Intro to Synchrotron Radiation, Bending Magnet Radiation Photons e– • Many straight sections containing periodic magnetic structures UV X-ray • Tightly controlled electron beam (5.80) (5.82) (5.85) 2 ns Ne 70 ps S t N S Undulator radiation N e– N S N S λu λ Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F00VG_Feb07.ai Broadly Tunable Radiation is Needed to Probe the Primary Resonances of the Elements Group IA 1 VIII 1.0079 1 Key H Atomic number 1s1 IIA Hydrogen 3 6.941 1 Li 0.53 4.63 1s2 2s1 Lithium 22.990 1 11 0.97 2.53 Na 4 Be 1.85 12.3 2.23 1s2 2s2 1.74 4.30 3.20 19 0.86 1.33 K Magnesium 40.08 2 20 1.53 2.30 3.95 [Ar]4s1 [Ar]4s2 Potassium 37 1.53 1.08 85.47 1 Rb Calcium 87.62 2 38 2.58 1.78 4.30 [Kr]5s1 1.90 0.86 Strontium 132.91 1 Cs [Xe]6s1 Cesium 87 Sr [Kr]5s2 Rubidium 55 Ca (223) 1 Fr 56 3.59 1.58 4.35 137.33 2 Ba IIIA 21 44.96 3 Sc 2.99 4.01 3.25 [Ar]3d14s2 Scandium 88.91 3 39 Y 4.48 3.03 3.55 [Kr]4d15s2 Yttrium 57 138.91 3 La [Xe]6s2 Barium (226) 2 89 Ra [Rn]7s1 [Rn]7s2 Francium Radium Lanthanum (227) 3 Ac 10.1 2.67 3.76 [Rn]6d17s2 Actinium IVA 22 Lanthanide series 47.88 4,3 Ti 4.51 5.67 2.89 [Ar]3d24s2 Titanium 91.22 4 40 Zr 6.51 4.30 3.18 [Kr]4d25s2 Zirconium 72 178.49 4 Hf 13.3 4.48 3.13 [Xe]4f145d26s2 Hafnium (261) 104 Si 5 Gas Symbol Rf 23 VIA 50.94 5,4,3,2 V 6.09 7.20 2.62 [Ar]3d34s2 Vanadium 92.91 5,3 41 Nb 8.58 5.56 2.86 [Kr]4d45s1 Niobium 73 180.95 5 Ta 16.7 5.55 2.86 [Xe]4f145d36s2 Tantalum (262) 105 Db 24 52.00 6,3,2 Cr 7.19 8.33 2.50 [Ar]3d54s1 Chromium 95.94 6,3,2 42 Mo 10.2 6.42 2.73 [Kr]4d55s1 Molybdenum VIIA VIIIA 54.94 25 7,6,4,2,3 26 7.47 8.19 Mn [Ar]3d54s2 Manganese (98) 7 43 Tc 11.5 7.07 2.70 [Kr]4d55s2 Technetium 55.85 2,3 Fe 7.87 8.49 2.48 [Ar]3d64s2 Iron 27 Ru Ruthenium Co Cobalt 102.91 2,3,4 101.1 44 2,3,4,6,8 45 12.4 7.36 2.65 [Kr]4d75s1 58.93 2,3 8.82 9.01 2.50 [Ar]3d74s2 Rh 12.4 7.27 2.69 [Kr]4d85s1 Rhodium 183.85 186.21 190.2 74 6,5,4,3,2 75 7,6,4,2,–1 76 2,3,4,6,8 77 W 19.3 6.31 2.74 [Xe]4f145d46s2 Tungsten (266) 106 Sg Re 21.0 6.80 2.74 [Xe]4f145d56s2 Rhenium (264) 107 Bh Os 22.6 7.15 2.68 [Xe]4f145d66s2 Osmium (277) 108 Hs 192.2 2,3,4,6 Ir 22.6 7.07 2.71 [Xe]4f145d76s2 Iridium (268) 109 Mt [Rn]5f146d37s2 [Rn]5f146d47s2 [Rn]5f146d57s2 [Rn]5f146d67s2 [Rn]5f146d77s2 Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium 140.12 3,4 Ce 59 140.91 3,4 Pr 60 144.24 3 6.78 2.90 3.64 [Xe]4f36s2 7.00 2.92 3.63 [Xe]4f46s2 90 Praseodymium 231.04 5,4 92 232.05 4 Th 11.7 3.04 3.60 [Rn]6d27s2 Thorium 91 Pa 15.4 4.01 3.21 [Rn]5f26d17s2 Protactinium 61 (145) 3 Nd Pm 6.77 2.91 3.65 [Xe]4f15d16s2 Cerium Actinide series VA Synthetically prepared Neodymium 238.03 6,5,4,3 U 19.1 4.82 2.75 [Rn]5f36d17s2 Uranium [Xe]4f56s2 Promethium (237) 6,5,4,3 93 20.5 5.20 Np 62 150.36 3,2 Sm 7.54 3.02 3.59 [Xe]4f66s2 Samarium (244) 6,5,4,3 94 19.8 4.89 63 152.0 3,2 Eu 5.25 2.08 3.97 [Xe]4f76s2 Europium (243) 6,5,4,3 95 IB 28 58.69 2,3 Ni 8.91 9.14 2.49 [Ar]3d84s2 Nickel 106.4 2,4 46 Pd 12.0 6.79 2.75 [Kr]4d10 Palladium 78 195.08 2,4 Pt 21.4 6.62 2.78 [Xe]4f145d96s1 Platinum (271) 110 64 157.25 3 Gd 7.87 3.01 3.58 [Xe]4f75d16s2 Gadolinium (247) 3 96 Pu Am Cm [Rn]5f46d17s2 [Rn]5f67s2 Neptunium Plutonium 11.9 2.94 3.61 [Rn]5f77s2 Americium 29 63.55 2,1 Cu 8.93 8.47 2.56 [Ar]3d104s1 Copper 107.87 1 47 Ag 10.5 5.86 2.89 [Kr]4d105s1 Silver 79 197.0 3,1 Au 19.3 5.89 2.88 [Xe]4f145d106s1 Gold (272) 111 65 158.93 3,4 Tb 8.27 3.13 3.53 [Xe]4f96s2 Terbium (247) 4,3 97 Bk IIIB 10.81 3 B 2.47 13.7 1.78 1s2 2s2 2p1 Liquid Electron configuration [Rn]5f146d27s2 58 Professor David Attwood Univ. California, Berkeley Solid (Bold most stable) Boron 26.98 3 13 References: International Tables for X-ray Crystallography (Reidel, London, 1983) (Ref. 44) and J.R. De Laeter and K.G. Heumann (Ref. 46, 1991). 6.17 2.68 3.73 [Xe]5d16s2 88 Oxidation states 28.09 4 Name Mg [Ne]3s2 14 2.33 4.99 2.35 [Ne]3s23p2 Silicon Beryllium 24.31 2 12 4.003 1 He Atomic weight Density (g/cm3) Concentration (1022atoms/cm3) Nearest neighbor (Å) 9.012 2 [Ne]3s1 Sodium 39.098 1 2 IIB 30 65.39 2 Zn 7.13 6.57 2.67 [Ar]3d104s2 Zinc 112.41 2 48 Cd 8.65 4.63 2.98 [Kr]4d105s2 Cadmium 80 200.59 2,1 Hg [Xe]4f145d106s2 Mercury (283) Al 2.70 6.02 2.86 [Ne]3s23p1 Aluminum 69.72 3 31 Ga 5.91 5.10 2.44 [Ar]3d104s24p1 Gallium 114.82 3 49 In 7.29 3.82 3.25 [Kr]4d105s25p1 66 162.50 3 Dy Dysprosium (251) 3 98 Cf IVB 12.011 4,2 C 2.27 11.4 1.42 1s2 2s2 2p2 Carbon 28.09 4 14 204.38 3,1 Tl Si 2.33 4.99 2.35 [Ne]3s23p2 Silicon 72.61 4 32 Ge 5.32 4.42 2.45 [Ar]3d104s24p2 Germanium 118.71 4,2 50 Sn 7.29 3.70 3.02 [Kr]4d105s25p2 Indium 81 Tin 82 Thallium VB 7 14.007 3,5,4,2 N 1s2 2s2 2p3 Nitrogen 30.974 3,5,4 15 P 1.82 3.54 [Ne]3s23p3 Phosphorus 74.92 3,5 33 As 5.78 4.64 2.51 [Ar]3d104s24p3 Arsenic 121.76 3,5 51 Sb 6.69 3.31 2.90 [Kr]4d105s25p3 Antimony 207.2 4,2 Pb 11.9 11.3 3.50 3.30 3.41 3.50 [Xe]4f145d106s26p1 [Xe]4f145d106s26p2 Lead (287) 83 208.98 3,5 Bi 9.80 2.82 3.11 [Xe]4f145d106s26p3 Bismuth 8 VIB 16 –2 O 1s2 2s2 2p4 Oxygen 32.066 2,4,6 16 S 2.09 3.92 [Ne]3s23p4 Sulfur 78.96 –2,4,6 34 Se 4.81 3.67 2.32 [Ar]3d104s24p4 Selenium 127.60 –2,4,6 52 Te 6.25 2.95 2.86 [Kr]4d105s25p4 Tellurium 84 (209) 4,2 Po 9 VIIB Helium 19.00 –1 F 1s2 2s2 2p5 Cl [Ne]3s23p5 35 Br [Ar]3d104s24p5 Bromine 126.90 1,5,7 53 I 4.95 2.35 [Kr]4d105s25p5 Iodine 85 Ne Neon 39.948 1,3,5,7 18 Ar [Ne]3s23p6 Chlorine 79.904 1,5 3.12 2.35 20.180 1s2 2s2 2p6 Fluorine 35.453 1,3,5,7 17 10 (210) 1,3,5,7 At Argon 83.80 36 Kr [Ar]3d104s24p6 Krypton 131.29 54 Xe [Kr]4d105s25p6 Xenon 86 (222) Rn 9.27 2.67 3.35 [Xe]4f145d106s26p4 [Xe]4f145d106s26p5 [Xe]4f145d106s26p6 Polonium Astatine Radon 114 112 8.53 3.16 3.51 [Xe]4f106s2 6 1s2 67 164.93 3 Ho 8.80 3.21 3.49 [Xe]4f116s2 Holmium (252) 99 Es 68 167.26 3 Er 9.04 3.26 3.47 [Xe]4f126s2 Erbium (257) 100 Fm 69 168.93 3,2 Tm 9.33 3.32 3.45 [Xe]4f136s2 Thulium (258) 101 Md 70 173.04 3,2 Yb 6.97 2.42 3.88 [Xe]4f146s2 Ytterbium (259) 102 No 71 174.97 3 Lu 9.84 3.39 3.43 [Xe]4f145d16s2 Lutetium (262) 103 Lr [Rn]5f76d17s2 [Rn]5f97s2 [Rn]5f107s2 [Rn]5f117s2 [Rn]5f127s2 [Rn]5f137s2 [Rn]5f147s2 [Rn]5f146d17s2 Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Periodic_Tb_clr_May2007.ai Synchrotron Radiation from Relativistic Electrons v <c ~ v << c λ′ v λx λ′ Note: Angle-dependent doppler shift λ = λ′ (1 – vc cosθ) λ = λ′ γ (1 – vc cosθ) γ= Professor David Attwood Univ. California, Berkeley 1 v2 1– 2 c Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F09VG_revOct05.ai Synchrotron Radiation in a Narrow Forward Cone Frame moving with electron a′ Θ′ Laboratory frame of reference sin2Θ′ 1 θ~ – γ 2 θ′ (5.1) (5.2) Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F11VG_Oct05.ai Relativistic Electrons Radiate in a Narrow Forward Cone Dipole radiation a′ Θ′ sin2Θ′ 1 θ γ 2 Frame of reference moving with electrons k′ θ′ k′z k′ = 2π/λ′ Professor David Attwood Univ. California, Berkeley k′x Laboratory frame of reference k Lorentz transformation kx = k′x θ kz = 2γk′z(Relativistic Doppler shift) k k′ tanθ′ 1 x θ k x = 2γk′z 2γ 2γ z Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F11modif_VG.ai Some Useful Formulas for Synchrotron Radiation γ= 1 2 1 – v2 c = 1 1 – β2 v ; β= c Ee = γmc2, p = γmv Ee γ= = 1957 Ee(GeV) mc2 ω λ = 1239.842 eV nm Bending Magnet: Undulator: , ; where Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_UsefulFormulas.ai Three Forms of Synchrotron Radiation λ 1 γ Bending magnet radiation F e– ω >> e– 1 γ Wiggler radiation F λ ω 1 γ N e– Undulator radiation F λ ω Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F01_03VG.ai Modern Synchrotron Radiation Facility Older Synchrotron Radiation Facility Modern Synchrotron Radiation Facility Circular electron motion e– Photons e– • Many straight a Continuous e– trajectory bending Photons sections containing periodic magnetic structures UV X-ray • Tightly controlled electron beam “X-ray light bulb” “Bending magnet radiation” ω “Undulator and wiggler radiation” • Partially coherent P • Tunable ω Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F04VG.ai The ALS with San Francisco in the Background 1.9 GeV, γ = 3720, 197 m circumference Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 ALS_SF_Feb07.ai France’s ESRF is Well Situated 6 GeV; γ = 11, 800; 884m circumference Professor David Attwood Univ. California, Berkeley Bounded by two rivers Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 ESRF.ai SPring-8 in Hyogo Prefecture, Japan 8 GeV; γ = 15,700; 1.44 km circumference Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 SPring8.ai A Single Storage Ring Serves Many Scientific User Groups Spectromicroscopy of Surfaces Environmental Spectromicroscopy and Biomicroscopy Surface and Materials Science 7.0 8.0 6.0 Protein Crystallography U5 5.0 4.0 U10 9.0 U10 U5 EW 20 Booster Synchrotron U3.65 10.0 U8 io n 2.0 U10 In je ct EPU RF Professor David Attwood Univ. California, Berkeley Photoemission Spectroscopy of Strongly Correlated Systems Linac W16 Magnetic Materials Polarization Studies Chemical Dynamics 12.0 Atomic and Molecular Physics 11.0 Elliptical Wiggler