Universal Journal of Physics and Application 1(1): 18-25, 2013 DOI: 10.13189/ujpa.2013.010104 http://www.hrpub.org Stability and Mass Parabola in Integrated Nuclear Model N.Ghahramany*, H.Sarafraza, E. Yazdankish Physics Department, Shiraz University, Shiraz, Iran *Corresponding Author: [email protected] Copyright © 2013 Horizon Research Publishing All rights reserved. Abstract Following our previous introduction of nuclear quark-like model, in this paper, a more precise formula is presented for nuclear binding energy in the context of modified Integrated Nuclear Model (INM). INM is based upon quark-like model with three basic assumptions from which the nuclear binding energy and magic numbers are easily obtained. INM is modified here to give the nuclear mass parabola and most stable nuclei in each nuclei group. Our findings are compared with Liquid Drop Model (LDM), unmodified Integrated Nuclear Model (INM) and experimental data for most stable nuclei. Keywords Stability, Mass Parabola, Integrated Nuclear Model, Binding Energy 1. Introduction Nuclear physicists have been struggling hard for so many years to present a simple and complete nuclear model from which the characteristics of nuclei can be explained and comprehended .The existing successful nuclear models can only explain certain characteristics of the nuclei and make no comments about other nuclear properties. For example Liquid Drop Model (LDM) was presented by Von Weizsacker [1] and then was extended by Bohr and Wheeler [2].This model give the nuclear binding energy formula in terms of A and Z [3] as follow: π΅π΅(π΄π΄, ππ) = πππ£π£ π΄π΄ β πππ π π΄π΄2β3 β ππππ ππ(ππ β 1)π΄π΄β1β3 β ππππ (ππ β ππ2π΄π΄β1±πΏπΏ+ππ (1) In which five experimentally determined constants are introduced. Liquid Drop Model (LDM) has been successful in the calculation of binding energy, mass parabola and most stable isobars. However this model fails to predict other properties of nuclei such as, the magic numbers and nuclear magnetic moments. On the other hand Nuclear Shell Model [4] which is based upon Schrodinger equation solution with selected potential such as rounded edge potential well , predict the magic numbers and nuclear magnetic moments by using spin-orbit couplings in a relatively complicated manners[5,6]. We have presented the Integrated Nuclear Model (INM) based upon nuclear quark-like model from which all magic numbers are easily obtained and a new magic number is predicted [7,8]. This model is also used to find the magnetic dipole moment of deuteron with greater precision [9]. Using INM, the nuclear binding energy formula was also obtained from quark-like model of nuclei [10] and is given as follow: π΅π΅(π΄π΄, ππ) = οΏ½π΄π΄ β οΏ½ οΏ½ππ 2 βππ 2 οΏ½+πΏπΏ (ππβππ) 3ππ + 3οΏ½οΏ½ × 0, ππ β ππ In formula (2) πΏπΏ(ππ β ππ) = οΏ½ 1, ππ = ππ ππππ ππ 2 πΌπΌ π΄π΄ > 5 (2) and ππππ ππ 2 is the mass of nucleon instead of up-quark mass used in reference [10]. The coefficient πΌπΌ is a dimensionless constant defined to have a