New Developments in Second Generation 193 nm Immersion Fluids For Lithography with 1.5 Numerical Aperture S. Peng, R. H. French, W. Qiu, R. C. Wheland, M. K. Crawford, M. F. Lemon, M. K. Yang DuPont Co. Central Research, E356-384, Experimental Station, Wilmington DE 19880-0356 2 Immersion Lithography Roadmap Immersion Fluid A/cm < 0.15 Projection Lens MITLL Photoresist Coated Silicon Wafer 3 Generations Of Immer. Fluids 1st Gen = Water • n193 = 1.436: λeff = 135 nm 2nd Generation IF • n193 > 1.65: λeff = 117 nm 3rd Generation IF • n193 > 1.9: λeff = 102 nm 1st Year 2001 2004 2006-8 2009-11 2011 2011 FS hp nm 130 90 65 - 45 38 32 32 λ nm 248 193 Dry 193i H2O 193i Gen2 EUV 13.4 193i Gen3 index 1 1 1.436 1.65 1 1.9 NA 0.75 0.85 0.93 – 1.3 1.5 0.3 1.8 k1 0.39 0.40 0.31 0.30 0.72 0.30 Immersion Fluid Index Determines Lens Performance! 2005/09/30 Roger H. French © 2005 3 Critical Issues For Post Water Immersion Lithography Need High Index Throughout the Imaging Stack1 High Index Last Lens Element • To Avoid Curved Last Lens Element • And The Tight IF Abs. and dn/dT Spec Immersion Fluids • 2nd Generation (n>1.65) • For 38 nm hp And Below • Low Absorbance, High Index • Radiation Durable • Process Compatible • 3rd Generation (n>1.9) • For 32 nm hp And Below Wafer Materials • High Index Topcoats • High Index Resists 1. R. H. French, H. Sewell, et al., JM3, 4(3), 031103, Jul–Sep 2005. 2005/09/30 Roger H. French © 2005 4 Immersion Fluid Property Requirements1 Three Candidate Immersion Fluids • IF131, IF132 and IF169 1. R. H. French, H. Sewell, et al., JM3, 4(3), 031103, Jul–Sep 2005. 2005/09/30 Roger H. French © 2005 5 Outline Candidate 2nd Gen. Immersion Fluids Fluid Refractive Index • Fluid dn/dT Fluid Optical Absorbance/cm • Best Absorbance To Date • Environmental Effects: Oxygen Candidate Immersion Fluid 193 nm Index dn/dT (ppm/K) Best 193 nm Abs/cm Water1 1.436 -100 ppm/K 0.01/cm IF131 1.6418 -155 ppm/K 0.169/cm IF132 1.6468 -145 ppm/K 0.047/cm IF169 1.6524 -145 ppm/K 0.082/cm Imaging Performance Additional Fluid Properties Preliminary Radiation Durability Results Conclusion 2005/09/30 Roger H. French © 2005 6 Index Of Refraction By Minimum Deviation The fluid refractive index, nfluid(λ) • is given by Prism Minimum Deviation Angle Experiment ⎡α + δ (λ ) ⎤ sin ⎢ 2 ⎥⎦ n fluid (λ ) = ⎣ ngas (λ ) ⎛α ⎞ sin⎜ ⎟ ⎝2⎠ • where α = prism apex angle • δ(λ) = measured minimum deviation angle • ngas(λ) = index of the N2 ambient • Reproducibility ~ 5 x 10-4 Measure deflection angle through liquid-filled prism. Developed With NIST & Woollam For Current dn/dT Measurements • Measure On Two Instruments • VUV-Vase Temperature = ~32oC • DUV-Vase Temperature = ~22oC R. H. French, et. al.SPIE 5377-173, (2004), R. A. Synowicki, et. al. Journal of Vacuum Science And Technology B, 22, 6, 3450, (2004). 