© 1993 Oxford University Press
Nucleic Acids Research, 1993, Vol. 21, No. 13
3139-3154
Effect of site-specific methylation on restriction
endonucleases and DNA modification methyltransferases
Michael Nelson, Eberhard Raschke1 and Michael McClelland*
California Institute of Biological Research, 11099 North Torrey Pines Road, La Jolla, CA 92037, USA
and 1Botanisches Institut der Universitat Bonn, D-5300 Bonn 1, Kirschallee 1, Germany
We present in Table I an updated list of the sensitivities of 298
restriction endonucleases and 20 DNA methyltransferases to sitespecific modification at 4-methylcytosine ("HT), 5-methylcytosine C^C), 5-hydroxymethylcytosine O™5^), and 6-methyladenine (^A) (McC14), four modifications that are common in
the DNA of prokaryotes, eukaryotes, and their viruses
(Mc2,Mc5,Mc8,Mcll,Ne3,Ne4). In addition, new information
is included on restriction endonuclease cleavage at sites modified
with 5-hydroxymethyluracil ( ^ U ) .
Knowledge of the sensitivity of restriction endonucleases to
site-specific modification can be used to study cellular DNA
methylation. Several restriction-modification enzymes share the
same recognition sequence specificity, but have different
sensitivities to site-specific methylation. Table II lists 32 known
isoschizomer pairs and one isomethylator pair, along with the
modified recognition sites at which they differ.
The data presented here and an additional three other tables
are available in printed form or as a text file on a 3.5" Macintosh
diskette. The extra tables include Table HI which is a list of
over 205 characterized DNA methyltransferases. A detailed list
of cloned restriction-modification genes has been made by Wilson
(Wi4). Table IV lists the sensitivities of over 20 Type II DNA
methyltransferases to "^C, m5 C, hm5 C, and "^A modification.
Most DNA methyltransferases are sensitive to non-canonical
modifications within their recognition sequences (Bu9,MclO,
Ne3,Po4), and this sensitivity often differs from that of their
restriction endonuclease partners. Table V gives a list of
restriction systems in this review alphabetized by recognition
sequence. The data can be supplied as a Microsoft Word,
Macwrite or MS-DOS file. Please contact Michael McClelland
at CTBR, phone 619 535 5486, FAX 619 535 5472.
Molecular basis for sensitivity restriction enzymes to
methylation
"•C, "tfC, hm3 C, and "^A are bulky alkyl substitutions in the
major groove of DNA. Site-specific DNA methylation can
interfere with many sequence-specific DNA binding proteins (e.g.
St2,Wa8), including binding of restriction endonucleases and
DNA methyltransferases. At the molecular level, the inability
of restriction enzymes to cut modified DNA can be explained
using EcoRl and EcoRV endonucleases as instructive models.
DNA modification can interfere with substrate binding and/or
conformational changes of the enzyme: substrate complex.
Based on the EcoRl: DNA co-crystal structure (Mcl5,Ro8),
methylation of either adenine (G^AATTC or GA^ATTQ
* To whom correspondence should be addressed
perturbs essential hydrogen bond contacts to Glu-144 and
Arg-145. Therefore aminomethylation of either adenine inhibits
DNA cleavage at the level of EcoRl: substrate binding (Br2).
In contrast, cytosine ring methylation at GAATP^C would not
be expected to interfere with critical DNA: protein contacts
inferred from the X-ray crystal structure (Mcl5). Therefore, the
reduced rate of EcoBl cleavage at GAATT™^ can be attributed
to steric distortions of the enzyme: substrate complex during
catalysis (He3).
Based upon the X-ray structure of EcoRV endonuclease (Wi5),
hydrogen bonding of Asn-185 to the first adenine of GATATC
is perturbed by 'canonical' methylation at the G^ATATC. The
canonical site is the site of methylation by the corresponding
methylase in the same restriction system, in this case M-.EcoRV.
However, EcoRV cannot cleave canonically modified
G^ATATC sites because non-productive enzyme: substrate
complexes are formed (Ta4,Nel2). Therefore the mechanism by
which canonical DNA methylation inhibits cleavage is very
different in the cases of EcoRl and EcoRV endonucleases.
Although DNA modification often results in complete inhibition
of restriction enzyme cleavage, a range of rate effects are
observed when non-canonically modified DNA is used as a
substrate, as listed in the footnotes to Table I. Rate effects at
•^-hemi-methylated restriction endonuclease target sites are
listed in NelO.
Rate of cleavage at methylated restriction sites
DNA methylation may cause long-range perturbations of DNA
minor and major grooves, and a range of rate effects are observed
when modified substrates are used in endonuclease cleavage
reactions. Results can be summarized as follows.
(1) Canonical site-specific methylation always inhibits DNA
cleavage by a restriction endonuclease. For example, M.BamHl
methylase modifies GGAT^CC; and flamHI endonuclease
cannot cut this methylated sequence.
(2) In about one half of the cases tested, methylation at noncanonical sites inhibits the rate of duplex DNA cleavage at least
ten-fold (Table I). However, in other cases non-canonical
methylation has no effect on restriction cleavage. For example,
BamHI cuts DNA which has been modified at GGATC^C or
GGATO^C, but cannot cut DNA methylated at GGAT^CC.
(3) There are a few examples in which non-canonical
methylation slows the rate of cleavage or permits nicking of one
strand of a hemi-methylated duplex. Examples of such rate effects
are presented in footnotes to Table I.
3140 Nucleic Acids Research, 1993, Vol. 21, No. 13
(4) Sometimes base modifications which lie outside a
recognition sequence can influence the rate of DNA cleavage by
a restriction enzyme. For example, Narl does not cut at
overlapping MMval-Narl GGCGCCto4CCWGG sites (Nel),
HaeTR cannot cut certain G G C C T sites, where T are
modified thymine residues (Wil), and Mspl, HpaQ, Smal, and
Hhal are unable to cut DNAs in which bases adjacent to their
recognition sequences are modified with hydroxymethyluracil
(Hoi). Such methylation-induced 'action at a distance' may be
more common than has been previously appreciated. We have
tested only a few enzymes for sensitivity to base modifications
outside their canonical recognition sequences.
DNA modifications other than
m4
C,
mS
C,,
hm5
C,
hm5
U, and
The effects of several other site-specific DNA modifications on
the rate of restriction endonuclease cleavage, such as
5-bromodeoxycytidine, 5-bromodeoxyuridine, 5-iododeoxycytidine, deoxyinosine, 2-aminopurine, 2,6-diaminopurine,
2-chloroadenosine, 7-deazaguanosine, and deoxynucleotide
phosphorothioate deoxynucleotides, are listed elsewhere
(Bol ,Be6,Mo4,Br2,Ta5,He4,Gr3,Se4,Vo2).
Effect of m5 CG and ""^NG on restriction endonucleases
Enzymes that are not sensitive to site-specific methylation are
particularly useful for achieving complete digestion of methylated
DNA. For instance, endonucleases that are unaffected by "^CG
and "^CNG are useful for the digestion of plant DNA, which
is frequently methylated at these positions. Endonucleases that
are unaffected by these two cytosine modifications include:
AccUI, Ajm, Ahdm, Asel, AsplOOl AsuTI, Bbul, Bell, BspHl,
BspNl, BstEH, BstNl, CviQI, Dpnl, Dral, EcoRV, Hindi,
Hpal, Kpnl, MbdH, Msel, Ndel, NdeU, Pacl, Rsal, RspXl, Spel,
Sphl, Sspl, Swal, Taql, Tsp5O9l, TthHBl and Xmnl.
CpG sequences occur infrequently and are often methylated
in mammalian genomes (Mc9). Almost all the enzymes that could
generate large fragments of mammalian DNA are blocked by
this "^CpG modification at overlapping sites, including Aatll,
Apel, AviO., Bbel, BmaDl, BssKR, BspMR, BsiBl, Clal, Cspl,
Csp45l, Eagl, EclXL, Eco47m, Fsel, Fspl, Kpnll MM,
Mhi9273l, M«9273II, Mrol, Noel, Narl, Notl, Nrul, Pjul, PmR,
PpuAl, Pvul, RsrQ, Sail, SalDl, Sbol3l, Sfil, Smal, SnaBl, SpO.,
Spol, Srfi, Xhol and XorR (see Table I). Only five enzymes
suitable for pulsed field mapping of eukaryotic chromosomes are
known to cut "^CG-modified DNA: AccTH, AsuU, Cfr9l, Pmel
and Xmdl.
"*€, mS C, and hmSC cytosine modifications
In some cases, a restriction enzyme may differ in sensitivity to
""•C and "'C at a particular sequence. For example, BstNl and
Mval cut m3 C, but not ""C modified CCWGG sequences. Rsal
cuts GTA 1 "^ but not G T A " ^ . Kpnl cuts GGTAC^C but not
GGTAC^C. BstYl cuts RGAT^CY but not RGATm4CY.
Similarly, CviSHI cuts T^CGA but not T ^ C G A .
Effect of site-specific methylation on DNA methyftransferases
Twenty-three Type II methyltransferases have been tested for
sensitivity to non-canonical DNA modifications, of which nine
were blocked (MclO and Table IV). As with restriction
endonucleases, rate effects are sometimes seen with DNA
memyltransferases at non-canonically modified sequences. For
example, E.coli Dam methyltransferase is unaffected by
GAT^C, but methylates GAT^C relatively slowly. Such data
is summarized in Table IV and footnotes to Table I.
Methylase/endonuclease combinations can produce novel
DNA cleavage specificities
Several strategies involving combinations of modification
methyltransferases and restriction endonucleases have been used
to generate rare or novel DNA cleavage sites (Nel3). For
example, (i) certain adenine methyltransferases may be used in
conjunction with the methylation-dependent restriction
endonuclease Dpnl to create cleavages at eight- to twelve-basepair sequences (Mc6,Mcl2,Wel,Hal). (ii) Protection of a subset
of restriction endonuclease cleavage sites by methylation at
overlapping methyltransferase/endonuclease targets has also been
described (Hul,Kll,Ne6,Qi2). This two-step 'cross-protection'
strategy has produced over 70 new cleavage specificities, and
many more are possible (Ja2,Ka2,Kll,Ne6). (iii) Methylases have
been used to compete with endonucleases for recognition sites
in a method called 'methylase-limited partial digestion'. This
method is particularly useful for performing partial digests in
agarose plugs for pulsed field gel electrophoresis (Ha2). (iv)
Blocking a subset of DNA methyltransferase sites by overlapping
methylation (sequential double-methylation) can expose a subset
of restriction endonuclease sites for cleavage (Mc9,Ne3,Po3).
For instance, M HpaU, MBamHl, and BamHl have been used
in a sequential three-step reaction to achieve selective DNA
cleavage at the ten base pair sequence, CCGGATCCGG (MclO).
(v) Polypyrimidine oligonucleotides in DNA triplexes have been
used to selectively mask restriction-modification sites. For
example, polypyrimidine triplexes which overlap MTaql sites
have been used to enable selective restriction cleavage (Ma7,
Ko9,Fe3). (vi) Finally, methods based on the sequential use of
purified lac repressor protein, DNA methyltransferases, and
restriction endonucleases have been used to achieve highly
selective DNA cleavages (Ko2).
Methylation-dependent restriction systems in bacteria
E. coli K-12 contains at least three different methylation-dependent
restriction systems which selectively restrict methylated target
sequences: mrr ( m6 A), mcrA ( m5 CG), mcrB ( R ^ C )
(Br5,Dil,He2,Ral,Ra2). In vivo or in vitro modified DNA is
inefficiently cloned into E.coli. For example, human DNA which
is extensively methylated at '"'CpG is restricted by mcrA (Wo3)
and other systems (Bu2). Appropriate non-restricting strains of
E.coli (Go2,Kr2,Ral,Ra2) should be chosen for efficient
transformation and cloning of methylated DNA. Other species
also have such restriction systems (e.g. Ma2).
Engineered altered methylase specificities
Many methylase genes have now been sequenced. Extensive
homologies between closely related enzymes (Wi3) or common
motifs (Po5,Sm3) allow new specificities to be developed (e.g.
Ba4,Tr4).
Data in electronic form
This paper is available as a text file on a 3.5" Macintosh diskette.
The data can be supplied as a Microsoft Word, Macwrite or MSDOS file. Please contact Michael McClelland at CIBR, phone
(619) 535 5486, FAX (619) 535 5472.
Nucleic Adds Research, 1993, Vol. 21, No. 13 3141
Table I. Methylatjon sensitivity of restriction endonudeases *
Restriction
enzyme
Recognition
sequence
Sues
cut
Sites not
cut
References
AaA
AGGCCT
7
AatO.
GACGTC
7
Accl
GTMKAC
7
Nel
So3
Nel
Nel
Fol
Lu2,Mc3
AccU
AccUl
CGCG
TCCGGA
/4cc65I
Adi
GGTACC
CCGC
GGWCC
GGWC m 4 C b
CTTAAG
CTTA^AG
ACRYGT
ACCGGT
7
T m5 CCGGA b
TOa5CGGAb
?
7
GGWC^C
AGG^CCT
AGGC^CT
AGGC^CT
GACGT^C
GA^CGTC
GTMK^AC'
GTMKA^C b
"^CGCG
TCCGG^A
GGTAC^C
C^CGC
?
Ne5
Fol
Mcll,Wh2
7
•^CTTAAG
Nel
7
7
AC^CGGT
?
A^CRYGT
A^CCGGT
Nel
Nel
GR^CGYC
Ka2,Hul
?
•^AGCT
AG^CT
Gr5,Mcll,Ne2
AGm3CTi
Hul,Wol,Zhl
Bu9
Ne4
Afll
Ajm
Aflm
Agel
AhaU
Alul
AM
GRCGYC b
GRCGY^C
AGCT
AGhm3CT
GG^ATC
7
AlwNl
Atw44l
AtwM
Amal
AosE
Apal
GGATC
GGAT^C
CAGN2CCT
GTGCAC
CAGN3CTG
TCGCGA
GRCGYC
GGGCCC
Apel
ApaU
ACGCGT
GTGCAC
7
Apyl
Aqul
Asd
CCWGG
CYCGRG
GGCGCGCC
C^CWGG
7
?