range from 90 to 100 [10]. Formula (2) provides the nuclear binding energy for most of the stable nuclei in term of only one coefficient namely πΌπΌ which is simpler than LDM with several coefficients. However this formula needs to be modified to give us the mass parabola in the same way as LDM. In this paper the modified nuclear binding energy formula is presented in order to find the nuclear mass parabola and the stability of isobaric groups of nuclides. The determination of the mass parabola itself is an indication of the validity of the INM which is based upon the quark structure of the nuclei instead of nucleon structure. 2. Modified Nuclear Binding Energy Formula in INM In the binding energy formula (2) presented in INM a coefficient πΌπΌ is introduced which varies between 90 to 100 for all stable nuclides with π΄π΄ > 5. The coefficient πΌπΌ may be called βnuclear stability coefficientβ. A careful investigation of the stability coefficient for many stable nuclides indicates the fact that πΌπΌ depends upon atomic number (Z) and mass number (A). In fact for isobar nuclides, the stability coefficient πΌπΌ is proportional to atomic number (Z) whereas for isotopic nuclides the stability coefficient πΌπΌ is inversely proportional to the mass number (A). Therefore Universal Journal of Physics and Application 1(1): 18-25, 2013 ππ π΄π΄ Further analysis of most of the stable nuclides allows proper modification of formula (2) as follow: πΌπΌ β π΅π΅(π΄π΄, ππ) = οΏ½π΄π΄ β οΏ½ οΏ½ππ 2 βππ 2 οΏ½+πΏπΏ(ππβππ) 3(ππβππ) + 3οΏ½οΏ½ × π΄π΄ππ +π π ππππ ππ 2 π΄π΄ > 5 126 (ππβππ) (3) In which the coefficient k, s and n are defined as 0.0003, π π = οΏ½ β0.0003, ππ, ππ ππππππππ ππ ππ, ππ ππππππ 2, ππ β€ 118 =οΏ½ 0, ππ > 118 ππ = 0.87 π‘π‘π‘π‘ 0.88 As can be seen, only one free coefficient namely, n exist that has a limited range of fine tuning and all other coefficients are known constants. Now with this modified formula (3), one can find the mass parabolas and stability line. First we write the nuclear mass as follow: ππ(π΄π΄, ππ) = π΄π΄ππππ + (πππ»π» β ππππ )ππ β οΏ½π΄π΄ β οΏ½ (ππ 2 β ππ 2 ) + πΏπΏ(ππ β ππ) π΄π΄ππ+π π ππππ + 3οΏ½οΏ½ × 126(ππ β ππ) 3(ππ β ππ) 5 = π΄π΄ππππ + (πππ»π» β ππππ )ππ β οΏ½ π΄π΄ β 3 π΄π΄2 +πΏπΏ(ππβππ) 3(ππβππ) β 3οΏ½ × π΄π΄ππ +π π ππππ 126 (ππβππ) (4) Differentiating ππ(π΄π΄, ππ) with respect to ππ and equating it to zero give us πππ΄π΄ at which ππ(π΄π΄, ππ) is minimum. After carrying out the standard calculation, we end up with an equation of power of three in Z such as: ππππ 3 + ππππ β ππ = 0 (5) 19 Where 5 π΄π΄ππ+π π ππππ οΏ½; ππ = (πππ»π» β ππππ ); ππ = οΏ½οΏ½ π΄π΄ β 3οΏ½ 126 3 ππ = οΏ½οΏ½ π΄π΄2 + πΏπΏ(ππ β π§π§) ππ+π π οΏ½ π΄π΄ ππππ οΏ½ 189 Equation (5) is solved with Maple program and we get one real solution: πππ΄π΄ = ππ + β 1 6 4ππ 3 + 27ππ 2 ππ 2 οΏ½οΏ½108ππ + 12β3οΏ½ οΏ½ ππ οΏ½ ππ 2ππ 4ππ 3 +27ππ 2 ππ 2 οΏ½ππ οΏ½ οΏ½οΏ½108 ππ+12β3 οΏ½ ππ 1 β3 ππ 1 β3 (6) Fig.