4.5 FIREBALLS AS AN ATMOSPHERIC SOURCE OF METEORITIC DUST Zdenek Ceplecha Astronomical Institute Czechoslovak Academy of Sciences 251 65 Ondrejov Observatory This note emphasizes the importance of very bright fireballs as a powerful source of meteoritic dust in the upper atmosphere and on the Earth's surface. Recently we obtained a direct observational evidence when we photographed the Sumava Fireball, an object of -22 absolute stellar magnitude, on Dec. 4, 1974 at 17 h 57.5 m UT. This is the brightest object on the European Network photographic records during almost 12 years of systematic fireball observations. We obtained 4 . all-sky-camera records of the Sumava Fireball from two Czech and one German station of the Network. The most important combination for the trajectory computations proved to be station No. 5 at Ondrejov (Astronomical Institute of the Czechoslovak Academy of Sciences) and station No. 65 at Bernau (Max-Planck-Institut fiir Kernphysik, Heidelberg). The results are given in Table 1. At Ondrejov we also obtained 4 spectral records of the Sumava Fireball; the most detailed record has a dispersion of 5 A/mm. The fireball began the luminous trajectory at a height of 99 km with a velocity of 27 km/s. A very steep increase of brightness took place starting at 82 km height. The maximum brightness of -22 stellar absolute magnitude was achieved at 73 km height. The maximum was a flare of long duration: 14 additional shorter flares were observed: four of them were extremely intense, occurring at heights of 73> 68, 65 and 61 km. The meteor ended its luminous trajectory at 55 km height with a small flare and with almost unchanged initial velocity. The trajectory was inclined by 27° to the horizon of the terminal point. The 90 km long luminous trajectory was traversed in 3.4 seconds. Using the luminous efficiency given by Ayers et al. (1970) and by McCrosky (1973)> the initial mass was computed as 200 metric tons. This might seem to be an excessively large value, but we note that the measured energy radiated within the panchromatic bandpass (from 3600 to 6600 8) is lO 1 ^ erg (300 000 kWh). If the entire kinetic energy of the meteoroid would be radiated within the panchromatic bandpass, 3 metric tons are still needed to produce the Sumava Fireball. Taking the experimentally measured value of the luminous efficiency (between 1 and 2 % for this velocity), we see that 200 tons Downloaded from https:/www.cambridge.org/core. IP address: 88.99.165.207, on 18 Jun 2017 at 09:48:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100052040 386 were necessary to produce the fireball. Owing to an insignificant change of velocity and a very high termination height the terminal mass had to be virtually zero. Any significant mass at a height of 55 km cannot move with velocity higher than 20 km/s without ablation being observed. The entire mass has ablated during the short interval of 3.4 seconds. The structure of the body was very fragile and it resembles the weakest known meteoroids of the Draconid shower. A striking difference between two photographic fireballs with the same velocity is demonstrated in Table 2, which compares the Sumava Fireball with a fireball photographed