for Materials Science and Biology EUV Interferometry and Coherent Optics Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F05VG.ai Bending Magnet Radius The Lorentz force for a relativistic electron in a constant magnetic field is V where p = γmv. In a fixed magnetic field the rate of change of electron energy is R F B thus with Ee = γmc2 v = βc ∴ γ = constant and the force equation becomes dp = dt β→1 –v2 a= R ∴ Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_BendMagRadius.ai Bending Magnet Radiation (a) A (b) 1 θ= γ 2 B R sinθ Radius R B′ 1 θ= γ 2 The cone half angle θ sets the limits of arc-length from which radiation can be observed. With θ 1/2γ , sinθ θ Ι 2∆τ Radiation pulse Time With v = βc but (1 – β) ∴ 2∆τ = and R γmc eΒ m 2eΒγ2 Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_BendMagRad_April04.ai Bending Magnet Radiation (continued) From Heisenberg’s Uncertainty Principle for rms pulse duration and photon energy thus ∆Ε ≥ 2∆τ ∆Ε ≥ m/2eΒγ2 (5.4b) Thus the single-sided rms photon energy width (uncertainty) is (5.4c) A more detailed description of bending magnet radius finds the critical photon energy (5.7a) In practical units the critical photon energy is (5.7b) Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_BendMagRad2_April04.ai Bending Magnet Radiation 10 G1(1) = 0.6514 H2(1) = 1.454 ψ θ G1(y) and H2(y) e– 1 0.1 G1(y) H2(y) 50% 50% 0.01 0.001 0.001 0.01 0.1 y = E/Ec 1 4 10 (5.7a) (5.6) (5.7b) (5.5) Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 (5.8) Ch05_F07_T2.ai Bending Magnet Radiation Covers a Broad Region of the Spectrum, Including the Primary Absorption Edges of Most Elements e– ψ θ Photon flux (ph/sec) 1014 (5.7a) (5.7b) (5.8) Advantages: ALS 1013 1012 1011 50% ∆θ = 1mrad ∆ω/ω = 0.1% 0.01 • • • Disadvantages: • Professor David Attwood Univ. California, Berkeley Ee = 1.9 GeV Ι = 400 mA B = 1.27 T ωc = 3.05 keV covers broad spectral range least expensive most accessable limited coverage of hard x-rays • not as bright as undulator Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ec 50% 4Ec 0.1 1 10 Photon energy (keV) 100 Ch05_F07_revJune05.ai Narrow Cone Undulator Radiation, Generated by Relativistic Electrons Traversing a Periodic Magnet Structure Magnetic undulator (N periods) λu λ 2θ Relativistic electron beam, Ee = γmc2 λu ~ λ– 2γ2 1 θcen ~ – γ∗ N ∆λ = 1 λ cen N Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F08VG.ai An Undulator Up Close Professor David Attwood Univ. California, Berkeley ALS U5 undulator, beamline 7.0, N = 89, λu = 50 mm Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Undulator_Close.ai Installing an Undulator at Berkeley’s Advanced Light Source Professor David Attwood Univ. California, Berkeley ALS Beamline 9.0 (May 1994), N = 55, λu = 80 mm Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Undulator_Install.ai Undulator Radiation Laboratory Frame of Reference Frame of Moving e– λu N S N S S N S N e– Frame of Observer Following Monochromator 1 θ ~ – 2γ sin2Θ θcen e– e– radiates at