Inversion Property in German Number Words. Univ.Doz.Dr.SilviaPixner UMIT,Institutof Psychology,HallinTyrol,Austria WhatistheinversionpropertyinGerman numberwords? 25 à nottwentyfivebutfive andtwenty inGerman 234à twohundredfour andthirty 3456à threethousandfourhundred.. 65 321à five andsixty thousand… • NotonlyinGermanbutalsoinDutch,Danish, Maltese,SlovenianandCzechlanguage Arabicvs.RomanNotation • ArabicNotation à place-valuesysteme.g.32 vs.28 • RomanNotation à symbol– valuesysteme.g.X vs.XIII Numberwordtransparency • 11(eleven,elf)and12(twelve,zwölf)but13 (thirteen,dreizehn /3 10/),14… • InversionpropertybyteensinGermanbutalsoinEnglish language • inItalyonlybynumbersfrom11-16(undici /1 10/, tredici..)butnotfrom17(diciasette /10 7/, diciotto…) • inSlovaklanguage:ownsuffixsedemnast (7) • InHungary/Japanese:tizenegy /10 1/,tizenharom /10 3/ Numberwordtransparency differencebetweenteensandtens • English:“fourteen”and“forty” • German:“vierzehn /410/”and“vierzig /4 zig/” • Slovak:“trinast /3 nast/”and“tridsat /3 dsat/” • Japanese:“ju san /103/”and“san ju /310/” Otherdifficulties: • French e.g.97quatre - vingt - dix - sept (4x20 107) Swedishnumberwords? Longitudinalstudyinthreecountries German sample with Inversion Italian sample without Inversion Czech sample with and without Inversion Curricula'sinthe3countries • InItaly,AustriaandalsoCzechRepublic • Firstgrade • Numbersbetween0-20(30) • additionandsubtraction • Secondgrade • Numbersbelong100 • additionandsubtraction • multiplicationanddivision • Thirdgrade • Numbersbelong1000 • writtencalculationinallarithmeticoperations Transcoding • transformationfromonenumericalcode(verbal numberword)toothernumericalcode(Arabic notation) • necessaryforcalculation • Lochy andcolleagues(2003)describedatfirsttime thedifficultywiththeinversionerrorsinchildren Study1 • Participants:130Germanspeakingchildreninthe firstgrade • Material: • 64Arabicnumbers(4singledigitnumbers,20 two-digitnumbersand40three-digitnumbers) • verbalandvisuo-spatialworkingmemory • centralexecutive Lexicalerrors (TaxonomyadaptedofDeloche andSeron,1982) Lexicalerrorsinvolvethesubstitutionofalexicalelementby anotherlexicalelement. 90à 91 25à 24 90à 19 Syntacticalerrors Syntacticalerrorsareconsideredaserrorswhereelementsof thenumberarecorrectlyproducedbutoverallnumber magnitudeiswrong. 120à 10020 200à 2100 95à 59 205à 502 Combinationerrors 245à 200540 Methodologicalbenefit • Nuerk andColleague(2005)shows,thatJapanese childrenmade6xfewertranscodingerrorsas Germanspeakingchildren • itisthebenefitfromthetransparentnumberword system? • ormaybetheJapaneseteachermightfocusearlierand moreintensivelyontheacquisitionoftheverbalnumber wordsystem? • theCzechlanguageallowsanalyzedtheinfluenceof theinversionpropertyinthesamesample Study2 • Participants:118Czechchildreninthefirstgrade • Material: • 64Arabicnumbers(4singledigitnumbers,20 two-digitnumbersand40three-digitnumbers) • BlockAwithInversionandblockBwithout Inversion->thesameoveragedifficulty Results • averageerrorrateintheinvertedform(blockA) à 49,20% • averageerrorrateinthenon- invertedform(block B) à 37,23% Results Whydoesgoodplace-valueunderstandingare importantforcomplexarithmetic? 124+251=375 132+259=391 Distanceeffect • Distanceeffect(Moyer&Landauer,1967)reflect theintegrityofthementalnumberline.Sodigitare comparedfaster,whentheoveralldistance betweenislarger. • 5and9arecomparedfasteras6and7 • Isnotrestrictedtoprocessingsingledigitnumbers butratheralsobecomesevidentintwodigit numberprocessing • reflectthemoreholisticallyprocessingoftwodigit numbers Compatibilityeffect Thecompatibilityeffectreflectthekindofprocessing oftwodigitnumbers(Nuerk etal.,2001) Overall Distance 15 42 ΛΛ 57 47 vs. ΛV 62 Study3 • Participants:94Austrianchildrenintheelementary school • Material: • 1.grade:transcoding,twodigitnumber comparison(120items) • 3.grade.additionperformance(48problem/24 withcarryand24withoutcarry) Results • inthefirststepwewereinterestedwhether