Asel
AspMDl
AsplQOl
ATTAAT
GATC
GAAN4TTC
AsplXil
GGTACC
ATT^AAT
G^ATC
GA^AN^TTC
GAAN^TT-'C
GGT^A^CC b
?
GTGC^AC
7
TCGCff^A
7
7
mSAC
GTGm3CAC
GTGC
b
Asul
AsuU
AtuCl
Aval
GGNCC
TTCGAA
TGATCA
CYCGRG
GGNC^C
TT^CGAA
7
C^CCGGG
A vail
GGWCC
GGWC^C
Avm
TGCGCA
ACN4GTAYC
TGGCCA
TGGC^CA"
GGATCC
7
7
7
Bael
Baa
BamHl
BamFl
Barnia
Banl
GGATCC
GGATCC
GGYRCC"
Ga2
Ke3,La2,Sc2
b
GGATC^C
GG^ATCC
GC^ATC^C
GGATC^C
GG^ATCC
GG^ATCC
GG^CGCC
GGYRC^C
CAGN.C^CT
GTG^CAC
CAG^C^CTGG
7
GR^CGYC
GGff^CCC 1
GGGCC^C
A^CGCGT
GTGCA^C
•^CCWGG
•^CYCGRG'
GG^CGCGCC
GGCG^CGCC
GGCGCff^CC
GGCGCGC^C
7
7
G^AAl^TTC
GGTAC^C
GGTA^C^C
7
Ne5
Nel
Bo5
Mcl3
Eh2,Gr5,Va3
La9,Gu9
Nel,Qi2
Fol,Ho2,Ho3
Nel
Kll,Mcll,Ra3
Ka7,Ka8
Si2
Nel
Ch4
Nel
Mu2,Ne4
b
7
TG^ATCA
"^CYCGRG
CY^CGRG
CTCG^AG b
GGW^CC
GGWC^C
GGW tal3 C lm3 C
TG^CGCA
ACN^GTYA^C
TGCF^CCA'
Ra4
Nel
Ro3,Scl2
Eh2,Nel
Ka4,Ka7,Mcll
Ne2
Ba3,Ko3
MclO.Mcll
Hul
Nel
Fol
Gil,Gu9
GGAT^CC 1
GGAT^CC
GGATtan5Chm5C
Br8,Drl,Ha3,Hul
U7
GGAhm5ucc
Hoi
Anl.Shl
Anl.Shl
Co3,Ka2
GGAT^CC
GGAT^CC
7
3142
Nucleic Acids Research, 1993, Vol. 21, No. 13
Table I. continued:
BanH
BanJH
Bbel
GRGCYC
ATCGAT
GGCGCC
BbOl
BbrPl
BbA
Bbul
BtrA
BcaTTl
BcU.
GRCGYC
CACGTG
GAAGAC
GCATGC
GCWGC
WCCGGW
TGATCA b
Bcnl
Bepl
7
?
Bgh
CCSGG
CGCG
CTTAAG
GCCNjGGC
BgO.
AGATCT b
AG
BJH
GRGCY^C
GGCG^CC
GGCGC^C
?
f
GAAGA^C
GCATG^C
7
WC^CGGW
TGAT^CA
m6ATCT
GAT hmJ UC hm3 U
AQATten3CT
GG"*ATC
CGATCG
GGWC^C
GGAT^CC
GGAT^CC*
GGTCT^C
YA^CGTR
GATN^AT^C
7
Aral
flraAI
GGTCTC
YACGTR
GATN 4 ATC
GAGA^C^C
7
7
GRCGYC
CCNNGG
WCCGGW
CTGCAC
CGRYCG
CGTACG
GAATGC
GTCTC
ATCGAT
7
C^CNNGG
WC^CGGW
7
7
7
7
GAATG^C
GAAGAC
7
BspEl
BspHl
TCCGGA
TCATGA
TO^CQGA*
7
BspMl
ACCTGC
TCCGGA
ACCTG^C
TCCGG^A
CCWGG
ATCGAT
TGATCA
ATCGAT
GDGCHC
GAGCGG
RCCGGY
GCGCGC b
GGATCC
C^CWGG
7
7
7
GDGCH^C
GAGm3CGGb
7
flsaWI
Bsgl
firfEI
flrfWI
fljfl
Bsml
BmAl
BspDl
BspMn
BspOl
BspXl
RrnX H
ZMplOuI
flipl286I
fljTBI
flirfl
BssHU
Bsd
flnBI
BstEn
BstEm
BstGl
flrtNI
CCNTGG
TTCGAA
TT^CGAA
GGTNACC
GATC b
TGATCA
CCWGG b
flrtUI
BstXl
BstYl
CGCG
CCAN6TGG
RGATCY
BstUVn
BsuBI
GTATAC
CTGCAG
GR-^CGYC
"'CA^CGrG
7
GC^ATGC
Gr^CWGC1
W^CCGGW
TG^ATCA
TGAT^^CA
C^CSGG'
•^CGCG
•^CTTAAG
ff^CCNsGGC
GCCN 3 GG m3 C b
GC m4 CN J GGC b
AGAT^CT
GC m 3 CN 3 GGC b
GGATC
CGATCG
GGWCC
GGATCC
BsaHl
BsaSl
m6ATl
GG^CGCC
"'CCSGG
Binl
BmdDI
Bme2\6l
Bnal
BsaBI
GRG^CYC
ATCG
CG^ATCG
7
GG^ATCC
GR^CGYC
7
7
CTGCA^C
m3
CGRYm3CG
m3
CGTAm3CG
C^CNTGG
G^AATGC
GTCT^C
AT^CGAT
""'ATCG^AT
TCCGG^A
TC'ATGA
TCATG^A
?
T^CCGGA
TC^CGGA
7
ATCG^AT
TG^ATCA
ATCG^ATf
GDG^CHC
7
RC'CGGY
ff^CGCGC
GGAT^CC
GGAT^CC
GGATC^C
7
GG^ATCC
GGATC'C
7
Wol
GGTNA^C^C
GGTNAC^C
7
7
"'CCWGG b
C^CWGG
7
7
RG^ATCY
RGAT m ^Y
7
7
TTCGJD6AA
b
Fol,Ne2,Ne6
Sul
Co3,Ne2,Sh2
Co3
Wol
Fol
Nel
Dol.Ha3.Va5
SclO
Bi4,Br8)Eh3,Ro3
Hul
Ja3Ja6,Kll
Ku3
Wol
Kll,Ko3,Mcll,Ne2
Bi4,Br8,Drl,Dyl,Eh3
Hul,Pi63ol
Bo2
Qi2
Ma9
Nel
Fol,Ne5
Fol
Fol
Fol
Fol
Fol
Fol
Fol
Fol
Fol
Fol.Nel
Fol.Nel
Fol
Fol
Pa2,Se3
Mel
Fol
La2,Sc2
SclO
Zil
Zil
Ne5
Fol,Ne2,Ne6
Fol
Fol
Ne4,Qi3
Ne4
Nel
Ne4
GGTNAhm3Chm5C
Nel
CP^ATC
TG^ATCA
hm3 ten3
C CWGG
C^CWGG
Hul,Mel 1
"^CGCG
"^CCAN.TGG
RGAT^CY
Ne5
Ne2
Ne4
Nel
Fol
GTATA^C
CTGC^AG'
Myl,Ro3
Ro3
Br8,Gr5,Hul.Mcll
Nel^o3
GaUel.Shl.St5
Nucleic Acids Research, 1993, Vol. 21, No. 13 3143
Table I. continued:
BsuEl
BsuFl
fljuMl
BsuRl
BsulSl
&u36I
Oil
Ccrl
Cfol
CGCG
CCGG
CTCGAG
GGCC
ATCGAT
CCTNAGG
TTCGAA
CTCGAG
GCGC
7
7
?
7
7
7
TTCG^AA
?
7
•^CGCG'
••^CCGG'
CT m3 CGAG #
GGP^CC* b
ATCff^AT'
•^CCTNAGG
7
CTCGm6AG
G^CGC
Cfrl
YGGCCR
CAGCTG
?
7
Qr9l
CCCGGG b
C^CCGGG
CC^CGGG
CfrlOl
RCCGGY
7
Cfriu
CM
GGNCC
ATCGAT
7
7
Cpel
Cspl
TGATCA
CGGWCCG
7
CGGWC^CG
CsjASl
Ctyl
CviAI
CviBI
CvUI
CViPI
CviQI
CviRI
TTCGAA
GATC
GATC
CATG
GANTC
RGCY
CC
GTAC
TGCA
7
?
GAT^C
•nJCATG
7
7
YGG^CCR 1
CAC^CTG*
CAff^CTG
""CCCGGG
"^CCCGGG
C^CCGGG'
CC^CGGG
R-^CCGGY'
RC^CGGY
GGN^CC'
•^ATCGAT
AT^CGAT b
ATCff^AT'
TG^ATCA
CGGW^CCG
•^CGGWCCG
TTCGm6AA
G^ATC* '
ff^ATC
C^ATG1
C-^ANTC'
RG^CY'
CviSm
TCGA
TmSCGA
Ddel
CTNAG
7
""^CTNAG
Dpid
ff^ATC b
C^AT^C
am
CviAn
c'c
GTA-^C
DpnH
Dral
Droll
Drdi
Eael
GATC
TTTAAA
RGGNCCY
GACNjGTC
YGGCCR
Eagl
CGGCCG
?
b
m3
m3
EamlVJSl
Eari
GACNjGTC
GAAGAG
GA CNjGT C
CTCTT^C
Ecal
EdXl
GGTNACC
CGGCCG
7
7
£&136I
EcoM
EcoBl
GAGCTC
TGAN,TGCT b
7
7
7
EcoDXXl
TCANTAATC1"
7
Ecom
GAGNTATGC
b
EcoKl
EcoOl09l
EcoPl
EcoPlSl
AACNjGTGC
RGGNCCY
AGACC b
CAGCAG b
GAATTC
b
Ecom
GAGNTGTCA
b
BulO
Bi5,Kll
Nel
Bi5,Kll
C»4,Mcll.Mcl2,Ne4
Wol
Mc3
Fil,Ro3
Mcll
Ne4,Scll
Ri2
Nel^Xil,Xi6
Nel
Xi3
Sh3,Xi2
Xi4
Xi5
Nel
GT^AC'
TGC^A*
TG^CA
TCGm6A#
Thm5CGA
•^CTNAG'
7
GP^ATC
GAT^C
G^AT^C
7
TTTA^AA
7
?
7
GaUel.Stal.St3
Jel
Jel
Gu8JCi2,Ki3
Ra4
Ne5
Mul
Nel
Ehl
Hul
HI
Bu9
7
7
7
AGA hm3 C tal3 C
7
0AATThm3c
GAA hm5 U tan3 UC
CTNm6AG
GATC
Ne4
GAT^C
C^ATC'
7
RGGNC^CY
GA^CNgGT^C
YGG^CCR 1
YGGC^CR
CGGWCCG
"'CGGC^CG
7
C^AAGAG
GAAG^AG
m3
CT m3 CTT m3 C
GGTN^ACC'
m3
CGGCm3CG
CGGWCCG
GAGCT^C
G m6 AGN 7 G m TCA'
Nel '
Ho4,Ne2
Hul
Nel
La3,Mcll,Vol
Ne5
Del,La3,U4,La3,Ma6,Vol
Nel
Sc8
Fol
Ja2,Whl
Mcll
Fol
Fol,Ne4
Nel
Br27?
Qi3
b
TGnl6AN n
« TX3CT ' b
TCANTnrf^n^ f b
Fol
Bi2,Co6^Fu2
Bi2,LalO,LaU
Pil
G^AGNTATGC
A^ACN^CnXjC'
RGGNC^CY
AG^ACC'
CAGC'AG'
G^AATTC b
GA^ATTC 1
GAATT^C b
b
Bi2,Bi3Jial
Sc8
Bal,Ba2,Ha4,Re4
Hu2,Me2
Mcll,Ne2,Rul
Brl,Br8,Dul,Hol
Hul,Ka3,Tal
3144 Nucleic Acids Research, 1993, Vol. 21, No. 13
Table I. continued:
£coRD
CCWGG
C^CWGG
^CCWGG
CC^AGG
C h m 3 CWGG
G^ATATC'
GAT^ATC
hm5
EcoRV
GATAT^C
GATATC
b
£coR124I
£«?R124/3I
EcoTU I
GAAN 7 RTCG
ATGCAT
Eco3H
GGTCTC
£co47I
Eco47n
GGWCC
GGNCC
AGCGCT
CTGAAG
Kul.Yol
Bu8,Na5,Ro3
b
Bo7,Mcll
Bu7
Hul,Ka3
Mcll,Ne2,Wol
Fll.Hol
Pr2,Pr3
Bit
Prl.Prt
Nel
ATGC^AT
£co57I
?
?
"^AGCGCT
?
Ehel
GGCGCC
GGCff^CC
Espl
Esp3l
GCTNAGC
CGTCTC
GCTNAG^C
?
