE t−TE /2 TE j=−N Z (17) • Averaging the drag force FD = αpfD = αpfD | {z } mean drag + ′ α′pfD | {z } turbulent dispersion force (18) 7 Derivation details (1) ¢ ¡ 3 CD |Up − Uf | Up − Uf αp ρf 4 dp ¢ ¢ ¡ 3 CD ¡ | Up − Uf | αp Up − Uf ρf 4 dp FD = ≈ | = = = = {z D } D|Up − Uf | αpUp − αpUf D|Up − Uf | ³ µ ′ ′ αpŨp − αp Uf − αpuf ´ ¶ ′ αp ′ ′ ′ ′ Dαp|Up − Uf | Ũp − Ũf + D|Up − Uf | α f uf − α p uf αf ! D|Up − Uf | αp ³ ´ ³ | ′ ´ Ũp − Ũf + αp à ′ α f uf αf ′ − α p uf (19) {z } turbulent dispersion force FTD 8 Derivation details (2) Eddy viscosity hypothesis (EVH) νf,t ′ ′ α uf = − ∇α σf ′′ uf = ⇒ νf,t σf α ∇α (20) Model expression (for the continuous phase) à αp 3 C νf,t FTD ≈ ρf D |Up − Uf | ∇αp − ∇αf 4 dp σf αf | {z CT D ! (21) } Results for two-fluid model, αp + αf = 1 ∇αp 3 CD νf,t |Up − Uf | FTD ≈ ρf 4 dp σf αf (22) 9 Remarks The present derivation illustrates the physics of the turbulent dispersion The present derivation explains why double average makes sense Lagrangian evaluation of turbulent dispersion is very expensive. This derivation might provide a theoretical foundation for a deterministic TD force model for the Lagrangian solver 10 Evaluation 11 FZR MTLoop test facility Air-water system, isothermal Inner pipe diameter D = 51.2 mm Wire mesh sensor measurements Test section from gas injection: L = 0.03 to 3.03 m Injection nozzle arrangement: 12 Test case definition 13 Two-fluid model Evaluation 1.8 2.5 FZR-038 experiment FAD-SST RPI-SST, CTD = 0.35 1.6 1.4 FZR-039 experiment FAD-SST RPI-SST, CTD = 0.35 2 1.5 1 αg∗ αg∗ 1.2 0.8 1 0.6 0.4 0.5 0.2 0 0 0.2 0.4 0.6 r∗ 0.8 1 0 0 0.2 0.4 0.6 0.8 1 r∗ For details refer to J.-M. Shi, T. Frank, E. Krepper, D. Lucas, U. Rohde, H.-M. Prasser, ICMF2004, Paper No.400 Th. Frank, J.-M. Shi, and A. Burns, 3rd International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, 22-24 September, 2004 14 Poly-dispersed model Evaluation • Stationary, axisym., bubbly flow at the upper test section (L/D = 59.2) • Data from measurements: superficial velocities, mean bubble diameter, local gas volume fraction Ul Ug Air Air 1 Air 2 Air 3 [m/s] [m/s] VF[%] dp VF[%] dp VF[%] dp VF[%] 070 0.161 0.0368 22.86 4.8 12.20 7.0 10.66 071 0.255 0.0368 14.43 4.8 11.27 6.6 3.16 072 0.405 0.0368 9.09 4.6 8.18 6.4 0.91 072 0.405 0.0368 9.09 3.8 2.48 5.0 5.70 6.4 0.91 083 0.405 0.0574 12.76 4.8 9.86 6.7 2.90 083 0.405 0.0574 12.76 3.7 1.00 5.0 8.86 6.7 2.90 084 0.641 0.0574 8.95 4.6 8.24 6.4 0.71 107 1.017 0.140 13.77 5.1 9.47 6.8 4.30 108 1.611 0.140 8.69 4.7 8.10 6.3 0.59 110 4.047 0.140 3.46 2.7 3.46 110 4.047 0.140 3.46 2.4 1.71 3.4 1.75 Ul, Ug–superficial velocity, dp–diameter [mm], VF–gas volume fraction. Index 15 Results from poly-dispersed model 2 1 0.5 0 0 2 0.2 0.4 0.6 0.8 0 1 0 0.2 0.4 ∗ r 2 FZR-083 exp. sum d= 3.7mm d= 5.0mm d= 6.7mm 1 0.5 0.6 0.8 1 0.6 0.8 1 ∗ FZR-084 exp. sum d= 4.6mm d= 6.4mm 1.5 αg∗ 1.5 αg∗ 1 0.5 r 0 FZR-071 exp. sum d= 4.6mm d= 6.4mm 1.5 αg∗ 1.5 αg∗ 2 FZR-070 exp. sum d= 4.8mm d= 7.0mm 1 0.5 0 0.2 0.4 0.6 r∗ 0.8 1 0 0 0.2 0.4 r∗ 16 TD coefficient, FZR070, CT D = 14 10 8 6 4 0 0.1 0.2 0.3 0.4 0.5 r 2.5 d= 4.8mm, d= 7.0mm, d= 4.8mm, d= 7.0mm, 2 CD, Slip Velocity 10 8 6 4 0.6 0.7 0.8 0 0.1 0.2 0.3 ∗ 0.4 0.5 r 2.5 CD, FZR070Grace CD Slip V Slip V d= 4.8mm, d= 7.0mm, d= 4.8mm, d= 7.0mm, 2 1.5 1 0.5 0 2 0.9 CD, Slip Velocity 2 − Uf | d= 4.8mm, CTD, FZR070Ishii&Zuber d= 6.6mm, CTD 12 Turb. Disp. Coeff 12 Turb. Disp. Coeff 14 d= 4.8mm, CTD, FZR070, Grace d= 6.6mm, CTD 3 ρ CD νf,t |U p 4 f dp σf 0.6 0.7 0.8 0.9 0.8 0.9 ∗ CD, FZR070Ishii&Zuber CD Slip V Slip V 1.5 1 0.5 0 0.1 0.2 0.3 0.4 0.5 r ∗ 0.6 0.7 0.8 0.9 0 0 0.1 0.2 0.3 0.4 0.5 r 0.6 0.7 ∗ 17 TD coefficient, FZR110, CT D = 35 35 d= 2.4mm, CTD, FZR110, Grace d= 3.4mm, CTD 25 20 15 0 0.1 0.2 0.3 0.4 0.5 r 1 d= 2.4mm, d= 3.4mm, d= 2.4mm, d= 3.4mm, 0.8 CD, Slip Velocity d= 2.4mm, CTD, FZR110Ishii&Zuber d= 3.4mm, CTD 25 20 15 0.6 0.7 0.8 0 0.1 0.2 0.3 ∗ 0.4 0.5 r 1 CD, FZR110, Grace CD Slip V Slip V d= 2.4mm, d= 3.4mm, d= 2.4mm, d= 3.4mm, 0.8 0.6 0.4 0.2 0 10 0.9 CD, Slip Velocity 10 − Uf | 30 Turb. Disp. Coeff Turb. Disp. Coeff 30 3 ρ CD νf,t |U p 4 f dp σf 0.6 0.7 0.8 0.9 0.8 0.9 ∗ CD, FZR110Ishii&Zuber CD Slip V Slip V 0.6 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 r ∗ 0.6 0.7 0.8 0.9 0 0 0.1 0.2 0.3 0.4 0.5 r 0.6 0.7 ∗ 18
© Copyright 2025 Paperzz