the Lorentz contracted wavelength: E = γmc2 1 γ= 1– v2 c2 N = # periods λ λ′ = γu Bandwidth: λ′ ∆λ′ ~ – N Doppler shortened wavelength on axis: λ = λ′γ(1 – βcosθ) λ= λu 2γ2 (1 + γ2θ2) 1 For ∆λ ~ – λ N 1 θcen ~ – γ N typically θcen ~ – 40 rad Accounting for transverse motion due to the periodic magnetic field: λ= λu 2γ K2 γ 2 2 (1 + + θ ) 2 2 where K = eB0λu /2πmc Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_LG186.ai Physically, where does the λ = λu/2γ 2 come from? The electron “sees” a Lorentz contracted period (5.9) and emits radiation in its frame of reference at frequency Observed in the laboratory frame of reference, this radiation is Doppler shifted to a frequency (5.10) On-axis (θ = 0) the observed frequency is Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_Eq09_10VG.ai Physically, where does the λ = λu/2γ 2 come from? By definition γ = 1 1 – β2 ; γ2 = 1 1 (1 – β)(1 + β) 2(1 – β) thus and the observed wavelength is (5.11) Give examples. Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_Eq11VG.ai What about the off-axis θ 0 radiation? θ2 For θ ≠ 0, take cos θ = 1 – + . . . , then 2 (5.10) c/λu c/λu c/(1 – β)λu = = 1 – β (1 – θ2/2 + . . . ) 1 – β + βθ2/2 – . . . 1 + βθ2/2(1 – β). . . The observed wavelength is then (5.12) exhibiting a reduced Doppler shift off-axis, i.e., longer wavelengths. This is a simplified version of the “Undulator Equation”. Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_Eq10_12VG.ai The Undulator’s “Central Radiation Cone” With electrons executing N oscillations as they traverse the periodic magnet structure, and thus radiating a wavetrain of N cycles, it is of interest to know what angular cone contains radiation of relative spectral bandwidth (5.14) Write the undulator equation twice, once for on-axis radiation (θ = 0) and once for wavelengthshifted radiation off-axis at angle θ: λ0 + ∆λ = λ0 = λu 2γ2 (1 + γ2θ2) λu 2γ2 (5.13) divide and simplify to Combining the two equations (5.13 and 5.14) defines θcen : γ2θ2cen 1 N , which gives (5.15) This is the half-angle of the “central radiation cone”, defined as containing radiation of ∆λ/λ = 1/N. Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_Eq13_15VG_Jan06.ai The Undulator Radiation Spectrum in Two Frames of Reference ω′ ~ N – ∆ω′ is ax f f O Frequency, ω′ Execution of N electron oscillations produces a transform-limited spectral bandwidth, ∆ω′/ω′ = 1/N. Professor David Attwood Univ. California, Berkeley Near axis dP dΩ dP′ dΩ′ Frequency, ω The Doppler frequency shift has a strong angle dependence, leading to lower photon energies off-axis. Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Ch05_F12VG.ai The Narrow (1/N) Spectral Bandwidth of Undulator Radiation Can be Recovered in Two Ways θ With a pinhole aperture Pinhole aperture dP dΩ dP dΩ ∆λ λ ω ω Grating monochromator With a monochromator 2θ 1 γ ∆λ 1 λ Professor David Attwood Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007 Exit slit 1 ∆λ N λ θ 1 γ N Ch05_F13_14VG.ai
© Copyright 2025 Paperzz