GGT m 3 CTC#
Gm6AGACC#
GGWC^C
GGNC^C
Aff^CGCT
CTGA^AG
CTTC^AG
Gff^CGCC
G^CTNAGC
•^CGTCTC
GGT^CTCtf
GAG-^ACC*
GCNGC
FnuDU
CGCG
FnuEl
Fold
GATC
CATCC
CAT^CC
CATC
m3c b
CATC^C
Fsel
GGCCGGCC
Fspl
Fsid
HaeU
TGCGCA
GGWCC
RGCGCY
HaeSV
GGCC
HapU
Hgal
CCGG
GACGC
HgiM
HgiBl
HgiCl
HgiCn
HgiD\
HgiDU
HgiEl
HgiGl
HgOQ
Hhal
GWGCWC
GGWCC
b
ff^CNGC
GCNff^C
"^CGCG
CG^CG
7
GG^ATG
C^ATCC
Nel
GG^CCGG^CC
GGC^CGGCC
GG^CCGGCC
TG^CGCA
GGWC^C
Rff^CGCY
RGCGm5CY
RGhm5CGbm3CY
GGC^C
GWGCW^C
GGYRCC
C^CGG'
GA^CGC
GACff^C
GWCi^CWC
GGYR^CCff
GGWC^C
GR^CGY^C
GGWCC
GRCGYC
GTCGAC
GGWCC
GRCGYC
GGYRCC
GGWC^C
GGYRC
GCGC
m3c
ff^CGC'
GCff^C
G bm3 CG hm3 C
Hhda
HincU
GANTC
GTYRAC
Hindn
GTYRAC
Hindm
AAGCTT
Hind
GANTC
ff^ANTC
HinVl
HpdS.
GCGC
GTTAAC
ff^CGC
HpaO.
CCGG
7
GTYRA^C
A^AGCTT'
GTYR^AC'
GTYRA hmS C
GTYR^AC1
GTYRA hm3 C
m6
AAGCTT #
AAGm3CTTb
AAG'^CTT
GTTA^AC1
GTTAA h m 5 C
•^CCGG
Bu8
Ja5
P06
Nel,Ne4
Ja8,Po6
Co2,Nel
Ne4
Fol
Ja3
Gu9,Ko3
Gal,Ga2,Ne2,Ne6,St6
Lul,Ne2
Po3,Po4,Sc2
Ne7
Ne4
Lei
Eh2,Gr5,Ka2,Ko3,Mcl 1 ,Pi5
Nel
Hul
Ba3,Ka2,Ko3,Ma5
Hul
Eh2,Wal
Nel
Mcll
Fol,Ne2,Wh3
Ra4
Erl
Erl
Ra4
Ra4
Erl
Swl
Wh3
Eh2,Ko3,Sml
Mcll,
Hul
Gr5,Ro7
Hul
Ro7
Br8,Gr5,Nel,Ro7
Hol,Ne2
Hul,Ka3
Chl,Col,Ne2,Pel
Hul
Mcll,Ne6
Br8,Gr5,Hul,Yo3
Hul
Hoi
Be3,BulO,Eh2,Ma5
Ko3,Qul,Wa5
Nucleic Acids Research, 1993, Vol. 21, No. 13
Table I. continued:
C^CGG"
O^CGG 1
C bn5 CGG
T^CACC'
TCAmSCC
GGTG^A
Gff^CGCC
GGT^ACC'
GGTAC^C
hm3
Hphl
TCACC
KaA
Kpnl
GGCGCC
GGTACC
Kpn21
TCCGGA
GGT^ACC
TCCGG^A
Kspl
CCGCGG
7
MaeU
Maml
Mbo\
ACGT
GATN.ATC
GATC"
MboU
GAAGA
Mfll
RGATCY
7
7
GAT^C
GAT^C b
GA^^UC
T^CTP^C
G^AAGA
7
MM
ACGCGT
TCGCGA
GCCGGC
'"'ACGCGT
7
GATC
CCTC
CCWGGb
TCCGGA
TC^CGGA
TGGCCA
CCGGb
MU&1731
Mhffrms.
GC^CGGC
MmeE
Mna
Mphl
Mrol
Mscl
Mspl
TCAC^C
?
b
b
GGTA^CC
GGTAC^C
GGTAm3cm5c b
Hul
Fol>lcll,Ne2
Fol
Eh3,Ki4,Mcll
Nel
T^CCGGA
TC^CGGA
•^CCGCGG
C^CGCGG
A^CGT b
C^ATN Io6ATC
G^ATC '
GAT^C
b
Mcl.Nel
Nel
Nel
Qi2
St4
Br5,Gel,Mc8
Hul,Ro3
Hoi
Ba3,Mcll,Mcl2,Ne2
GAAG^A'
GA^AGA
Rff^ATCY
RGAT^CY
RGAT^CY
A^CGCGT
T^CGCGA
G^CCGGC
Mcll,Shl,St5,Qi3
Nel
Nel
7
7
G^ATC
•^CCTC
Bo6
Eh3,Mcll
7
TCCGG^A
Nel
?
"•'CCGG
CT'CGG
C^CWGG
T^CCGGA
Ro3
Mel,Nel
TGGC^CA
"^CCGG1
Fol
Eh2Je2,Va3,Wal,Wa5
BulO.Hul
bni3
C'
lm3
Onl
CGG
C^CGG
Msffl.
MthTl
Mval
CCTNAGG
GGCC
CCWGG
•^CCTNAGG
7
C^CWGG b
"^CCWGG
Muni
Mvnl
Noel
CAATTG
CGCG
GCCGGC
7
NanB
G^ATC
Nari
GGCGCC
b
?
7
7
GG^CC'
C^CWGG1
CC^AGG b
m4
CCWGGb
m3 m3
C CWGG
CA^ATTG1
•^CGCG
ff^ATC
G^AT^C b
GGCGC^C
GATC
GAT^C
GG^CGCC
GGCGC^C
CCSGG
"^CCSGG
Ncol
CCATGG
CC^ATGG
Ncri
AGATCT
GAAGA
CATATG
GATC
RGCGCY
GGCC
AG
7
•^CATATG
GAT^C b
7
7
TCACC
GCCGGC
GCTAGC
CATG
7
7
7
7
GGNNCC
G^ATC1"
G^ATC b
GCGGCCGC
7
ff^ATC
G^ATC
GCGGCCff^C
Ngon»
Ngohl
NgoMl
Nhel
Nlam
NlaSV
NmuDl
NmuEL
Nod
b
m5c
GG b m S CG h m 3 Ch h m 3 C
C^CSGG
C^CSGG b
•^CCATGC 1 "
•^CCATGG
Neil
Ndel
NdeH
Ngolb
b
GT'CCGGC
GC^CGGC
GGCGC
Nad
Ne5
No4
Bu8,Ku2
Gi4,Kul
m6ATCT b
7
m6
St8
Nel
Eh3,Kll,Mcll,Ne5
Pal,Ne5
Ko3,Mcll,Ne5
Nel
Br8JCo3,Mcll
Kll,Ne2,Ne4
Oil
GAAGF^A
b
Nel
A
G^ATC
Rff^CGCY
Gff^CC'
GGC^C* 1
T^CACC
GC^CGGC
GCTAff^C
C^ATG1
•^CATG
GGNN^CC
GATC
GATC
GCGG^CCGC
Mcl3
Be4,Mcll
Mc9
Ko3^Ko5
Ko3,Ko5
Su3,Su4
Pi3,Pi4
Fol
Hl,Mcll,Ne2
Lal,Mo3
Zh2
Nel
Pal
Pal
Mcll
3145
3146
NucUic Acids Research, 1993, Vol. 21, No. 13
Table I. continued:
Nnd
TCGCGA
TCG^CGA
NsH
Nspl
ATGCAT
RCATGY
TG-^CATA
7
Nspm
PflMl
CMGCKG
CCANjTGG
C^CGCKG
7
PfiH
Pfid
PaeJOl
GATC
CGTACG
CTCGAG
ff^ATC
7
7
Pmel
Pmll
PpuM
PpuMI
PsA
GTTTAAAC
CACGTG
CGTACG
RGGWCCY
CTGCAG
GTTTAAA^C
7
7
7
7
Pvid
CGATCG"
Cff^ATCG
Pvidl
CAGCTG
7
RflFl
RJWU.
RrMTTil
Rsal
GTCGAC
AGTACT
GTCGAC
GTAC b
7
7
7
Rshl
RspXl
CGATCG
TCATGA
CG^ATCG
7
Rsii
RSTH
GAATTC
GA^ATTC*
CGGWCCG
Sacl
GAGCTC
SacU
Sail
CCGCGG
GTCGAC
SalDl
SauiM
TCGCGA
GATC"
TCGCG^A
G^ATC
GAhm3UC
Sau961
GGNCC
7
Sau32391
SboUl
Seal
ScrFl
CTCGAG
TCGCGA
AGTACT
CCNGG
7
SfiOil
SjR
GATGC
GGCCNjGGCC
Sfll
SgrM
SM
Smal
CTGCAG
CRCCGGYG
GGWCC
CCCGGG
GGCCNjGGC^C
7
7
7
C'CCGGG
SndBl
TACGTA
7
Snol
Spel
GTGCAC
ACTAGT
7
7
Sphl
GCATGC
OCATGm5c
tan
tal3
GTAm3Cb
7
b
BaS
?
G^AGCTC
GAGCT^C
7
GTCGAm3C
TCGCG^A
AGTA^CT
•^CCNGG
GATCT'C
GG^ccNjCxy^a 1 b
G *CATG
C
GCGGC^CGC
T^CGCGA
TCGCG^A
ATGC^AT
RC^ATGY
R^CATGY
7
Cm4CAN3TGG
C^CANjTGG
7
CGTA^CG
CTCG m6 AG i
CT^CGAG b
7
CA^CGTG
CGTAm3CG
RGGWC^CT
•^CTGCAG b
CTGC^AG*
C^UGCAG
CGAT^CG
CGAT^CG
CAG m4 CTG'
CAG^CTG"
GTCG^AC
AGT^ACT
GTCG^AC
GT^AC
GTA^C
7
TC^ATGA
TCATG^A
G^AATTC
•^CGGWCCG
CGGW^CCG
CGGWC^CG
GAGT'CTC
Fol
•^CCGCGG
GT^CGAC b
GTCG^AC'
G tal3 UCGAC
T^CGCGA
GAT^C* b
GAT^C
QA1*m3(-:
GGN^CC1
GONC^C
GGN hm3 C bm3 C
CTCG m6 AG l
T^CGCGA
7
C^CNGG
(^CNGG
ff^ATGC
GGC^CNjGGCC
CTGC^AG
CRC^CGGYG
GGW^CC'
•^CCCGGG
•^CCCGGG"
C ro4 CCGGG b
CCro4CGGG
CC m3 CGGG b
TA^CGTA
T^ACGT^A
GTG mi CA m3 C
""•ACTAGT
A^CTAGT
GC'ATGC
St5,Qi2
Nel,Qi3
Ne2
Be3,Wol
Nel
Nel
Nel
Nel
St7
Ro3
Nel
Gi3
Ghl
Fol
Fol
Nel
Fol
Dol,Gr5.Mcll,Ne2
Hoi
Br83u7,Eh3
Br8,Bu9,Dol
Eh3Ja3,Rol
MoS
MoJ
Ba6
Eh3,Fol,Nel,Ne4,Ne3
Wo2
Lyl
Pa2
Ne4
Mcll
Mcll,Qi3
Mcll
KH,Ne2
Br8tEh2,Lu2,Qil
Mc3,Ro4,Ro5,Va4
Hoi
Mcl3,Nel,Qi3
Vrl&ajta >lc3,Ro3,Sel
Hol.NeS
Hul
Ko3,Ne2,Pel
Hul
Ra4
Mcll,Nel
Wol
Da4.Mcll.Ne2
Nel
Mcll,Po4
Mcll,Qi2
Br8
Ta3
Kfl5,Ka6
Br8,BulO,Eh2,Ga4
Ja3JCa7,Mc3,Qul
Fol.Yal
Ho3,Wol
Ho2
Wol
Mcll>lo3J>le2
Nucleic Acids Research, 1993, Vol. 21, No. 13 3147
Table I. continued:
Spa
Spol
CGT^ACG
TCGCG^A
CGTACG
TCGCGA
GCCCGGGC
CGTAmSCG
T^CGCGA
TCG^CGA
G^CCCGGGC
GC^CCGGGC
NelfrNe4,Qi3
Nel f Ne4
Mall
GCe^CGGGC
GCCCGGG^C
G^AATTC'
C^CNGG
"^CCNGG
TTCG° 6 AA
GAff^CTC
GAGhm3Cr[*m3C
"'CCGCGG
C^CGCGG
Gff^ATG'
C^ATCC 1
AGG^CCT
AGGC^CT
AGGC^CT
G m6 AGN 6 R n TAYG i
A^ACNAjTRC ' b
TCG^A
Hul
C-^ACCGA
Ssol
SsoU
GAATTC
CCNGG
SjpRFI
SsA
TTCGAA
GAGCTC
SsM
CCGCGG
Stsl
GGATG
Sod
AGGCCT
SrySBI
SrySPI
Ttufl
GAGN^TAYG
AACN6GTRC b
TCGA
TaqQ
CACCCA
GACCGA
71MXI
CCWGG
•^CCWGG
7
GAWTC
TCGA
CGCG
7
"^CGCG
7
TCGnl6A
"^CGCG
Fol
Sa3,Va6
Gal.Nel
Hul
Fol
TCG^A*
Sa3
Fol
Mcl3,Wel
Gr5,Hul,Ne2
C^CWGG
ija
ijn
Thai
b
7
7
T^CGA
b
Tihm I
71AHBI
7ip5O9I
Xbal
GACNjGTC
GA^CNjGTC
TCGA
AATT
TCTAGA
T^CGA
7
7
Xcyl
Xhol
CCCGGG
CTCGAG b
XhoJl
Xmal
RGATCY
CCCGGG
Rff^ATCY
CC^CGGG"
XmaBl
XmnI
CGGCCG
GAAN4TTC
GAm6AN4TTC
Xoril
CGATCG
7
Ni4
Vil
Gr4
Lil
Hul
Ne5
Ne5
Ki5
b
Ca4,Mcll
So3
Nel
Nal,Na2
Nal,Na2
Gr53ul,Mc3,Va3
Ne4
Grl
j
TCTAG^A 1
T^CTAGA b
C^CCGGG'
CT^CGAG
CTCG^AG
•^CTCGAG
RGAT^CY b
•"•CCCGGG
•^CCCGGG
C^CCGGG
CC^CGGG
CGG^CCG
Gm6AAN4TTC
GAAN^TT^C b
CGAT^CG
CG m6 ATCG b
hm3
CGAThm3CG
Wi6
Br8,Eh2,Eh3,Ka7
Mc3,Va3
Br8
BulO,Yo5,Yo6
Gu9,Ne2
Mcll,Ne2
Br8,Eh2
Hul,Sm4
a. # denotes canonical modification MTase specificity. M = A or C, K = G or T, N = A,C,G, or T, R = A or G, Y = C or T, W = A or T, S - G or C, D =
A,G or T, H = A,C or T. Sequences are in 5'-3' order. " ^ C - N4-methylcytosine; " ^ C - C5-methylcytosine; hm3 C=hydroxymethylcytosine;
hm5U=hydroxymethyluracil; " C " methylcytosine, N4 or C5-tnethylcytosine unspecified; "'A 1 1 N6-methyladenine. Nomenclature is according to (Sm2) and (Co4).
b. Accl nicks slowly in the unmethylated strand of the bemi-methylated sequence GrMKA^C. Acd cuts slowly at hemimethylated GTMKA^C (NelO).