(1) shows the mass parabolas for odd A (π΄π΄ = 135) and for even A (π΄π΄ = 102) in which πππ΄π΄ is shown by down ward arrows. For odd A with π π = 0 only one parabola is obtained; for even A isobars we get two parabolas. As shown in fig.(1) for π΄π΄ = 135 only one stable isobar exist at π§π§ = 56 which is very close to our finding at πππ΄π΄ = 55.8 but for even A nuclides depending upon the distance between two obtained parabolas, we get several stable even-even isobars. Here for π΄π΄ = 102 there are two stable isobars at ππ = 44 and ππ = 46 and for ππ = 44 we get the most stable one, since this is closer to the calculated value namely, πππ΄π΄ = 44.3 . For LDM for π΄π΄ = 135 , πππ΄π΄ = 55.7 and for π΄π΄ = 102, πππ΄π΄ = 44.7 [11]. It is seen that our calculated values of πππ΄π΄ is closer to the experimental data as compared to the LDM. Figure 1. The isobars mass parabolas a) for even A nuclides b) for odd A nuclides Using equation (6) , we plot πππ΄π΄ verses N to obtain the stability line shown in figure (2). 20 Stability and Mass Parabola in Integrated Nuclear Model Figure 2. Stability line in modified INM Finally in table (1) a comparison is made between our findings of nuclear binding energy and the results of other models and experimental data. 3. Conclusion Determination of the stability mass parabola and the nuclear stability line in modified INM and comparison of the most stable nuclei obtained from this model, with the experimental data and LDM is an indication of the validity of the modified INM which is based upon quark-like model of nuclei. Also comparison of nuclear binding energy obtained from modified INM and experimental data, results in a closer match than LDM for most of the light, medium and heavy nuclei. Other characteristics of nuclides are being tested by INM in our research group and the results are promising. Universal Journal of Physics and Application 1(1): 18-25, 2013 21 Table 1. Comparison of nuclear binding energy with different model Z Nucleus A B(EXP) MeV B(LDM) MeV 1 2 3 3 4 5 5 6 6 7 7 8 8 8 9 10 10 10 11 12 12 12 13 14 14 14 15 16 16 16 17 17 18 18 19 19 20 20 21 22 22 22 22 22 23 H He Li Li Be B B C C N N O O O F Ne Ne Ne Na Mg Mg Mg Al Si Si Si P S S S Cl Cl Ar Ar K K Ca Ca Sc Ti Ti Ti Ti Ti V 1 4 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 36 40 39 41 40 44 45 46 47 48 49 50 50 0 28.296 31.994 39.244 58.165 64.751 76.205 92.162 97.108 104.659 115.492 127.619 131.763 139.807 147.801 160.645 167.406 177.77 186.564 198.257 205.588 216.681 224.952 236.537 245.011 255.62 262.917 271.781 280.442 291.839 298.21 317.101 306.717 343.811 333.724 351.619 342.052 380.96 387.848 398.193 407.073 418.7 426.842 437.781 434.794 -26.461 21.9452 27.64 38.3835 56.6316 63.0939 75.0627 87.749 93.629 99.6605 112.2803 123.7138 130.9744 141.24997 149.6775 160.15493 168.363 179.44476 188.0092 196.68558 205.5993 217.2668 224.1192 233.089 242.5576 254.6751 260.9052 269.23215 279.1541 291.6321 297.29795 317.675 305.02832 346.7388 333.24958 354.4661 340.41858 383.66084 390.6604 399.52474 408.53494 419.9271 427.26614 437.02429 434.6673 