within the Prairie Network by McCrosky (1973). PN 4o66o B. (This is the closest fireball in velocity and in inclination to the surface, which we could find among all PN and EN photographic records). The ratio of brightness is almost 5 orders of magnitude, still the terminal point of the fainter PN-fireball is 26 km lower! Ceplecha and McCrosky (1976) have recently finished a thorough study of PN-fireballs. Three groups according to the structure of meteoroids were found: group I has the structural strength and density of ordinary chondrites; group II belongs to the carbonaceous chondrites; group III consists of weak material of cometary origin. Group III contains meteoroids of type IIIA, the "stronger" cometary material, and of type IIIB, the "Draconid type" cometary material. The number of fireballs observed in each group is about the same, i.e. about 1/3 of all observed fireballs are of type I, 1/3 of type II and 1/3 of type III. The Sumava Fireball is of type IIIB and the Prairie Network fireball 4o66o B is of type I. The §umava Fireball probably belongs to the meteor shower of Northern Chi Orionids. (Table 1 ) . The spectral records of the Sumava Fireball do not differ from spectra of fireballs of about -10 stellar magnitude. The emission line spectrum contains Fel, Cal, Call, Mgl, Nal, CrI, Mnl, All (preliminary indentification). There is some hope that the 5 8/mm spectrum might permit a study of the line profiles, namely for the brightest feature, the sodium D-doublet. Iron is the most important radiator: more than 2/3 of the observed lines belong to it; multiplet 15 of Fel is the strongest one, not much fainter than the sodium D-lines. Let us now study the contribution of such big bodies to the Earth's environment. The total area-time coverage of the European Network is about 4 x 10 cm s up to now; (this is approximately equivalent to a 1 day coverage of the entire Earth's surface). If N is the number of 2 bodies per cm per second having 200 metric tons and more, we have log N « -23.6. If we extrapolate the data given by McCrosky (I968; Downloaded from https:/www.cambridge.org/core. IP address: 88.99.165.207, on 18 Jun 2017 at 09:48:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100052040 • • 01 P a H- c 01 o p p o P TO ct P" 3 M> HH1 CD P" ct pp P ?r ct H • H 25 CD P* o Hi Hct t, o p i-t> g a «! QJ P P 3 CD O P H- PK O 01 K t-3 ct H- CD p- ct 3 4 P >• M CD 01 o ct H- p P •d 01 ct 3 p. S P ffi p p oq P 1-6 O ^ *• • p oq CD cr CD M P. CD M- K 01 H- =<! • • ?r w • * P P X)P 01 ct CD 4 CD H- P oq • ^P • psi. O 4 ct O P. si: P H" •o C ct CD P 3 P P. CD O P H- •J O l-1 CD ct g p. M H- oq «i p p ct P" IM •d M P <<! cr p1 CD P 3 P 1-6 H- CD P" ct o 1-6 O 01 ct 3 CD P ct MO p 01 P CD o p o ct 01 ct si P. CD P 1-6 H- ct O P H- P ct HO P ct P CD P p Oq 3 1-6 CD O ct P H- p. 3 O P 1-6 O 1-6 P ct HO 4 P o 1-6 H1-6 HO p p ct •9 01 H- < <P• 4 si P CD O O1 01 CD CD $, O CD P W H- •* ct CD P o 4 •d < P CD o ct 01 p1 p 01 01 3 P CD p- ct O" 01 CD .Q si CO 01 • oq p O ct P" O 1-6 CD 01 P M H- P H01 01 HO 3 CD p CD ct ct - P 01 o p i-t) H- W 3 H' •d H- i-b ct si 01 ct Hct p H P P ct HO P <l P 01 CD cr O CD P" ?r 1 M ct ^d H- 3 p ct HO 01 ct 4 3 S P Q CD ct p a CD 