AccUl cuts slowly at T^CCGGA and T^CCGGA (SclO).
AJO. cuts slowly at GGWCm4C.
AhaR (GRCGYQ wffl cut GRCGCCfeuer if these sites are methylated at GRCG^CC (Ne5), but will not cut GRCGY^C sites (Ne2,Ne5).
Aspim cuts MCViQI -modified (GT^AC) ChloreUa vina NY2A DNA. AspllS does not cut GGTAC^CWCG overlapping dan sites (Mu2) or m3C-substituted
phage XP12 DNA, whereas AJTTJI cuts XP12 readily (Ne4).
Aval nicking occurs slowly in the unmethylated strand of the hemi-methylated sequence CTCCP^AG/CTCGAG (Ne5).
AvaR cuts slowly at GGWC^C.
Bacillus species have been surveyed for ff^ATC and C^CWGG specific methylasts. Many species have G^ATC specific methylases but none had C^CWGG
specific methylases (Di2).
Bofl sites overlapping dan sites (TGGCm3CAGG) are 50-fold slower than unmethylated sites (Gil).
Banl gives various rate effects when its recognition sequence is "^C- or "^C-methylated at different positions.
BgH cleavage rate at certain GC^CNjGGC, GCro4CNJGGC, and GCCNjGCP^C hemi-methylated sites is extremely slow. However, "'C bt-methylated
M-HaeUl-BgH sites are completely refractory to BgU (Ko3,Ne2).
fltpEI cleavage slowed by TC^CGGA (Fol).
3148 Nucleic Acids Research, 1993, Vol. 21, No. 13
BsrBl cleavage slowed by GAG^CGG (Fol).
flwHn does not cut M-Wad-modified DNA, in which two different cytosine positions are ham-methylated, Gm3CGCGC/GCGm5CGC (Ne4).
M-flrrl modifies the internal cytosine GGAT^CC, but it is not known whether this modification is ""C or '"•c (Le3).
fi«EII cuts the fully "^C-substituted phage XP12 DNA (Ne5).
BstNl cuts C^CWGG, "^CCWGG and '^C'CWGG (Ne5). BstNl isoschizomers that arc insensitive to C^CWGG include Aori, Apyl, BspNl, Mval and TaqXl
(Mc4).
BsuVi nicking occurs in the unmethylated strand of the hemi-methylated sequence GG^CC/GGCC.
Cft9l, see reference BulO for rate effects.
Clal cuts slowly at hemimethylated AT^CGAT (NelO).
M-Crel is from the unicellular eukaryote Chlamydomonas reinhardi (Sa2).
Dpnl requires adenine methylation on both DNA strands. Isoschizomers of Dpnl include Cful, Nanll, NmuEl, NmuDl and NsuDl (Cal). Dpnl cuts dam modified
XP12 DNA (Ne6).
M-Eco dam modifies GAT^C at a reduced rate (Ne5). Many other bacteria that modify their DNA at ff^ATC are listed in references Bal and Lol.
EcoAl, EcoBl, EcoDl, EcoEl, EcoDXXl, EcoKI are Type I restriction endonucleases. ™T represents a 6-methyladenine in the complementary strand.
EcoPl is a Type III restriction endonuclease (Bal,Ba2,Ha4).
£ooP15I is a Type m restriction endonuclease (Hu2).
EcofU cannot cut hemi-methylated C^AATTC/GAATTC sites. Bimethylated GA^ATTC/GA^ATTC sites are not cut by ficoRI or Rsri (Ne5). EcoSl shows
a reduced rate of cleavage at hemi-methylated GAATT^C (Trl) and does not cut an oligonucleotide that contains GAATT^C in both strands (Brl).
EcoRH does not cleave some DNA molecules that carry only a single she. However, oligonucleotides containing the EcoRII site can be used to transactivate
sites that are resistant to cleavage (Re5). £coRH iisoschizomers that are sensitive to C^CWGG include AmBl, AtuJi, BstGU, BinSl, EclH, EcaU, EcoTh, EcoiSl
and MphU (Ro3). EcoRII shows reduced rate of cleavage at hemi-methylated "^CCWGG/CCWGG sites (Yol).
EcoKV cuts the fully "^C-substituted phage XP12 DNA (Ne5).
£eoR124I and £coR124/3I are Type I restriction endonucleases. T represents a 6-methyladenine in the complementary strand.
Fold cuts about two-fold to four-fold more slowly at CATC^C than at unmodified sites (Ne5).
M-FoJH in ref Po3 corresponds to M-FokIA in ref Po4.
HaeU shows a reduced rate of cleavage when its recognition sequence is modified at RGCff^CY.
HaelE nicking occurs in the unmethylated strand of the hemi-methylated sequence GC^CC/GGCC.
Hind cuts GANT^C, however, detectable rate differences are observed between unmethylated, hemi-methylated (GANT^C/GANTC) and bi-methylated
(GANTm3C/GANTnl3C) target sequences (Col,Gr5,Ne5,NelO). However, the rate difference between unmethylated and fully methylated HinB. sites is only about
ten-fold (Hul,Ne5,Pel).
Hindm cuts slowly at hemimethylated AAG^CTT (NelO).
HpaU nicking in the unmethylated strand of the hemi-methylated sequence '"'CCGG/CCGG is in dispute (Be3,BulO,Ko3). Hpall cuts hemimethylated mCCGG
fifty times slower and fully methylated mCCGG 3000 times slower than unmethylated DNA (Ko3). See reference (BulO) for HpaU rate effects.
Kpnl sensitivity to hemi-methylated GGTA^CC and GGTAC^C sites has been reported. Kpnl cuts "^C-substituted phage XP12 DNA (Ne4) but cuts slowly
at hemimethylated GGTA^C^C (NelO).
MaeE nicks slowly in the unmethylated strand of hemi-methylated A^CGT/ACGT (Mo2).
Mbol isoschizomers that are sensitive to ff^ATC include fiuGII, BsaPl, BsplAl, Bspl61, SsplO5I, BstXH, BstEm, BssGU, Cpal, Ctyl, CviM, CviBU, CviHl,
DpnH, FnuAH, FnuCl, Had, Mad, MkrAI, MmeU, MnoTE, Mosl, Msp67E, Mthl, MlhM, NdeU, NflAR, NflBl, NfH, NlaDl Mall, NmeCl, Nphl, NsiM, NspM,
Nsul, Pfil, Rlull, SalM, SaOU, Sau61S21, SinMl, TruE (Ro3).
MboU cuts the fully "^C-substituted phage XP12 DNA (Ne5), although certain hemi-methylated "^C-containing substrates are reported not to be cut (Gr5).
Mfll cuts slowly at "^AGATCY sites (Onl).
Mammalian methylase is the "^CG methyltransferase from Mia muscutus. (mouse) (Be7).
Msp\ cuts the hemi-methylated sequence C^CGG/CCGG (Wa5) and C'CGG/CCGG duplexes (BulO). Mspl cuts very slowly at GGC^CGG (Bu6). An M Mspl
clone methylates "^CCGG (Wa5,Wa2). However, there is a report that Moruxeila sp. chromosomal DNA is methylated at "^C^CGG (Je2).
Mval nicking occurs in the unmethylated strand of the hemi-methylated sequence "^CCWGG/CCWGG and CC^AGG/CCrGG (Kul). Mval cuts XP12 DNA
very slowly at "^C^CWGG.
Nona requires adenine methylation on both DNA strands (Cal). Atoill cuts M-Eco dam modified XP12 DNA (Ne5).
Ndl may cut "^C^CGG methylated DNA (Br8rIe2). Possibly the second methylation negates the effect of C^CGG.
Ncol is blocked by M Sed (CCNNGG) (Ne5).
Ncri is a BgKl isoschizomer from NocaraHa camia Beijing (Qil).
Ndel cuts the fully "^C-substituted phage XP12 DNA (Ne5).
NdeU cuts the fully "^C-substituted phage XP12 DNA (Ne5).
Ngo. There is some confusion about namingrestrictionenzymes from these strains (Gu4). NgoPU, Ngoll and NgoSl may be the same. NgoPlE may be NgoUl.
NgoU does not cut overlapping dem sites (Su4).
NmuDl requires adenine methylation on both DNA strands (Cal).
NmuEl requires adenine methylation on both DNA strands (Cal).
PaeSl cuts hemimethylated CT^CGAG/CTCGAG sites 100-fold slower and cuts fully methylated CT^CGAG/CT^CGAG 2900 fold slower than unmethylated
sites (Ghl). Hemi- or full methylation at '"'A completely protects against PaeR7 cleavage (Ghl).
PsA cuts slowly at hemimethylated ln3CTGIIl3CAG (NelO).
PvuU cuts slowly at hemimethylated ^CAG^CTG (NelO).
Rsal cuts the fully "^C-substituted phage XP12 DNA (Ne5), [contradicted by (Fol)] but does not cut Oilorella virus NY2A DNA, which is modified at GT^AC
(Ne4,Xil). DNA from Rhodobacter sphaeroides species Kaplan is cut by AspiXSl, but not by Rsal or Kpnl (Ne4). It is Ukely that MRsal specifies GTA^C;
and high levels of "^C are present in R. sphaeroides DNA (Eh3).
Rsri cannot cut hemi-methylated G^AATTC/GAATTC sites.
Sail cuts slowly at hemimethylated GT^CGAC (NelO).
Sa«3Al nicking occurs in the unmethylated strand of the hemi-methyUted sequence GAT^C/GATC (St3). &iu3AI cuts at areducedrate at "'AGATC (Onl).
5im3AI isoschizomers that are insensitive to G^ATC include Scr243I, Bsp49l, BspSll, Bsp521£sp54l, Bsp57l, Bsp5Sl, Bsp59l£sp601, Bsp6ll, BspfAl, BspfSl,
Bsp6&, Bsp671, BspTTX, BspM, Bsp9ll, BsrPU, Cpfl, CspSl, Cpel, FnuEl, MspBl, SauO, SauDl, SauEl, SauFl, SauGl and SauMl (Ro3).
5^1 cannot cut M-flj/I-modified DNA (Nel).
Smal mcking occurs in the unmethylated strand of the hemi-methvlated sequence CC^CGGG/CCCGGG (BulO,Wa5). Smal may cut C^C^CGGG methylated
DNA (Br8,Je2) Possibly the second methylation negates the effect of CC^CGGG. There are conflicting resultsregardingSmal: "^CCCGGG is not cut when
modified by MAqul methyltransferase pia7) or at overlapping M-HaeVH-Smal sites (GG^CCCGGG, Ne5). Other investigators have reported that 5>nal cuts
at a reduced rate at henri-methylated ""CCCGGG sites (BulO).
Spel cuts slowly at hemimethylated A^CTAGT (NelO).
Spa cuts GT^AC-modified OilortUa virus NY2A DNA, but does not cut A^/zI-digested XP12 DNA (Ne4).
StySBl and SrySPI are Type I restriction endonucleases. T represents a 6-methyladenine in the complementary strand.
Nucleic Acids Research, 1993, Vol. 21, No. 13 3149
Tcufl cuts very slowly at T^CGA (Hul). Taql cuts the fully "^C substituted phage XP12 DNA (Hul,Ne5).
M- Taq\ methylates T^CGA at least 20 fold slower that unmodified TCGA (Mc7).
Xbal will cut T^CTAGA/TCTAGA hemi-methylated DNA at high enzyme levels ( > 100U Xba I/ug), but will not cut this sequence in twenty to forty-fold
overdigestions (Ne5,Nel0).
XhoU nicking occurs slowly in the unmethylated strand of the hemi-methylated sequence RGAT^CY/RGATCY.
Xmal is claimed not cut CC^CGGG in one report (Br8). See reference BulO for rate effects.
Xmnl cuts the fully "'C substituted phage XP12 DNA (Ne5). Xmnl cuts slowly at some sites in DNA methylated on both strands at GAAN^TT^C (Ne5).
XOTH, according to the BRL-Gibco catalog, may cut CG^ATCG.
Table D. lsoschizomer pairs that differ in their sensitivity to sequence-specific methylation.
Methylated sequence'
"^CATG
C^CGG
CC^CGGG
"^CCTNAGG
C^CWGG
"^CCWGG
CG
m6ATCG
GAAN 4 TT m 3 C
^CNfi
GAGCT^C
G^ATC
GAT^C
GAT^C
GGC^C
GGNC^C
GTG^CAC
GGTAC^C
GGWC^C
RG
m6ATCY
RGAT^CY
T^CCGGA
TC^CGGA
TCCGG^A
TCGCG^A
TCG^CGA
TT^CGAA
TTCG^AA
CGGWC^CG
Restriction isoschizomer pairs *'b
Cut by
References
Not cut by
CviAJJ
Mspl
Mspl
Mspl
mm
HpaE
zta
BulO
HpdH.Hapli.