Table (contd.) B(INM) MeV B(Modified INM) MeV 0 28.27305 30.10864 33.58272 54.71667 65.03467 75.73481 92.19658 96.69506 104.82993 115.06522 127.94649 131.23772 139.15385 147.91676 160.75488 167.29278 178.76377 186.66229 198.70651 206.02692 217.4098 225.38779 236.6431 244.7457 255.17021 261.40635 271.82458 280.5625 292.09649 299.71709 317.5582 309.3663 343.29829 334.60819 350.20724 346.90367 379.8567 389.4375 398.22944 409.04261 420.01354 426.51645 437.60839 435.44378 0 28.27305 31.7322 38.9815 59.3114 65.2428 77.4225 91.8896 96.9228 104.2934 113.8012 127.5033 130.1135 138.5735 145.9720 158.8530 167.4783 177.7011 186.7211 197.1147 206.2926 214.5963 222.5858 237.1105 246.7711 255.7162 264.1575 272.0444 280.8788 288.9729 297.3346 313.3686 304.5650 343.6705 335.6762 352.6519 342.5981 382.8547 391.2262 398.8393 407.5979 419.2554 427.4059 436.8867 436.8867 22 Stability and Mass Parabola in Integrated Nuclear Model Z Nucleus A 23 24 24 25 26 26 27 28 28 29 29 30 30 30 31 31 32 32 32 33 34 34 35 35 36 36 36 36 37 37 38 38 38 39 40 40 40 40 41 V Cr Cr Mn Fe Fe Co Ni Ni Cu Cu Zn Zn Zn Ga Ga Ge Ge Ge As Se Se Br Br Kr Kr Kr Kr Rb Rb Sr Sr Sr Y Zr Zr Zr Zr Nb 51 52 53 55 54 56 59 58 60 63 65 64 66 68 69 71 70 72 74 75 78 80 79 81 82 83 84 86 85 87 86 87 88 89 90 91 92 94 93 Table (contd.) B(EXP) MeV B(LDM) MeV B(INM) MeV B(Modified INM) MeV 445.845 456.349 464.289 482.075 471.763 492.258 517.313 506.459 526.846 551.385 569.212 559.098 578.136 595.387 601.996 618.951 610.521 628.686 645.665 652.564 679.99 696.866 686.321 704.37 714.274 721.737 732.258 749.235 739.283 757.856 748.928 757.356 768.469 775.538 783.893 791.087 799.722 814.677 805.765 445.416 455.5536 463.39155 481.1957 468.80385 490.5518 516.2997 502.61932 524.93075 550.7451 569.4077 558.6975 576.4769 596.72888 603.8851 620.99784 612.65537 631.17806 647.61204 655.4886 682.06496 697.35903 689.2439 705.81675 715.7677 722.76424 731.78274 746.12903 739.5233 755.05569 748.7453 756.09715 765.42723 772.4887 781.019 788.70082 798.32021 814.04797 804.7359 446.8546 455.28655 462.20892 482.30496 470.09324 494.95007 516.9666 508.02694 529.02083 550.87284 572.5846 562.37022 578.59789 594.627 600.3837 616.54873 611.89844 628.65957 645.29982 650.43133 679.32321 696.67873 683.54105 701.12258 712.55477 721.61748 730.68841 748.85597 742.09493 760.81913 745.0301 754.44401 772.1865 774.67303 784.95789 794.88848 796.30213 815.99203 806.51142 445.7475 455.6228 464.0847 482.4365 471.9696 492.0997 517.1329 506.0674 526.6298 551.6894 568.8508 558.7607 577.7257 595.8342 602.4001 618.9171 611.0470 628.2117 644.4527 652.5537 679.6684 695.4010 687.4491 703.7878 714.8280 723.0077 730.9761 747.9164 739.0302 756.5981 748.3195 756.6489 768.2167 776.0138 783.4294 791.9112 800.2144 814.4118 805.9039 Universal Journal of Physics and Application 1(1): 18-25, 2013 23 Z Nucleus A B(EXP) MeV B(LDM) MeV B(INM) MeV B(Modified INM) MeV 42 42 42 42 44 44 44 44 44 45 46 46 46 46 46 47 47 48 48 48 48 48 49 49 50 50 50 51 51 52 52 52 53 54 54 54 55 56 56 Mo