2005/09/30 Roger H. French © 2005 7 IF132: 2nd Gen. IF: Index of Refraction 1.7 • IF132 To Water n(d-line) • Increased To 1.483 Dispersion Δn • Increased To 0.164 n(193 nm) = 1.647 Index of Refraction:n Compare 1.65 IF132: n(193 nm)=1.647 1.6 IF132: Δ n = 0.164 Δn ≡ n(193 nm) − nd (589.3 nm) 1.55 n(d-line) = 1.483 1.5 1.45 Water: n(193 nm)=1.437 1.4 Water: Δn = 0.103 1.35 1.3 190 n(d-line) = 1.334 240 290 340 390 440 490 540 Wavelength (nm) Define Dispersion Δn 2005/09/30 Roger H. French © 2005 Δn ≡ n(193 nm) − nd (589.3 nm) n193nm = nd + Δn 590 8 dn/dT From Spectral Indices At Two Temperatures IF108-12804 Water (dn/dT= - 108ppm/K) IF131-11909 (dn/dT = -155ppm/K) 1.44 n (21C) 1.42 n (33C) 1.4 1.38 1.36 1.34 1.32 190 290 390 490 Wavelength (nm) Index of refraction "n" Index of refraction "n" 1.46 590 2005/09/30 Roger H. French © 2005 index (23oC) index (34oC) 290 390 490 Wavelength (nm) n (22 290 390 490 Wavelength (nm) 590 IF169-12722 (dn/dT = -145 ppm/K) 590 Index of refraction "n" Index of refraction "n" IF32-12790 (dn/dT = -145 ppm/K) 1.66 1.64 1.62 1.6 1.58 1.56 1.54 1.52 1.5 1.48 1.46 190 1.66 1.64 1.62 1.6 1.58 1.56 1.54 1.52 1.5 1.48 1.46 190 1.68 1.66 1.64 1.62 1.6 1.58 1.56 1.54 1.52 1.5 1.48 1.46 190 n (21C) n (32C) 290 390 490 Wavelength (nm) 590 9 dn/dT Results Low dn/dT Needed To Minimize Imaging Artifacts In Stepper Dispersion Δn = n193 – nd Candidate Immersion Fluid 193 nm Index Water (NIST) 1.4367 Water 1.4366 0.103 -108 ppm/K IF131 1.6418 0.167 -155 ppm/K IF132 1.6468 0.164 -145 ppm/K IF169 1.6524 0.164 -145 ppm/K IF175 1.6640 0.166 dn/dT ppm/K -100 ppm/K Compare Water Results Using Our Vase Prism • To NIST • Confirm These Results With John Burnett, Simon Kaplan Of NIST Our Fluids Have dn/dT Below -250 ppm/K Specification 2005/09/30 Roger H. French © 2005 10 Long Path Length Absorbance Measurements Relative Transmission Measurements log10 (T1 ) − log10 (T2 ) A / cm = t 2 − t1 For Accurate Absorbance/cm Values • Three To FivePath Lengths • Calculate Abs. And Std. Dev. • Statistical Analysis of Reproducibility Tn (λ ) = T0 (λ )e −α ( λ ) t n 10cm Path Length Abs. Cell • For Very Low Absorbance Fluids 2005/09/30 Roger H. French © 2005 11 Immersion Fluid Optical Absorbance: Best To Date IF131: 0.17/cm .4 .1 IF131-11319 Abs @193 nm = 0.17/cm +/- 0.016 0 180 200 220 240 260 280 Wavelength (nm) IF169: 0.091/cm .3 .2 IF132-12790 Abs @193 nm = 0.072+/-0.004/cm IF132-12387 Abs @193 nm = 0.064+/-0.01/cm IF132-12238 Abs @193 nm = 0.047+/-0.005/cm .1 .3 0 180 193 nm Absorbance per cm, base 10 (A/cm) .4 IF132: 0.047/cm 193 nm .2 Absorbance per cm, base 10 (A/cm) .3 193 nm Absorbance