Hpan
Cfr91JGnal
MstU
BstNlMval
Apyl£coRHMval
Pvul
AsplOOl
Smal
Bsu36l
Eh2,Mcll
BulO
BulO
Ne5
Bu8
Kel,Kul,Ne3,Yol
Bi3,Br8,Sm4
Nel,Ne2
Fol
Qi3,Fol
Gel,Lul,Mc9,Ro3
Ne4
Ne4
Su4
Ko3
Nel
Mu2
Ne4
Ba3Ja5,Wh2
Mc9,Ne4,Onl
Ne4,Onl
La2,Sc2
Sc2
Ke3,Ne4
Mcl4
Mcll,Mcl3,Ne4
Nel,Qil
Wol
Ul,Mul,Scll,Wol
Qi3
Tthm
Sacl
FnuEl,Sau3M
Mbol
Mbol
Haem
Asid
ApaU
Kpnl
Kpn\
Afll
BstYlJOwU
BstYl
Accm
Accm
BspMR,Kpn2ltfrol
Taql
Amal,SalDl,Sbol3l,Spol
Nnd
AsuE
a?a
Cspl
£coRH d
Apyl
XorH
Xmnl
Drefl
£c/136E
Mboljldell
Sau3M
Sau3M
NgoU
Sau96l
Alw44
Aspim
AsplUl
AvdHJEaATl
Mfll
XhoU
BspMEJ[pri2ltfrol
BspMUJ(pn2lMrol
AccUI
CviSUl
Nnd
Spol
fljrBI,Csp45I
flnBI,C?>45I,5ipRFl
Rsra
a. In each row the first column lists a methylated sequence, the second column lists an isoschizomer that cuts this sequence, and the third column lists an isoschizomer
that does not cut this sequence.
b. An enzyme is classified as insensitive to methylation if it cuts the methylated sequence at a rate that is at least one tenth the rate at which it cuts the unmethylated
sequence. An enzyme is classified as sensitive to methylation if it is inhibited at least twenty-fold by methylation relative to the unmethylated sequence.
c. See footnote 'a' of TaWe I.
d. See footnote 'b' of Table I.
ACKNOWLEDGEMENTS
This work is supported by grants AI34829 and HG00456 to MM
from the U.S. National Institutes of Health.
REFERENCES
Anl.
Bal.
Ba2.
Ba3.
Ba4.
Ba5.
Ba6.
Ando T, Hayase E, Dcawa S and Shitaka T: Microbiobgy-1982,
Schkssinger D, Ed., Amer. Sec. Miocrobiol., Washington DC, 1982,
pp66-69.
Babeyron T, Kean K and Forterre P: J. Bacteriol. 160 (1984)
586-590.
BachiB, Reiser J and Pirrotta V: J. Mol. Biol. 128(1979) 143-163.
Backman K: Gene 11 (1980) 169-171.
Balganesh TS, Reiners L, Lauster R, Noyer-Weidner M, WOke K
and Trautner TA: EMBO J. 6 (1987) 3543-3549.
Ballard B, Stephenson F, Boyer H and Greene P: (personal
communication).
Barbes C, unpublished.
Ba7.
Ba8.
Ba9.
BalO.
Ball.
Bel.
Be2.
Be3.
Be4.
Be5.
Be6.
Be7.
Bhl.
Bil.
Barra R, Chiong M, Gonzalez E and Vasquez C: Biochem. J. 255
(1988) 699-703.
Barsomian JM, Card CO and Wilson GG: (unpublished).
Barsomian JM, Card CO and Wilson GG: Gene 74 (1988)5-7.
Banas JA, Ferretti JJ and Progulske-Fox A: Nucleic Acids Res. 19
(1991)4189-4192.
Barany F, Danzitz F, ZcbalaM, and Meyer J: Gene 112 (1992) 3 - 1 2 .
Behrens B, Noyer-Weidner M, Pawlek B, Lauster R, Balganesh TS
and Trautner TA: EMBO J. 6 (1987) 1137-1142.
Behrens B, Pawlek B, Morelli G and Trautner TA: Mol. Gen.
Genet. 189 (1983) 10-16.
Ben-Hatter and Jiricny J: Nucleic Acids Res. 16 (1988) 4160.
Benner JS: (unpublished observation).
Benner JS and Schildkraut I: (personal communication).
Berkner KL and Folk WR: J. Biol. Chem. 254(1979)2551-2560.
BestorT, Laudano A, Mattaliano Rand Ingram V: J. Mol. Biol. 203
(1988)971-983.
Bhagwat A: (personal communication).
Bickle TA: (personal communication).
3150 Nucleic Acids Research, 1993, Vol. 21, No. 13
Bi2.
Bi3.
Bi4.
Bi5.
Bll.
Bol.
Bo2.
Bo3.
Bo4.
Bo5.
Bo6.
Bo7.
Brl.
Br2.
Br3.
Br4.
Br5.
Br6.
Br7.
Br8.
Bui.
Bu2.
Bu3.
Bu4.
Bu5.
Bu6.
Bu7.
Bu8.
Bu9.
BulO.
Cal.
Ca2.
Ca3.
Ca4.
Chi.
Ch2.
Ch3.
Ch4.
Ql.
Col.
Co2.
Biclde TA: Nudeases (1980) Linn SM and Roberts RJ, Eds., Cold
Spring Haibor Laboratory, New York, pp85-108.
Bicklc TA: Gene Amplification and Analysis, Volume 1 (1980),
Chirikjian J and Papas TS, Eds., Elsevier, NY, ppl-32.
Bingham AHA, Atkinson T, Sciaky D and Roberts RJ: Nucleic Acids
Res. 5 (1978) 3457-3467.
Ritinjitr. TT> KlimmuinVm <H, Riithis W flnri Iannlniti« AA- FFRS
Lett. 182 (1985) 509-513.
Btumefflfaal RM, Gregory SA and Cooperider JS: J. Bacteriol. 164
(1985)501-509.
Bodnar JW, Zempsky W, Warder D, Bergson C, and Ward DC: J.
Biol. Chem. 258 (1983) 15206-15213.
Bonventre J: (unpublished results).
Borck K, Beggs JD, Brammer WJ, Hopkins SS and Murray NE: Mol.
Gen. Genet. 146 (1976) 199-207.
Bouguderet L, Schwarzstein M, Tsugita S and Zabeau M: Nucleic
Acids Res. 12 (1984) 3659-3676.
Bourbormiere M and Nalbantoglu J: Nucleic Acids Res. 19 (1991)
4774.
Boyd SC, Charles IG, Keyte JW, and Brammar WJ: Nucleic Acids
Res. 14 (1986) 5255-5274.
Boyer HW, Chow LT, Dugaiczyk S, Hedgpeth J and Goodman HM:
Nature New Biol. 244 (1973) 4 0 - 4 3 .
Brennan CS, Van Cleve MD and Gumport RI: J Biol. Chem. 261
(1986) 7270-7278.
Brennan CS, Van Cleve MD and Gumport RI: J. Bkd. Chem. 261
(1986) 7279-7286.
Brenner V Venetianer P and Kiss S: Nucleic Acids Res. 18 (1990)
355-359
Bron S, Murray K and Trautner TS: Mol. Gen. Genet. 143 (1975)
13-23.
Brooks JE: Methods in Enzymology 152 (1987) 113-129.
Brooks JE, Blumenthal RM and Gingeras TR: Nucleic Acids Res.
11 (1983) 837-851.
Brooks J E and Hattman S: J. Mol. Biol. 126 (1978) 381-394.
Brooks JE and Roberts RJ: Nucleic Acids Res. 10 (1982) 913-934.
Bunk HJ.BehrensB, Tailor R, WiUce K, Prada JJ, Gunthert U, NoyerWeidner M, Jentsch S and Trautner TS: Gene 29 (1984) 51 - 6 1 .
Burkhart JG., Burkhart BS, Sampson K and Mailing HV: Nucleic
Acids Res. 20 (1992) 4368.
Buryanov Ya.I, Bogdarina, IG and Bayev, SS: FEBS Lett. 88 (1978)
251-254.
Buryanov, Ya.1, Nestrenko VF and Vagabova LM: Dold. Akad. Nauk
SSSR 227 (1976) 1472-1475.
Buryanov Ya.I, Zakharchenko VN and Bayev SS: Dold. Akad. Nauk
SSSR 259 (1981) 1492-1495.
Busslinger M, deBeor E, Wright S, Grosveld FG and Flavell RS:
Nucleic Acids Res. 11 (1983) 3559-3569.
Butkus V: (personal communication).
Butkus V, Klhnmaiiskas S, Kersulyte D, Vaitkevkius D, Lebionka
S and Janulahis S: Nucleic Acids Res. 13 (1985) 5727-5746.
Butkus V, Kimnfl-aniElnn S, Petrauskiene L, Maneliene Z, Lebionka
S and Janulaitis S: Bicchim. Biophys. Acta 909 (1987) 201 -207.
Butkus V, Petrauskiene L, Maneliene Z, Klimasauskas S, Laucys V
and Janulaitis S: Nucleic Acids Res. 15 (1987) 7091-7102.
Camp R and Schildkraut I: (unpublished results).
CapowskiEE, Wells JM and Karrer KM: Gene 74 (1988) 103-104.
Caserta M, Zacharias W, Nwankwo D, Wuson GG and Wells RD:
J. Biol. Chem. 262 (1987) 4770-4777.
CasjensS, HaydenM, Jackson E and Deans R:J. Virology 45 (1983)
864-867.
Chandrasegaran S, Lurmen, KD, Smith HO and Wilson GG: Gene
70 (1988) 387-392.
Chatterjee DK, Hammond SW, Blakes SW, Blakesley RW, Adams
SM Gerard GF: Nucleic Acids Res. 19 (1991) 6505-6510.
Chien R, Stein D, So M and Seifert H: (personal communication).
Chiura HX, Kamryama T, Hirano H, Futagami H, Watahiki M,
Kobayashi K, Simktu U andTagaki J: Nucleic Acids Res. 20 (1992)
1996-2000.
Clarke CM and Hartley BS: Biochem. J. 177 (1979) 49-62.
Colasanti J and Sundaresan V Nucleic Acids Res. 19 (1991) 391-394.
Cooney CS: Nucleic Acids Res. 18 (1990) 3667.
Co3.
Co4.
Co5.
Co6.
Co7.
Dal.
Da2.
Da3.
Da4.
Del.
Dil.
Di2.
Dol.
Do2.
Drl.
Dul.
Du2.
Du3.
Du4.
Dyl.
Ehl.
Eh2.
Eh3.
Esl.
Fel.
Fe2
Fe3.
Fil.
Fll.
Erl.
Fol.
Ful.
Fu2.
Fu3.
Gal.
Ga2.
Ga3.
Ga4.
Gel.
Ghl.
Gil.
Gi2.
Gi3.
Gol.
Go2.
Go3.
Cooney CS, Eykholt RL and Bradbury EM J. Mol. Biol. 204 (1988)
889-901.
Comish-Bowden S: Nucleic Acids Res. 13 (1985) 3021-3030.
Coulby J and Stemberg N: Gene 74 (1988) 191.
Cowan GM, Gann SSF and Murray NE: 01156(1989) 103-109.
Cowan J and Murray NE: (personal communication).
DanaherRJ and Stein DC: Gene 89 (1990) 129-132.
Daniel SS, Fuller-Pace FV, Legge DM and Murray NE: J. Bacteriol.
170(1988) 1775-1782.
Daniel SS and Murray NE: (personal communication).
Davis R, Van der Lelk D, Mercenier S, Daly C and Fitzgerald GF:
Appl. Environ. Biol. 59 (1993) 777-785.
De la Campa SG, Kale P, Springhom SS and Lacks SS: J. Mol. Biol.
196 (1987) 457-469.
Dila D and Raleigh ES: Gene 74 (1988) 23-24.
Dingman DW: J. Bact 172 (1990) 6156-6159.
Dobritsa SP and Dobritsa SV: Gene 10(1980) 105-112.
Doolittle MM and Sirotkdn K: Biochim. Biophys. Acta 949 (1988)
240-246.
Dreiseikelman B, Eichenlaub R and Wackernagel W: Bicchim.
Biophys. Acta 562 (1979) 418-428.
Dugaiczyk S, Hedgepeth J, Boyer HW and Goodman HM:
Biochemistry 13 (1974) 503-512.
Duesterhoeft S, Erdmann D, Horst G, and Kroger M: Nucleic Acids
Res 19 (1991) 3207-3212.
Duesterhoeft S and Kroger M: Gene 106 (1991) 87-92.
Duesterboeft S, Erdmann D, and Kroeger M: Nucleic Acids Res. 19
(1991) 1049-1056
Dybvig K, Swinton D, ManiloffJ and Hattman S: J. Bacteriol. 151
(1982) 1420-1424.
Ehrlich M: (unpublished results).
Ehrlich M and Wang RYH: Science 212 (1981) 1350-1357.
Ehrlich M, Wilson GG, Kuo KC and Gehrke CW: J. Bacteriology
169 (1987) 939-943.
Essani K, Goorha Rand Allan Granoff.: Gene 74 (1988) 71-72.
Feehery R: (personal communication).
Feher Z, Kiss S and Venetianer P: Nature 302 (1983) 266-268.
Ferrin LJ and Camerini-Otero RD Science 254 (1991) 1494-1497.
Fisherman J, Gingeras TR and Roberts RJ: (unpublished results).
Fliess S, Wolfes H, Seela F and Pingoud S Nucleic Acids Res. 16
(1988) 11781-11793.
ErdmannD, Horst G, Duesterhoeft Sand Kroger M: Gene 117 (1992)
15-22.
Forney JS and Jack WE: (unpublished).