Mo Mo Mo Ru Ru Ru Ru Ru Rh Pd Pd Pd Pd Pd Ag Ag Cd Cd Cd Cd Cd In In Sn Sn Sn Sb Sb Te Te Te I Xe Xe Xe Cs Ba Ba 92 95 96 98 99 100 101 102 104 103 104 105 106 108 110 107 109 110 111 112 113 114 113 115 116 118 120 121 123 126 128 130 127 129 131 132 133 137 138 796.508 821.625 830.779 846.243 852.255 861.928 868.73 874.844 893.083 884.163 892.82 899.914 909.474 925.239 940.207 915.263 931.727 940.646 947.622 957.016 963.556 972.599 963.094 979.404 988.684 1004.955 1020.546 1026.325 1042.097 1066.369 1081.439 1095.941 1072.577 1087.651 1103.512 1112.448 1118.528 1149.681 1158.293 793.09932 820.5965 830.48545 846.8345 851.80259 861.94355 869.4767 878.87415 894.40381 885.0934 892.71256 900.53543 910.189 926.29915 941.11778 915.80492 932.86781 940.7986 948.22807 957.45559 964.25463 972.84985 963.41231 979.7077 987.89353 1003.8319 1018.5973 1025.6927 1040.1801 1063.5988 1076.7653 1088.937 1070.8771 1085.9613 1100.1915 1107.9009 1115.3434 1144.0675 1151.5421 795.94785 817.88079 827.97895 848.34648 857.39063 858.94508 869.40782 870.67943 891.54317 880.17114 889.22905 899.97871 910.81159 922.81499 944.64934 919.77497 932.11781 940.98553 952.19342 953.35906 964.54063 975.82258 962.12798 984.90679 983.20639 1006.25447 1018.68817 1027.54763 1040.04681 1061.3598 1085.47929 1097.80741 1069.98274 1090.45272 1103.42321 1115.85749 1124.19407 1145.90412 1158.66304 795.4930 821.6087 829.9908 846.2422 852.8166 861.2846 869.5955 875.7178 893.5445 885.1863 892.3174 900.7118 908.9562 924.9800 940.3585 916.1749 932.5995 939.9041 948.0861 956.1212 964.0060 971.7369 963.5100 979.5262 986.9973 1005.2137 1020.0715 1027.0924 1043.4808 1066.7824 1082.4686 1097.6144 1073.9530 1089.1120 1105.2131 1113.0778 1117.6565 1148.4568 1158.9851 Table (contd.) 24 Stability and Mass Parabola in Integrated Nuclear Model Z Nucleus A B(EXP) MeV B(LDM) MeV B(INM) MeV B(Modified INM) MeV 57 57 58 58 59 60 60 60 60 62 62 63 63 64 64 64 65 66 66 66 67 68 68 68 69 70 70 70 71 71 72 72 72 73 74 74 74 75 75 La La Ce Ce Pr Nd Nd Nd Nd Sm Sm Eu Eu Gd Gd Gd Tb Dy Dy Dy Ho Er Er Er Tm Yb Yb Yb Lu Lu Hf Hf Hf Ta W W W Re Re 138 139 140 142 141 142 143 144 146 152 154 151 153 156 158 160 159 162 163 164 165 166 167 168 169 172 173 174 175 176 177 178 180 181 182 183 184 185 187 1155.774 1164.551 1172.692 1185.29 1177.919 1185.142 1191.266 1199.083 1212.403 1253.104 1266.94 1244.141 1258.998 1281.598 1295.896 1309.29 1302.027 1324.106 1330.377 1338.035 1344.256 1351.572 1358.008 1365.779 1371.352 1392.764 1399.131 1406.595 1412.106 1418.394 1425.185 1432.811 1446.297 1452.24 1459.335 1465.525 1472.937 1478.341 1491.877 1151.2653 1159.105 1167.8856 1181.675 1174.1085 1181.5574 1188.3505 1196.7746 1211.0565 1253.5745 1266.5934 1245.4718 1260.0164 1281.9731 1295.468 1308.1556 1301.9809 1323.6067 1329.4064 1336.7617 1343.3234 1351.0262 1357.0604 1364.6314 1370.6194 1391.7813 1397.6674 1405.069 1411.0893 1416.9087 1424.3349 1431.9414 1444.9382 1450.9735 1458.1089 1464.0784 1471.526 1477.0087 1490.2904 1153.85554 1166.73445 