additionperformanceingeneralwasdeterminedby thegeneraltranscodingperformanceandthe performanceinthetwodigitnumbercomparison task • intheregressionanalysisweincludedadditionally theIQ,verbalWM,visuo-spatialWMandCE • onlythemagnitudecomparisontaskturnedonasa reliablepredictorfortheadditioncompetencies2 yearslater Results • inthesecondstepmoredifferentialanalysisofthe relevanceofspecificnumericaleffects(distance effect,compatibilityeffectandpureinversion errors)wouldbecomputed • Distanceeffectasreflectingthenumbermagnitude understanding • Compatibilityeffectasreflectingtheintegratingof decadeandunitdigit • Pureinversionerrorsasreflectingofplacevalue understanding Results • Thefinalregressionmodelincludedthreereliable variables:thepureinversionerrors,compatibility effectanddistanceeffectasreliableprecursorsof thelateradditionperformanceinchildren • Theresultsindicatedthatchildrenwhocommitted morepureinversionerrorsinthefirstgradealso exhibitedhigheroverallerrorsinadditiontask. • Childrenwithrelativelylargecompatibilityeffectin thefirstgradecommittedmoreerrorsinthe addition • Childrenwithlargedistanceeffectimpliedbetter performanceintheaddition Compatibilityeffect positivevs.negativecompatibilityeffect Overall Distance 15 42 ΛΛ 57 47 vs. ΛV 62 Study4 • Participants:130Austrianchildreninthefirstgrade • Material: • 120twodigitnumberpairs/RTexperiment • 40withindecadetrials(24an27) • 80trialwith4differentdigits(42and57) • Decadedistancewasmanipulated(4-8large) • Unitdistanceconstant,inallconditionslarge • Compatibilitycontrolledinthedesign(2x2) Results • 2(distance)x2(compatibility)ANOVA • strongeffectofdecadedistanceà inaccuracyand inlatencieschildrenarebetterinthelargedistance condition • reliablecompatibilityeffectà thechildrenare fasteranderrorlessbycompatibletrialcompared withincompatibleones Mentalnumberline • Relativelysmallernumbersareassociatedwiththe leftside,whereasthelargernumbersareonthe rightside 0 12345678910 ... Mentalnumberline Itissuggestedthatthecodingofnumbermagnitude inchildren graduallychangefromlogarithmictolinear 100 0 7 26 Österreich 100 90 80 70 60 50 40 30 20 10 0 0 20 40 60 80 100 120 Twolinearrepresentationarebetterasa logarithmic? Languageeffectsonthenumberline • Inthecontextofplacevalueintegration,Germanspeakingchildren´sestimationsshouldbe particularlyerroneousfornumbersforwhichmixing updecadesandunitsresultsinalargeestimation error(e.g.82and28)comparedwithnumbers leadingtoonlysmallestimationerror(e.g.54and 45) Study5 • Participants:130Austrianand107Italianchildren inthefirstgrade • Material: • thenumberlineestimationtaskwiththerange from0to100wasused • with18differentnumberswerepresentedin visualform(Arabicnumbers) Results Takentogether: • Theresultsindicatethatestimationaccuracyof Germanspeakingchildrenisparticularlypoorfor theitemsforwhichinversionplaysamajorrolein theaccuraterepresentationofnumbermagnitude • Theresultsshowstheimportanceoftranslingual studiesalsoinnon-verbaltasks,suchasthenumber linetasktobetterunderstandingofthenumerical cognitionandtherelationtothelanguage Takentogether: • TheinversionpropertyintheGermannumber wordsisparticularlydifficultfortheAustrian (Germanspeaking)childrennotonlyintheverbal tasksasthetranscodingbutalsoinnon-verbaltasks asthetwodigitnumbercomparisonorthenumber lineestimationtask Actuallyresearch • Influenceofthelanguageandthespatialabilities ontheearlynumberprocessingcompetenciesby smallchildrenfrom3to6years • Differentcompetencieswouldbeinvestigatedsuch ascounting,cardinality,wholepartunderstanding, patternoffingersanddicesandspecialfocusinthis studywetookofthezero– ontheothersidethe vocabulary,spatialprepositions(ason,inbetween) andquantifier(asmoreas,lessas)andspatial competencieswouldbetestedinthesample Actuallyresearch • Inanotherworkwetrytodescribethefirststeps, whatmadethewordorstoryproblemsdifficultfor thechildren. • Thefirstpilotstudyshowalotofspectacular results.Infocuswealsotookthequantifiersmore as,lessas,halfofanddoubleof…
© Copyright 2025 Paperzz