Fuller-Pace FV, Bulks LR, Delius H and Murray, N E: Proc. Nad.
Acad. Sci. USA 81 (1984) 6095-6099.
Fuller-Pace FV, Cowan GM and Murray NE: J. Mol. Biol. 186 (1985)
65-75.
Fuller-Pace FV and Murray NE: Proc. Nad. Acad. Sci. USA 83 (1986)
9368-9372.
Gaido M, Prostko CR and Strobl JS: J. Biol. Chem. 263 (1988)
4832-4836.
Gaido M and Strobl JS: Arch. Microbiol. 146 (1987) 338-340.
Gann SSF, Campbell SSB, Collins JF, Coulson SFW and Murray
NE: Mol. Microbiol. 1 (1987) 13-22.
Gautier F, Bunemann H and Grotjahn L: Eur. J. Biochem. 80 (1977)
175-183.
Gelinas RE, Myers PS and Roberts RJ: J. Mol. Biol. 114 (1977)
169-180.
Ghosh SS, Obermuler PS, Kwoh TJ and Gingeras TR: Nucleic Acids
Res. 18 (1990) 5063-5068.
Gingeras TR: (unpublished observations).
Gingeras TR, Blumenthal RM, Roberts RJ and Brooks JE: In
Metabolism, Enzymology and Nucleic Adds, Zelinka J and Balan J,
Eds., 4th Proc. Int Symp., Slovak. Sci., Bratiskva, CSSR, 1982,
pp329-340.
Gingeras TR and Brooks JE: Proc. Nail. Acad. Sci. USA 80 (1983)
402-406.
Gorovsky MS, Hattman S and Pleger GL: J. Cell Biol. 56 (1973)
697-701.
Gossen JS and Vijg J: Nucleic Acids Res. 16 (1988) 9343.
Gough JS and Murray NE: J. Mol. Biol. 166 (1983) 1-19.
Nucleic Acids Research, 1993, Vol. 21, No. 13 3151
Grl.
Gr2.
Gr3.
Gr5.
Gul.
Gu2.
Gu3.
Gu4.
Gu5.
Gu6.
Gu7.
Gu8.
Gu9.
Hal.
Ha2.
Ha3.
Ha4.
Ha5.
Ha6.
Hel.
He2.
He3.
He4.
He5.
Hoi.
Ho2.
Ho3.
Ho4.
Hul.
Hu2.
Del.
Itl.
Jal.
Ja2.
Ja3.
Ja4.
Ja5.
Ja6.
Ja7.
Ja8.
Jel.
Je2.
Kal.
Grachev SS, Mamaev SV, Gurevich SL, Igoshun SV, Kolosov MN
and Slyusarenko SG: Bioorg. Khim.: 7 (1981) 628-630.
Greene PJ, Gupta M, Boyer HW, Brown WE and Rosenberg JM:
J. Bid. Chem. 256 (1981) 2143-2153.
Grime SK, Martin RL, and Holaway BL: Nudeic Acids Res/19 (1991)
2791. Gr4. Gromova ES, Kubareva ES, Yolov SS and Nikolskaya
D: (unpublished observations).
Gruenbaum Y, Cedar H and Razin S: Nucleic Acids Res. 9 (1981)
2509-2515.
Gubler M, Braguglia D, Meyer J, Peikarowicz S and Bickie T: EMBO
J. 11 (1992) 233-240.
Guha S: J. Bacteriology 163 (1985) 573-579.
Guha S: Gene 74 (1988) 7 7 - 8 1 .
Gunn JS, Piekarowicz S, Chien R and Stein DC: J. Bacteriol. 174
(1992) 5654-5660.
Gunthert, U: (unpublished observations).
Gunthert U, Lauster R and Reiners L: Eur. J. Biochem. 159 (1986)
485-492.
Guntbert U, Reiners L and Lauster R: Gene 41 (1986) 261-270.
Gunthert U, Strom K and Bald R: Eur. J. Biochem. 90 (1978)
581-583.
Gunthert U and Trautner TS: Curr. Topics Microbiol. Immunol. 108
(1984) 11-22.
Hanish J and McClelland M: Nucleic Acids Res. 19(1991)829-832.
Hanish J and M i d l a n d M Nucleic Acids Res. 18 (1990)
3287-3291.
Hattman S, Keister T and Gottehrer S: J. Mol. Biol. 124 (1978)
701-711.
Hattman S, Brooks JE and Masurekar M: J. Mol. Biol. 126 (1978)
367-380.
Hattman S, Van OrmondtH and DeWaardS:J. Mol. Biol. 119(1978)
361-376.
Hattman S, WiDcinson J, Swinton D, Schlagman S, Macdonald P M
and Mosig G: J. Bacteriol. 164 (1985) 932-937.
Heidmann S, Seifert W, Kessler C and Domdey H: Nucleic Acids
Res. 17 (1989) 9783-9796.
Heitman J and Model P: J. Bacteriol. 169 (1987) 3243-3250.
Heitman J and Model P EMBO J. 9 (1990) 3369.
Hentosh P and McCastlain JC: Nucleic Acids Res. 19 (1991)
3143-3150.
Herman GE and Modrich P: J. Biol. Chem. 257 (1982) 2605-2612.
Hoet PP, Coene M, and Cocito CG: Ann. Rev. Microbiol. 46 (1992)
95-116.
Hofer B: Nuciek Acids Res. 16 (1988) 5206.
Hofer B and Kuhlein B: Nucleic Acids Res. 17 (1989) 8009.
Howard K, Card C, Benner JS, CaUahan HL, Maunus R, Silber K,
Wilson GG and Brooks JE: Nucleic Acids Res. 14 (1986) 7939-7951.
Huang L-H, Farnet CM, Ehrlich KC and Ehrlich M: Nucleic Acids
Res. 10(1982) 1579-1591.
Humber lin M, Sun B, Rao DN, Hornby DP, Eberle H, Pripfl T,
Kenel S and Bickie T: J. Mol. Biol. 200 (1988) 23-29.
IkawaS, Shibata T, Ando T and SaitoH:Mol. Gen. Genet 177(1980)
359-368.
Ito H, Shimato H, Sadaoka SS, Kotani H, Kimryiilra F and Kato I:
Nucleic Acids Res. 20 (1992) 705-709.
Jacobs D and Brown NL: (unpublished observations).
Jacobs D, and Brown NL: Biochem. J. 238 (1986) 613-616.
Janulaitis S: (personal communication).
Janulaitis S, Himasauskas S, Petrusyte M and Butkns V: FEBS Lett.
161 (1983) 131-134.
Janulaitis S, Petrusyte M and Butkus V: FEBS Lett. 161 (1983)
213-216.
Janulaitis S, Petrusyte M, Jaskeleviciene B, Krayev SS, Scryabin KG
and Bayev SS: Dold. Akad. Nauk SSSR 257 (1981) 749-750.
Janulaitis, S, Povflioms Pand SasnauskasK: Gene 20 (1982) 197-204.
Janulaitis S, Petrusyte M, Manelierje Z, Himasauskas S and Butkus
V: Nucleic Acids Res. 20 (1992) 6043-6049.
Jentsch S: J. Bacteriol. 156 (1983) 800-808.
Jentsch S, Gunthert U and Trautner TS: Nucleic Acids Res. 9(1981)
2753-2759.
KanNC, Lautenberger JS, EdgellMH and Hutchison mCS:J. Mol.
Biol. 130(1979) 191-209.
Ka2.
Ka3.
Ka4.
Ka5.
Ka6.
Ka7.
Ka8.
Ka9.
KalO.
Kel.
Ke2.
Ke3.
Kil.
Ki2.
Ki3.
Ki4.
Ki5.
HI.
H2.
Kol.
Ko2.
Ko3.
Ko4.
Ko5.
Ko6.
Ko7.
Ko8.
Ko9.
Krl.
Kr2.
Kul.
Ku2.
Ku3.
Lai.
La2.
La3.
La4.
La5.
La6.
La7.
La8.
La9.
LalO.
Lall.
Lei.
Le2.
Le3.
Kang S, Choi WS and Yoo OJ: Biochem. Biophys. Res. Commun.
145 (1987) 482-487.
Kaplan DS and Nierlich DP: J. Bid. Chem. 250 (1975) 2395-2397.
Kaput J and Sneider TW: Nucleic Acids Res. 7 (1979) 2303-2322.
Karreman C and de Waard S: J. Bacteriol. 170 (1988) 2527-2532.
Karreman C and de Waard S: J. Bacteriol. 170 (1988) 2533-2536.
Karreman C, Tandeau de Marsac N and de Waard S: Nucleic Acids
Res. 14 (1986) 5199-5205.
Karreman C and de Waard S: J. Bact. 172 (1989) 266-272
Karvagina SS, Lunin VG and Nikolskaya IL Gene 87 (1990) 113 -118.
Kaszubska W, Aiken CR and Gumport RI: Gene 74 (1988) 83-84.
KeUy S, Kaddurah-Daouk.R and Smith HO: J. Bid. Chem. 260 (1985)
15339-15344.
Keshet E and Cedar H: Nucleic Acids Res. 11 (1983) 3571 -3580.
Kessler C and Hohke H-J: Gene 33 (1985) 1-102.
Kim EL and Mahuta SS: FEBS Lett. 255 (1989) 361 -364.
Kiss S and Baldauf F: Gene 21 (1983) 111-119.
Kiss S, Posfai G, Keller CC, Venetianer P and Roberts RJ.: Nucleic
Acids Res. 13 (1985) 6403-6421.
Kiss S, Fmta C, and Pal Venetianer: Nucleic Acids Res. 19 (1991)
3460.
Kite K, Suisha M, Kotani H, Yanase H and Kato N: Nucleic Acids
Res. 20 (1992) 4167-4172.
S, Butkus V and Janulaitis S: Mol. Biol. (Mosk). 21
(1987) 87-92.
Klimnramhui S, Timirnlnm s, Menkevicius S, Butkiene D, Butkus
V and Janulaitis S: Eksperim. Biolog, Vilnius (pas. comm.).
Koncz C, Kiss S and Venetianer P: Eur. J. Biochem. 89 (1978)
523-529.
Koob M, Grimes E, and Szybalski W: Science 241 (1988) 1084-1086.
Korch C and HagWom P: Eur. J. Biochem. 161 (1986) 519-524.
Korch C, HagWom P and Nonnark S: J. Bacteriol. 161 (1985)
1236-1237.
Korch C, HagWom P and Normark S: J. Bacteriol. 155 (1983)
1324-1332.
Kosykh V G, Bur'yanov Ya.I and Bayev SS: Mol. Gen. Genet 178
(1980) 717-718.
Kosykh VG, Gnnskaite L Bur'yanov Ya.1 and Bayev SS: Dold. Akad.
Naulc SSSR 265 (1982) 727-730.
Kosykh VG, Sokmin SS, Bur'yanov Ya.I and Bayev SS: Biochim.
Biophys. Acta 655 (1981) 102-106.
Koob M, Burkiewicz S, Kur J and Szybalski W: Nucleic Acids Res.
20(1992)5831-5836.
Krainarov VM and Smolyaninov W : Biokhimiya 46 (1981)
1526-1529.
Kretz PL, Reid CH, Greener S, JMShort (1989) Nucleic Acids Res.
17: 5409.
Kubareva ES, Gromova ES, Romanova ES, Oretskaya TS, Shabarova
ZS,: Bioorg. Khimiya (Russ.) 16 (1990) 501-506.
Kubareva ES, Pein C-D, Gromova ES, Kuznezova SS, Tashlitzki VN,
Cech D and Shabarova ZS: Eur. J. Biochem. 175 (1988) 615-618.
Kupper D, ran-Guang Z, Kiss S and Venetianer P: Gene 74 (1988) 33.
Labbe D, Holtke HJ and Lau PCK: Mol. Gen. Genet 224 (1990)
101-110.
Labbe S, Xia Y and Roy PH: Nucleic Acids Res. 16 (1988) 7184.
Lacks S and Greenberg B: J. Mol. Biol. 114 (1977) 153-168.
Lacks SS, Mannarelli BM, Springhom SS and Greenberg B: Cell 46
(1986) 993-1000.
Lacks SS and Springhom SS: J. Bacteriol. 157 (1984) 934-936.
Landry D, Looney MC, Feehery GR, Slatko BE, Jack WE and
SchOdkraut I: Gene 77 (1989) 1-10.
Landry D: (unpublished observations).
Lange C, Noyer-Weidner M, Trautner TS, Weiner M, and Zahler
SS: Gene 100 (1991) 213-218.
Larimer FW: Nucleic Acids Res. 15 (1987) 9087.
Lautenberger JS, Kan NC, Lackey D, linn S, Edgell MH and
Hutdrinson HI CS: Proc. Nan. Acad. Sri. USA 75 (1978) 2271-2275.
Lautenberger JS and Linn S: J. Biol. Chem. 247 (1972) 6176-6182.
Lee SF, Forsberg CW and Gibbins SM: J. Bacteriol. 174 (1992)
5275-5283.
Lee SH and Rho HM: Korean J. Genet 7 (1985) 42-48.
Levy WP and Welker NE: Biochemistry 20 (1981) 1120-1127.
3152 Nucleic Acids Research, 1993, Vol. 21, No. 13
Lil.
Lol.
Lo2.
Lo3.
Lul.
Lu2.
Lu3.
Lu4.
Lyl.
Mai.
Ma2.
Ma3.
Ma4.
Ma5.
Ma6.
Ma7.
Ma8.
Ma9.
MalO.
Mall.
Mel.
Mc3.
Mc2.
Mc4.
Mc5.
Mc6.
Mc7.
Mc8.
Mc9.
MclO.
Mcll.
Mcl2.
Mcl3.
Mcl4.
Mcl5.
Mel.
Me2.
Mil.
Mi2.
Mol.
Mo2.
Mo3.
Mo4.
Mo5.
Mul.
Mu2.
Myl.
Nal.