1174.39252 1187.94784 1181.66244 1188.56759 1189.38183 1202.61474 1216.51726 1258.49943 1272.46549 1250.92515 1252.0625 1286.04737 1300.35239 1314.5448 1306.82008 1327.56172 1327.81106 1342.0879 1348.27368 1354.12255 1354.45782 1368.95728 1374.66657 1395.18194 1395.41458 1410.24421 1415.66989 1415.85338 1421.10223 1436.13156 1451.43158 1456.56802 1461.40522 1461.62301 1476.98029 1481.67469 1497.36935 1155.7274 1136.5646 1170.7473 1186.3789 1177.7014 1184.4452 1192.5988 1200.6467 1213.3904 1252.2646 1267.1604 1243.8002 1259.4052 1281.7931 1296.8405 1308.1365 1300.7987 1322.9576 1330.3749 1337.6889 1345.0398 1352.1740 1359.0660 1367.0472 1370.7159 1392.6360 1399.9972 1407.2110 1410.8362 1418.0879 1425.2612 1431.4239 1446.5547 1453.2859 1459.8504 1464.6875 1471.2362 1477.8280 1492.8904 Table (contd.) Universal Journal of Physics and Application 1(1): 18-25, 2013 25 Z Nucleus A B(EXP) MeV B(LDM) MeV B(INM) MeV B(Modified INM) MeV 76 76 76 77 77 78 78 78 79 80 80 80 80 80 81 81 82 82 82 83 90 92 92 Os Os Os Ir Ir Pt Pt Pt Au Hg Hg Hg Hg Hg Tl Tl Pb Pb Pb Bi Th U U 189 190 192 191 193 194 195 196 197 198 199 200 201 202 203 205 206 207 208 209 232 235 238 1505.007 1512.799 1526.116 1518.088 1532.058 1539.577 1545.682 1553.604 1559.386 1566.489 1573.153 1581.181 1587.411 1595.165 1600.87 1615.072 1622.325 1629.063 1636.431 1640.23 1766.687 1783.864 1801.69 1503.2513 1510.5523 1523.036 1516.0377 1529.0561 1536.145 1541.8699 1549.0352 1554.5095 1561.0472 1566.9765 1574.3316 1579.9487 1586.9882 1592.4387 1604.989 1611.9829 1617.5005 1624.4233 1629.8385 1769.1834 1785.8988 1804.1704 1502.04693 1517.73611 1533.53906 1522.14121 1538.08144 1542.34012 1542.38144 1558.40616 1562.51729 1566.36429 1566.48393 1582.67354 1582.63325 1598.99688 1602.80964 1619.26432 1622.92633 1622.8084 1639.51406 1643.0243 1764.19153 1786.7108 1803.59006 1503.9947 1510.5094 1525.0828 1517.1743 1531.9626 1538.6738 1546.0526 1553.3518 1560.1086 1566.7061 1574.1315 1581.4803 1588.7515 1595.9441 1602.7903 1617.1500 1624.0399 1631.2074 1638.2975 1640.8417 1767.0470 1782.1712 1802.6499 REFERENCES [1] C.F. von Weizsacker, Z. Physik 96, 431 (1935). [2] N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). [3] H. A. Bethe, Rev. Mod. Phys. 8, 82 (1936). [4] W. Elsasser, J. phys. Radium 4,549 (1933). [5] Maria Goeppert-Mayer,Phys.Rev.75:1969-1970(1949). [6] O.Haxel, J.D.H.Jensen, H.E.Suess,Z.Phys.128,295(1950). [7] N.Ghahramani,H.Hora,G.H.Miley,M.Ghanaatian,M.Hooshmand,K.Philberth,F.Osman, Phys.Essays 21,200(2008). [8] N.Ghahramani,M.Ghanaatian,M.Hooshmand,Iranian Physical Journal,vol.1,no.2(2007). [9] N. Ghahramany and E. Yazdankish. Communication in theoretical physics, Vol.59, No. 5 (2013). [10] N.Ghahramany,Sh.Gharaati,andM.Ghanaatian,New Approach to Nuclear Binding Energy in Integrated Nuclear Model, Physics of Particles and Nuclei Letters, Vol. 8, No. 2, pp. 97β106(2011). [11] W. E. Meyerhof, Elements of Nuclear Physics, McGraw-Hill Series in Fundamentals of Phys.( 1967).
© Copyright 2026 Paperzz