01 X •d 1 s s CD pr ct 3 si o pr P «i p o 3 CD <S 3 P H 1-6 p ct - K P si • a o p 3 i-i> CD 4 01 •d CD g p. P 09 H01 H- < 4 •d CD 3 M> HM CD p" ct 0) 3 P oq P 01 CD P CD h-1 P" P CD H- P" ct Ma O P X ex CD • a o u ct HO P ct ^ • s P. p p S <; P o K C-i (I) [SK - si •d o o 3 P P< P ct 01 P CD 3 CD 2 01 c p 01 3 4 P CD - ct p 4 •d • > P o ct H' cr si H- 4 ct o o P H01 P" ct o 1-6 •d CD o o 01 CD P ct o p p. CD •=<! tf CD P 4 H" CD 01 o ct H- •d P 4 01 ct si P. 01 tn 4 p 3 oVD h-* o <! •d 01 01 O <-i CD P- o co 3 P ct CD P- ct P oq H- 3 P M M cr p CD 4 1-6 H- CD P. si o P 4 (W P •d P H- CD P. CD O H01 H- CD p 4 3 01 P 01 HO P CD tr MCt =3 - HCD 01 o p. C ct CD • • P P ct P. CD si p. H o p o O H01 H ct ^•—* O CD P 1-6 si P 01 <• 01 P" ct M P P CD P" ct o p P P. ^P— H- 01 w p CD ct CD 3 o H 01 P ct CD o ct 01 p CD ct CD 3 ct H- P CD o O 1-6 01 P ct CD o 3 P rr CD p CD •d 3 ct p a. o M01 1-6 o U l i-t> ct O F^ 3 O P 1-6 O • P w H- H- 4 O CD ct CD O i-S h^ ct HO 3 o 1-6 01 01 CD 01 3 P M P o 1-6 P CD i-S 01 HO < P O O CD P- ct O 1-6 HM 01 p CD ct P. 01 HO P M *d P" «<i CD p- 01 ct H3 P. si ct O P H- P- CD p 1-6 H- ct PP ct PT o p £ CD ct P I H SJ p P p. i 25 in CD p ct 1 P H- P Hct - H H M 01 C P CD P 1-6 H- O 1-6 01 P P. CD O O P H" M 01 »• P& 01 P" ct M P P CD p* ct P H- 01 ct P. si HCt HO P CD ct CD O 3 o 1-6 CD p o o si 01 ct p p ct o p 3 •d H- O 01 ct 3 CD ct CD P P cr H^ O P" •d p p o ct o oq P" •d 3 O P 1-6 P. CD P H- p ct ^o-^ CD P o HP. CD <! CD C oqP O P CD H01 CD P CD V ct ct p" p ct P X H- P" ct H H1-6 HO •9 01 H- CD a 1 ct O P CD oq P" H- P - «<i p 01 cr CD P si 3 CD p ct - g P" ct *—^ CD si P. Hct S 3 P O 1-6 01 P CD p. o P • ,— cr , «<! CD H3 P o 01 CD CD p 1-6 ct M >-* > a g ct p a <! CD P CD o cr 01 P H- 01 p CD cr P si 3 P. CD < P 01 CD & O CD pr ct ct O O h-1 O 01 CD CD P P CD 01 C M < P CD 01 CD p" t3 01 «; • a. p X 01 H- 1 CD <; pp CD t, P CD H3 ct HO M CD p p •d si oP 01 CD o p —' • 01 ro cr o p. =<J M M P CD O1 P 1-6 H- o o 01 CD U l P «i <! CD CD CD oqP ct CD HCD 01 O 1-6 CD cr p M M 01 HCD 01 M \-> H- P oq p p ct O o o t-> o 1-6 e O P. P X} P O 1-6 cr o p. ct 01 1-6 P, P o ct p oq H01 H- P" & P P * CD o p 3 p p p. 01 P ct O P oq CD M O ro o o cr P cr o p. P O 3 1-6 CD p o 1-6 M) H- CD <l CD 01 01 H- si o o CO 01 P si P 01 CD CD P" ct H P P CD o !-• £ p" s; i-3 • CD P CD PCD ct P 1-6 O i* ct cr CD 01 p. p «i ro ct p cr o si ct p M- P CD H- P" P CD s; CD CD h-• CD cr P o o p <l p" ct HM ct cr CD ct P" cr CD r-j M 3 ct O 01 •d d si 01 ct p >• 01 01 CD pr ct M p p CD pr ct P rjq Hct ct H- s; H- P o p 1-6 H- O 1-6 CD P o o si 0! ct ro o o < p p H' 01 o 3 P p CD ct - ct P" P ct CD si 3 01 01 P s; CD CD •d ct HO M CD ro p \> 3 P" P 01 o si p" P (i si 3 p CD ct H- P P oq M o p 01 o ct p P 01 01 =<! M M o p ct H- ro o o o o p ct •d p p •d p p o s; CD H 1-6 pr 01 CD P O P CD p" ct *• o ui 3x m h^ CD oq H U l o1 t-* p p. P 1-6 i-»si Ul p o1 h-* O 1-6 M CD 01 o ct H- •a p p o o o ^ro-^ o CAi-6 oq O t-* O 1-6 ct HO H1 CD 01 XS P P ct O P H- P. ct CD CD <! P P < ^ P CD O O ro oi CD 3 s; o 1-6 O P^ CD P P P* HO t,P * CD P CD •d P O 01 3 P ct *• 01 p" ct M P P CD P" ct P H- ct HO M CD 01 P P •d 01 ct P. si Hct HO P CD ct CD O 3 SUT 3 ces nds Downloaded from