Na2.
Na3.
U J-K and Tu J: Nucleic Acids Res. 19 (1991) 4770.
Lodwkk D, Ross HNM, Harris JE, Almond JW and Grant WD: J.
Gen. Mkrobiol. 132 (1986) 3055-3059.
Loenen WAM, Daniel AS, Braymer HD and Murray NE: J. Mol.
Biol. 198 (1987) 159-170.
Looney MC, Moran LS, Jack WE, Feebery GR, Brenner JS, Slatko
BE and Wilson GG: Gene 80 (1989) 193-208.
Lui ACP, McBridge BC, Vovis GF and Smith M: Nucleic Acids Res.
6(1979) 1-15.
Lunnen KD, Barsomian JM, Camp RR, Card CO, Chen SZ, Croft
R, Looney MC, Meda MM, Moran LS, Nwankwo DO, Slatko BE,
Van Cott EM and Wilson GG: Gene 74 (1988) 25-32.
Lunnen K (unpublished).
Lunnen KD, Morgan RD, Timan CJ, Krzycki JA, Reeve JN and
Wilson GG: Gene 77 (1989) 11-20.
Lynn SP, Cohen LK, Gardner JF and Kaplan S: J. Bacteriol. 138
(1979) 505-509.
Macdonald PM and Mosig G: EMBOJ. 3 (1984) 2863-2871.
MacNeil DJ: J. Bact. 170 (1988) 5607-5612.
Mann MB: Gene Amplification and Analysis, Vol. 1 (1981)
Chirikjian J, Ed., FJsevier, New York, pp229-237.
Mann MB, Rao RN and Smith HO: Gene 3 (1978) 97-112.
Mann MB and Smith HO: Nucleic Acids Res. 4 (1977) 4211-4221.
MannareDi BM, Balganesh TS, Greenberg B, Springhom SS and Lacks
SA: Proc. Natl. Acad. Sci. USA 82 (1985) 4468-4472.
MaherU, Wold B, and Dervan PB: Science 245 (1989)725-730.
MatvienkoNI, Kramarov VM and Irismetov AA: Bioorg. Khim. 11
(1985) 953-956.
Matvienko NI, Kramarov VM, and Pachkunov DM: Eur. J. Bwchem.
165 (1987) 565-570.
May MS and Hattman S: J. Bacteriol. 122 (1975) 129-138.
Marsh SJ and Simcox T: (unpublished results).
McClelland M: (unpublished results).
McCleUand M: Nucleic Acids Res. 9 (1981)6795-6804.
McClelland M: Nucleic Acids Res. 9 (1981) 5859-5866.
McClelland M: J. Mol. Evol. 19 (1983) 346-354.
McClelland M: Nucleic Acids Res. 11 (1983) rl69-rl73.
McClellandM.Kessler LandBittnerM: Proc. Nad. Acad. Sci. USA
81 (1984) 983-987.
McClelland M, and Nelson M: (unpublished results).
McClelland M and Nelson M: Nucleic Acids Res. 13 (1985) r201r207.
McClelland M and Nelson M: Gene Amplification and Analysis.Vol.
5 (1987) Chirikjian J, Ed., Elsevier, NY, pp257-282.
McClelland M and Nelson M: Gene 74 (1988) 169-176.
McClelland M and Nelson M: Gene 74 (1988) 291-304.
McClelland M, Nelson M and Cantor CR: Nucleic Acids Res. 13
(1985)7171-7182.
McClelland M and Patel Y: (unpublished observations).
McClelland M and Nelson M: Nucleic Acids Res. 20 (1992)
2145-2157.
McdarinJA, Frederick CA, Wang B-C, GreeneP, Beyer HW, Grabk
J, and Rosenberg JM: Science 234 (1986) 1526-1530.
Meda MM and Perler FB: (unpublished).
Meisel et al.: Nucleic Acids Res. 19 (1991) 3997.
Miner Z and Hattman S: J.Bacteriol. 170 (1988) 5177-5184
MinerZ, SchlagmanSL and Hattman S: Nucleic Acids Res. 17(1989)
8149-8158.
Modrich P: Quart. Rev. Biophys. 12 (1979) 315-369.
Molloy PL and Watt F: Nucleic Acids Res. 16 (1988) 2335.
Morgan R: (unpublished observations).
Modrich P and Rubin RA: J. Biol. Chem. 252 (1977) 7273-7278.
Morrison M, Mackie RI and White BA: Appl. Environ. Microbiol.
58 (1992) 6 6 - 6 9 .
Murakami M, Ozawa O, Kanematsu T and Yomada Y: Nucleic Acids
Res. 19 (1991) 3458.
Mural RJ: Nucleic Acids Res 15 (1987) 9085.
Myers PA and Roberts RJ: (unpublished results).
Nagaraja V, Shepherd JCW, Pripfl T and Bickle TA: J. Mol. Biol.
182 (1985) 579-587.
Nagaraja V, Shepherd JCW and Biclde TA: Nature 316 (1985)
371-372.
Nardone GG and Chirikjian JG: J. Biol. Chem. 259 (1984)
10357-10362.
Na4.
Na5.
Nel.
Ne2.
Ne3.
Ne4.
Ne5.
Ne6.
Ne7.
Ne8.
Ne9.
NelO.
Nell.
Nel2.
Nel3.
Nil.
Ni2.
Ni3.
Ni4.
Nol.
No2.
No3.
No4.
Nul.
Nwl.
Nw2.
Onl.
Pal.
Pa2.
Pel.
Pe2.
Pil.
Pi2.
Pi3.
Pi4.
Pi5.
Pi6.
Pol.
Po2.
Po3.
Po4.
Po5.
Po6.
Narva KE,WendeUDL,SkrdlaMP and Van EttenJL: Nucleic Acids
Res. 15 (1987) 9807-9823.
Nathans D and Smith HO: Ann. Rev. Biochem. 44(1975)273-293.
Nelson M: (unpublished results).
Nelson M, Christ C and Schildkraut I: Nucleic Acids Res. 12 (1984)
5165-5173.
Nelson M and McCleUand M: Nucleic Acids Res. 15 (1987)
r219-r230.
Nelson M and McClelland M: Nucleic Acids Res. 17 (1989)
r398-r415.
Nelson M and McClelland M: (unpublished observations).
Nelson M and Schildkraut I: Methods in Enzymology 155 (1987)
32-41.
Nelson JM, Miceli SM, Lechevalier MP and Roberts RJ: Nucleic
Acids Res. 18 (1990) 2061-2064.
Nesterenko VF, Bur'yanov Ya.I and Bayev A A: Dokl. Akad. Nauk
SSSR 250 (1980) 1265-1267.
Newman AK, Rubin RA, Kim SH and Modrich P: J. Biol. Chem.
256(1981)2131-2139.
Nelson PS, Papas TS and Schweinfest CW: Nucleic Acids Res. 21
(1993) 681-686.
Nelson M and McClelland M: Nucleic Acid Res. 19 (1991)
2045-2071.
Newman PC, Williams DM, Cosstkk R, Seela F, and Connolly BA:
Biochemistry 29 (1990) 9902.
Nelson M and McClelland M In: Methods in Enzymology. 216(1992)
(Wu R, Ed.), Academic Press, Orlando, Florida. 279-303.
Nikolskaya O, Karpetz LZ, Kartashova IM, Lopatina.NG, Skriplon
E A, Suchkov SV, Uporova TM, Gruber IM and Debov SS: Mol.
Genet. Mikrobiol. i Virusol. 12 (1983) 5 - 1 0 .
Nikolskaya n, Lopatina NG, Antikeicheva NV and Debov SS: Nucleic
Acids Res. 7 (1979) 517-528.
Nikolskaya U, Lopatina NG, Suchkov SV, Kartashova IM and Debov
SS: Biochem. Int. 9 (1984) 771-781.
Nikolskaya II, Lopatine NG, Sharkova EV, Suchkov SV, Somodi P,
Foldes I and Debov SS: Biochem. Int. 10 (1985) 405-413.
Noyer-Weidner M, Jentsch S, Kupsch J, Bergbauer M and Trautner
TA: Gene 35 (1985) 143-150.
Noyer-Weidner M, Jentsch S, Pawlek B, Gunthert U and Trautner
TA: J. Virol. 46 (1983) 446-453.
Noyer-Weidner M, Pawlek B, Jentsch S, Gunthert U and Trautner
T A: J. Virol. 38 (1981) 1077-1080.
NoDing J van Eeden FJM, Eggen RJX and de Vos WM: Nucleic Acids
Res. 24(1992)6501-6507.
Nur I, SzyfM.Razin A, GlaserG, Rottem Sand RazinS: J.Bacteriol.
164 (1985) 19-24.
Nwankwo DO and Wilson GG: Mol. Gen. Genet. 209 (1987)
570-574.
Nwankwo DO and Wilson GG: Gene 64 (1988) 1-8.
Ono A. and Ueda T: Nucleic Acids Res. 15 (1987) 219-231.
Patel Y, Schildkraut I and McClelland M: (unpublished observations).
Patel Y, Nelson M and McClelland M: (unpublished observations).
Pech M, Streeck RE and Zachau HG: Cell 18 (1979) 883-893.
Petrosyte M and Janulaitis A: Bioorg. Khim. 7(1981) 1885-1887.
Piekarowicz A and Goguen JD: Eur. J. Biochem. 154 (1986)
295-298.
Piekarowicz A and Stein DC: (personal communication).
Piekarowicz A, Yuan Rand Stein DC: Nucleic Acids Res. 16(1988)
5957-5972.
Piekarowicz A, Yuan R and Stein DC: Nucleic Acids Res. 16 (1988)
9868.
Piekarowicz A, Yuan Rand Stein DC: Nucleic Acids Res. 17(1989)
10132.
Pirrotta V: Nucleic Acids Res. 3 (1976) 1747-1760.
Posfei G, Baldauf F, Erdei S, Posfei J, Venetianer P and Kiss A:
Nucleic Acids Res. 12 (1984) 9039-9049.
Posfei G, Kiss, A, Erdei, S, Posfei, J and Venetianer, P: J. Mol.
Biol. 170 (1983) 597-610.
Posfei, G and Szybalski W: Nucleic Acids. Res. 16 (1988) 6245.
Posfei G and Szybalski W: Gene 74 (1988) 179-181.
Posfei J, Bhagwat AS, Posfei G and Roberts RJ: Nucleic Acids Res.
17(1989)2421-2436.
Povilonis P, Vaisvila R, Lubys A and Janulaitis A: (personal
communication).
Nucleic Acids Research, 1993, Vol. 21, No. 13 3153
Prl.
Pr2.
Pr3.
Qil.
Qi2.
Qi3.
Qul.
Ral.
Ra2.
Ra3.
Ra4.
Rel.
Re2.
Re3.
Re4.
Re5.
Ril.
Ri2.
Rol.
Ro2.
Ro3.
Ro4.
Ro5.
Ro6.
Ro7.
Ro8.
Rul.
Sal.
Sa2.
Sa3.
Scl.
Sc2.
Sc3.
Sc4.
Sc5.
Sc6.
Sc7.
Sc8.
Sc9.
SclO.
Sell.
Scl2.
Sel.
Se2.
Se3.
Se4.
Shi.
Sh2.
Sh3.
511.
512.
Sll.
Prerc MF and Fayet O: Ann. Inst. Pasteur Microbiol. 136A (1985)
323-338.
Price C and BicUe TA: (unpublished).
Price C, Shepherd JCW and Bickle TA: EMBO J. 6 (1987)
1493-1497.
Qiang B-Q: (personal communicarion).
Qiang B-Q and Nelson M: (personal communication).
Qiang B-Q, McClelland M, Poddar S, Spokauskas A and Nelson M
(personal communication).
Quint A and Cedar H: Nucleic Acids Res. 9 (1981) 633-646.
Raleigh EA, Murray NE, Revel H, Blumenthal RM, Westaway D,
Reith AD, Rigby PWJ, FJhai J and Hanahan D: Nucleic Acids Res.
16 (1988) 1563-1575.
Raleigh EA and Wilson G: Proc. Nad. Acad. Sci. USA 83 (1986)
9070-9074.
Razin A, Urieli S, Pollack Y, Gruenbaum Y and Glaser G: Nucleic
Acids Res. 8 (1980) 1783-1792.
Raschke E (pers. comm.).
Rees PA and Brenner JS: (unpublished).
Rees P.Nwankwo DO, Wilson GG and Benner JS: Gene 74 (1988) 37.
Renbaum P, Abrahamove D, Fainsod A.Wilson GG, Rottem S and
Razin A: Nucleic Acids Res. 18 (1990) 1145-1152.
Revel HR and Georgeopoulos CP: Virology 39 (1969) 1-17.
Reuter M, Pein C, Butkus V, Krueger DH: Gene (1990) 95:161 -162.
RitchotN and Roy PH: Gene 86 (1990) 103-106.
Richards DF, linnett PE, Oultram JD, and Young M: J. Gen. Micro.
134(1988)3151-3157.
Roberts RJ: (unpublished results).
Roberts RJ: Nucleic Acids Res. 11 (1983) rl35-rl67.
Roberts RJ: Nucleic Acids Res. 16 (1988) r271-r313.
Rodicio M and Chater KF: Gene 74 (1988) 39-42.
Rodicio M and Chater KF:Mol. Gen. Genet. 213(1988)346-353.
Roy PH and Smith HO: J. Mol. Biol. 81 (1973) 427-444.
Roy PH and Smith HO: J. Mol. Biol. 81 (1973) 445-459.
Rosenberg JM: Current Opinion Struct. Biol. 1 (1991) 104.
Rubin RA and Modrich PJ: J. Biol. Chem. 252(1977)7265-7272.
Sain B and Murray NE: Mol. Gen. Genet. 180 (1980) 35-46.
Sano H and SagerR: EurJ. Biocheni. 105 (1980) 471-480.
Sato S, Nakazawa K and Shinomiya T: J. Biochem. 88 (1980)
737-747.
Schertzer E, Auer B and Schweiger M: J. Biol. Chem. 262 (1987)
15225-15231.
Schildkraut I, Morgan R and Looney ME: (unpublished results).
Schlagman SL, Miner Z, Feher Z and Hattman S: Gene 73 (1988)
517-530.
Schlagman SL and Hattman S: Gene 22 (1983) 139-156.
Schlagman SL and Hattman S: Nucleic Acids Res. 17 (1989)
9101-9112.
Schlagman S, Hattman S, May MS and Berger L: J. Bacteriol. 126
(1976) 990-996.
Schneider-Scherzer E, Auer B, De Groot EJ and Schweiger M: J.
Biol. Chem. 265 (1990) 6086-6091.
Schnetz K and Rak B: Nucleic Acids Res. 16 (1988) 1623.
Schoner B, Kelly S and Smith HO: Gene 24 (1983) 227-236.
Schoenfeld T, and Leland D: (pers. comm.).
Schoenfeld T, Mead DA, and FiandtM: Nucleic acids Res. 17(1989)
4417.
Sciaky D and Roberts RJ: (unpublished results).
Seeber S, Kessler C and Gotz F: Gene 94 (1990) 37-43.
Selker EU, Cambareri EB, Garrett PW, Haack KR, Jensen BC and
Schabtach E: Gene 74 (1988) 109-111.
Servos S, Silva C, Dougan G, and Charles IG Nucleic Acids Res.
19 (1991) 183.
Seela F and Roling A: Nucleic Acids Res. 20 (1992) 55-61.
Shibata T, Dcawa S and Ando T: Microbiology-1982, Schlessinger
D, Ed., pp71-74.
Shimizu-Kadota M and Shibahara-Sone H: Agric. Biol. Chem. 53
(1989)2841-2842.
Shields SL, Burbank DE, Grabherrr R and Van Etten JL: Virology
176 (1990) 16-24
Sfflw K,PolissonC, Rees P, and BeanerJS: Gene 74 (1988) 43-44.
Simcox M (pers. comm.).
Sladek TL, Nowak JA and Maniloff J: J. Bacteriol. 165 (1986)
219-225.
S12.
S13.
Sml.
Sm2.
Sm3.
Sm4.
Sm5.
Sol.
So2.
So3.
Stl.
St2.
St3.
St4.
St5.
St6.
St7.
St8.
St9.
Sul.
Su2.
Su3.
Su4.
Szl.
Sz2.
Sz3.
Sz4.
Tal.
Ta2.
Ta3.
Ta4.
Ta5.
Thl.
Th2.
Trl.
Tf3.
Tr4.
Url.
Val.
Va2.
Va3.
Va4.
Va5.
Va6.
Vel.
Vil.
Vol.
Slatko BE, Benner JS, Jager-Quinton T, Moran LS, Simcox TG, Van
Cott EM and Wilson GG: Nucleic Acids Res. 15 (1987) 9781 -9796.
Slatko BE, Croft R, Moran L and Wilson GG: Gene (74 1988) 45-50.
Smith HO: Science 205 (1979) 455-462.
Smith HO and Nathans D: J. Mol. Biol. 81 (1973) 419-423.
Smith HO, Armau TM and Chandrasegaran S: Proc. Nad. Acad. Sci.
USA 87 (1990) 826-830.
Smith M (pen. comm.).
Smith MD, Longo M, Gerard GF and Chatterjee DK: Nucleic Acids
res. 20 (1992) 5743-5747.
Sohail A, Bhagwat AS and Roberts RJ: (unpubUshed).
Som S, Bhagwat AS and Friedman S: Nucleic Acids Res. 15 (1987)
313-332.
Song Y-H, RueterT and Geiger R: Nuckic Acids Res. 16(1988)2718.
Stefan C, Xia Y, and Van Etten JL: Nucleic Acids Res. 19 (1991)
307-311.
Steinberg N: J. Bacteriol. 164 (1985) 490-493.
Streeck RE: Gene 12 (1980) 267-275.
Striebel HM, Schmitz GG, Kaluza K, Jarsch M and Kessler C: Gene
91 (1990) 95-100.
Strobl JS and Gaido M: (unpublished results).
Strobl JS and Thompson EB: Nucleic Acids Res. 12 (1984)
8073-8084.
Sturm RA and Yaciuk P: Nucleic Acids Res. 17 (1989) 3615.
Stakenas PS, Zaretsaya NM, Manelene ZP, Mauritsas MM, Butkus
W and Janulaitis AA: Mol. Biol. (Mosc) 26 (1992) 546-557.
Stein DC, Chien R, Seifert HS: J. Bacteriol. 174 (1992) 4899-4906.
Sugisalri H, Maekawa Y, Kanazawa and Takanami M: Nucleic Acids
Res. 10 (1982) 5747-5752.
Sullivan KM and Saunders JR (1988). In 'Gonococci and
Meningococci' (1988) 329-334.
Sullivan KM and Saunders JR: Nucleic Acids Res. 16 (1988)
4369-4387.
Sullivan KM Saunders JR: Mol. Gen. Genet. 216 (1989) 380-387.
Szilak L, Venetianer P and Kiss A: Nucleic Acids Res. 18 (1990)
4659-4664.
Sznyter LA and Brooks JE: Gene 74 (1988) 53.
Sznyter LA, Slatko B, Moran L, O'Dormell KH and Brooks JE:
Nucleic Acids Res. 15 (1987) 8249-8266.
Szomolanyi E, Kiss A and Venetianer P: Gene 10 (1980) 219-225.
Tasseron-de Jong JG, Aker J and Giphart-Gasskr M: Gene 74 (1988)
147-149.
Tao T, Wlater J, Brennan KJ, Cotterman MM and Blumenthal RM:
Nucleic Acids Res. 17 (1989) 4161-4176.
Tautz N, Kaluza G, Lane F, Frey B, Schmitz G, Jarsch M,
Ankenbauer W, and Kessler C: (unpubUshed).
Taylor JD, Badcoe IG, Clarke AR, and Halford SE: Biochemistry
30 (1991) 8743-8752.
Tabibsadeh S, Bhat UG, and Sun X: Nucleic Acids Res. 19 (1991)
2783.
Theriault G and Roy PH: Gene 19 (1982) 355-359.
Theriault G, Roy PH, Howard KA, Benner JS, Brooks JE, Waters
AF and Gingeras TR: Nucleic Acids Res. 13 (1985) 8441-8461.
Tran-Betcke A, Behrens B, Noyer-Weidner M and Trautner TA: Gene
42 (1986) 89-96.
Trautner TA, Pawlek B, Gunthert U, Canosi U, Jentsch S and Freund
M: Mol. Gen. Genet. 180 (1980) 361-367.
Trautner TA, Balganesh TS, and Pawlek B: Nucleic Acids Res. 16
(1988) 6649-6658.
Urieli-Shoval S, Gruenbaum Y and Razin A: J. Bacteriol. 153 (1983)
274-280.
Van Cott EM and Wilson GG: Gene 74 (1988) 55-59.
Van Cott EM and Wilson GG: (unpubUshed).
Van der Ploeg LHT and Flavell RA: Cdl 19 (1980) 947-958.
Van Etten JL: (personal communication).
Vanyushin BF and Dobritsa AP: Biochim. Biophys. Acta 407 (1975)
61-72.
VasquezCaol Vicuna R: Arch. Biol. Med. Exp. 15(1982)417-421.
Venetianer P and Kiss A: Gene Amplification and Analysis, Vol. 1
(1981) Chirikjian J, Ed., FJsevier, New York, 1981. pp209-215.
Vmogradova MN, Gomova ES, Uporova TM, Nikolskaya II,
Shabarova ZA, Debov SS: Doklady Akad. Nauk. SSSR 295 (1987)
732-736.
Vovis GF and Lacks S: J. Mol. Biol. 115 (1977) 525-538.
3154 Nucleic Acids Research, 1993, Vol. 21, No. 13
Vo2.
Wai.
Wa2.
Wa3.
Wa4.
Wa5.
Wa6.
Wa7.
Wa8.
Wei.
We2.
Whl.
Wh2.
Wh3.
Wil.
Wi2.
Wi3.
Wi4.
Wi5.
Wi6.
Wol.
Wo2.
Wo3.
Wul.
Xil.
Xi2.
Xi3.
Xi4.
Xi5.
Xi6.
Xul.
Yal.
Yel.
Yol.
Yo2.
Yo3.
Yo4.
Yo5.
Yo6.
Zal.
Zhl.
Zh2.
Zil.
VosbergH-PandEcksteinF:J. Biol. Chem. 257 (1982): 6595-6599.
Waalwrjk C and Flavell RA: Nucleic Acids Res. 5 (1978) 3231.
Walder RY: Fed. Proc. 41 (1982) A5425.
Walder, RY, Hartley JL, Donelson JE and Walder JA: Proc. Natl.
Acad. Sci. USA 78 (1981) 1503-1507.
Walder RY, Hartley JL, Donelson JE and Walder JA: Gate
Amplification andAnalysis, \rcJ. 1 (1981) Chirikjian J, Ed., Elsevier,
New York, pp217-227.
Walder RY, Langtimm CJ, Chatterjee R and Walder JA: J. Biol.
Chan. 258 (1983) 1235-1241.
Walder RY, Walder JA and Donelson JE: J. Biol. Chem. 259 (1984)
8015-8026.
Walter. J, Noyer-Weidner M and Trautner TA: EMBO J. 9 (1990)
1007-1014.
Wang RYH, Zhang X-Y, Khan R, Zhou Y, Huang L-H and Ehrlich
M: Nucleic Acids Res. 14 (1987) 9843-9860.
Weil MD and McClelland M: Proc. Nad. Acad. Sci. USA 86 (1989)
51-55.
Weil MD, Nelson M and McClelland M: (unpublished)
Whitehead PR and Brown NL: FEBS Lett. 155 (1983) 97-101.
Whitehead PR and Brown NL: J. Gen. Microbiol. 131 (1985)
951-958.
Whitehead P, Jacobs D and Brown NL: Nucleic Acids Res. 14(1986)
7031-7045.
Wiatr CL and Witmer HJ: J. Virol. 52 (1984) 4 7 - 5 4 .
Wigler M, Levy D and Perucho M: Cell 24 (1981) 33-40.
Wuke K, Rauhut E, Noyer-Weidner M, Lauster R, Pawlek B, Behrens
B and Trautner TA: EMBO J. 7 (1988) 2601-2609.
Wilson GG: Gene 74 (1988) 281-289.
Winkler FK, D'Arcy A, Blocker H, Frank R, and van Boom JH:
J. Mol. Biol. 217 (1991) 235-245.
Withers BE, Amboso LA, and Dunbar C: Nucleic Acids Res. 20
(1992) 6267-6273.
Wong KK and McClelland M: Nucleic Acids Res. 19 (1991)
1081-1085.
Wong KK, Quideng Que, Van Etteri JL and McClelland M: J.
Bacteriol. 175 (1993) (in press).
Woodcock DM, Crowther PJ, Diver WP, Graham M, Batemen C,
Baker DJ and Smith SS: Nucleic Acids Res. 16 (1988) 4465-4482.
Wu JC and Santi DV: Nucleic Acids Res. 16 (1988) 703-717.
Xia Y, Burbank DE, Uber L, Rabussay D and Van Etten JL: Mol.
Cell. Biol. 6 (1986) 1430-1439.
XiaY, Burbank DE, UherL, Rabussay D and Van Etten JL: Nucleic
Acids Res. 15 (1987) 6075-6090.
Xia Y, Burbank DE and Van Etten JL: Nucleic Acids Res. 14 (1986)
6017-6030.
Xia Y, Morgan R, Schildkraut I and Van Etten JL: Nucleic Acids
Res. 16 (1988) 9477-9487.
Xia Y, Narva KE and Van Etten JL: Nucleic Acids Res. 15 (1987)
10063.
Xia Y and Van Etten JL: Mol. Cell Biol. 6(1986) 1440-1445.
Xu G, Kapfcr W, Walter J and Traumer TA: Nucleic Acids Res. 20
(1992) 6517-6523.
Yang Y and Li Q: Nucleic Acids Res. 18 (1989) 3083.
Yebra MJ, Novella IS, Barbes C, Aparkao JF, Martin CO, Hardisson
C and Sanchez J: J. Gen. Microbiol. 137 (1991) 1279-1284.
Yolov AA, Vinogradova MN, Gromova ES, Rosenthal A, Cech D,
Veiko VP, Metdev VG, Buryanov Ya.I, Bayev AA and Shabarova
ZA: Nucleic Acids Res. 13 (1985) 8983-8998.
Yoo OJ and Agarwal KL: J. Biol. Chem. 255 (1980) 6445-6449.
Yoo OJ, Dwyer-Halquist P and Agarwal KL: Nuckic Acids Res. 10
(1982) 6511-6520.
Yoshimori R, Roulland-Dussoix D and Boyer HW: J. Bacteriol. 112
(1972) 1275-1279.
Youssoufian H, Hammer SM, Hirsch MS and Mulder C: Proc. Nad.
Acad. Sci. USA 79 (1982) 2207-2210.
Youssoufian H and Mulder C: J. Mol. Biol. 150 (1981) 133-136.
ZachariasW, LarsonJE, KflpatrickMW and WeDs RD: Nucleic Acids
Res. 12 (1984) 7677-7692.
Zhang B, Tao T, Wilson GG and Blumenthal RM: Nucleic Acids
Res. 21 (1993) 905-911.
ZhangY, Nelson M, Nietfekh J, Burbank DE and Van EtfanJL (1993)
Nucleic Acids Res. 20: 5351-5356.
Zieger M, Patillon M, Roizes G, Lerouge T, Dupra D and Jdtsch
JM: Nucleic Acids Res. 15 (1987) 3919.
© Copyright 2025 Paperzz