https:/www.cambridge.org/core. IP address: 88.99.165.207, on 18 Jun 2017 at 09:48:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100052040 cr S o >• •^ H- P 01 \ o p X oq CD g o p. O O P P H- M M s; CD CD P P ct H01 ct HO 01 P 01 ct CD 01 CD i-3 - CD • si p. t-* O 1-6 ct CD P P »-* ^•_^ oq o ct H- •d p 3 VO CA CO h-^ <<! ^—^ X o p o 01 p p ct P CD <; H- P P P CD Hct <§ M H01 P" 3 P VD 1 h-* si <y •d P ct p. p M H O 1-6 CD O ct p C_J. o cr O h-^ CD si P. Hct 3 P oq P CO 1 t-i- O 1-6 CD O ct 01 C_J. o a" ro >• CD si p. Hct 9 P 3 -<1 1 h-* O 1-6 CD O ct 01 C_J. cr O -4^ p. CD oq p p •d P o ct P" •d Pi p p CD P 1-6 H- P • P. o «• cr « «<! CD ro -fr 1 <? 25 o oq M P Pi O •d ct CD £ H 1-6 Hct - s; cr - <! CD P" P s; CD CD P P oq CD < o o H 25 CD P- ct P H- P ct s; H- P FT CD P 1-6 ct H01 ct HO P M P 01 ct P ct P o H01 M M p CD P i=d H- < P si 3 P CQ< CD p ct - ct P" P ct 01 HIS1 CD 3 •dP p CD ct O ct p P ct o p 3 >d H- H01 M ct • 01 o p ct ro o o O 1-6 01 01 CD 01 3 p 3 P cr P Hct - s; CD O ct 01 C_J. O P 1-6 O P. CD < P 01 CD cr O 01 ct HM M H01 01 P ct O HO P CD ct 3 U l o ct si •d O 1-6 01 01 CD 01 cr - H- P oq <; p" p VO CJ\ CO si CD P oq o t, p- 01 ct p CD 3 CD CD p «<! & ^-^ P »-^ oq X S Hct 3 P o p o 01 O 1-6 P CD p- o o p. oq CD M <; •< ct H- P CD M P P H01 H01 t3 U l 3 o cr =<l p CD 1 H- ^ » oq• 25 p p. cr H- 01 P. p o s; p ct 01 P CD s: o o p ct ct o 01 3 H" 25 oq O I- 1 P P. 1-6 H- s; CD * 1 w Io ct oq I-1 O P P. 1-6 H- CD £ * 01 01 CD 01 3 p p CD 83 oqoq P CD P CD CD P" Ct P H- CD P 3 01 CD P* ct P oq o H- p. Pi ro • ro -r^ • V>l » S P * • p. P g ^V>1-^ ro -r^ i !c en o Hp <l M M 01 cr p CD P 1-6 H- o 1-6 p CD P si 3 CD P P oq I-1 CD p" ct p ct p- ct 388 REFERENCES Ayers, W.G., McCrosky, R.E., Shao, C.-Y.: 1970, Smithson.Astrophys. Spec.Rep. 317. Ceplecha, Z., McCrosky, R.E.: 1975* Fireball End Heights: A Diagnostic for the Structure of Meteoritic Material, in prep, for JGR Lindblad, B.A.: 1971, Smlthson.Contr.Astrophys., No. 12. McCrosky, R.E.: 1968, Smithson.Astrophys.Obs.Spec.Rep., No. 280. McCrosky, R.E.: 1973:, private communication. Table 1.: Sumava Fireball ( EN 041274 ) date time UT max.brightness initial velocity height beginning\ A height end 9 inclination to the surface length duration fireball initial velocity COS Zo beginning height terminal height max. brightness initial mass terminal velocity terminal mass probable structure type Dec 4, 1974 17h 57.5m -22 abs.stel.mag. 27 km/s 99 km 14°38'24" E.Gr. 49°16'38" 55 km 13°3l'20" E.Gr. 49°08'l0" 27" 2 x 108 g virtually zero radiant * app. 75" 28c shower(Lindblad) Northern ^Orionid 2.0 a.u. orbit a 0.76 e 0.47 a.u. q Q 3.5 a.u. 282° Si11950.0 251.9° initial mass terminal mass 2° 90 km 3.4 s 174° lfj spectral records F e l , C a l , C a l l Mgl, N a l , C r I , linl. All Table 2 . EN 041274 5umava 27 km/s 0.46 99 km 55 km -22 abs.mag. 200 000 kg » 2 6 km/s SJO very weak cometary material IIIB (Oraconid type) PN 40660 B 26.5 km/s 0.60 93 km 29 km -10 abs.mag. 8 kg 6.5 km/s 30 g compact stone I (ordinary-chondrite type) Downloaded from https:/www.cambridge.org/core. IP address: 88.99.165.207, on 18 Jun 2017 at 09:48:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100052040
© Copyright 2025 Paperzz