per cm, base 10 (A/cm) .4 .2 200 220 240 Wavelength (nm) IF169-12270 Abs @193 nm = 0.091+/-0.012/cm .1 Low Absorbance Immersion Fluids • Reproducible Results 0 180 200 220 240 Wavelength (nm) 2005/09/30 Roger H. French © 2005 260 280 260 280 12 Urbach Edge Positions Extrinsic Absorptions • Typically Have =>Negative Rad. Of Curvature Intrinsic Absorption Edge • Has An Exponential Shape W Urbach Edge Analysis • Fits This Exp. Edge Shape Position Of Abs. Edge • Water UEP = 185.2 nm1 • IF131: UEP = 190.2 nm • IF169: UEP = 186.5 nm • IF132: UEP = 186.2 nm Fluids Meet FLE Abs. Spec. • Close To Meeting CLE Abs. Spec. 193 nm E − E0 Absorbance per cm, base 10 (A/cm) α (E) = e − .4 Urbach Edge Position:cm IF131: UEP = 190.2 IF169: UEP = 186.5 IF132: UEP = 186.2 .3 .2 FLE Abs. Spec .1 CLE Abs. Spec 0 186 1. R. H. French, H. Sewell, et al., JM3, 4(3), 031103, Jul–Sep 2005. 2005/09/30 Roger H. French © 2005 190 194 198 202 206 Wavelength (nm) 210 214 13 Reversible Effects Of Environmental Oxygen 2 Oxygen Exposure Experiment • Initial IF Abs = 0.12/cm 100 1.8 90 1.6 80 • 1 ppm O2 1.4 • Sparge With Nitrogen • IF Abs. Drops to 0.2/cm IF Abs. Increases With O2 This Abs. Increase Is Reversible • By Sparging With Nitrogen 193 nm Abs./cm • 86 ppm O2 193nm A/cm O2 ppmw 1.2 60 1 50 0.8 40 0.6 30 0.4 20 0.2 10 0 0 Initital IF 2005/09/30 Roger H. French © 2005 70 Air Expose Sparge 1 Sparge 2 O2 ppmw • Expose To Air • IF Abs. Increases to 1.88 14 Imaging 32 nm L/S with 2nd Gen Fluids1 Two Beam Interference Lithography • Version 1 & 2 Imagers • 193 nm Excimer Laser • 3 mm Thick Immersion Fluid Using Gen 2 Immersion Fluids Version 1 Imager With H. Sewell, D. McCafferty, L. Markoya, Wilton 1. R. H. French, H. Sewell, et al., JM3, 4(3), 031103, Jul–Sep 2005. 2005/09/30 Roger H. French © 2005 Version 2 Imager 15 32nm Imaging with IF131 & IF132 High-n Immersion Fluids 32nm Lines And Spaces: Pitch 64nm IF131 IF132 Using ASML Version 1 Interference Imager Corresponding To • NA = 1.5 • k1 = 0.25 With H. Sewell, D. McCafferty, ASML Wilton R. H. French et al., JM3, 4(3), 031103, Jul–Sep 2005. 2005/09/30 Roger H. French © 2005 16 IF169 Imaging Of 32 nm L/S Imaging With Our Third Immersion Fluid 32 nm L/S • Using IF169 Immersion Fluid • Commercial 193 nm Resist and Topcoat • On ASML Version 1 Interference Imager With H. Sewell, D. McCafferty, ASML Wilton 2005/09/30 Roger H. French © 2005 17 32 nm L/S Using IF132 On The ASML Version 2 Imager Second Tool Imaging 32 nm 1:1 • With IF132 With H. Sewell, D. McCafferty, ASML Wilton 2005/09/30 Roger H. French © 2005 18 Additional Fluid Properties Rheology And Viscosity • Comparable To Water Surface Tension and Contact Angles1 • Lower Than Water • On Topcoats: • Compare 90-120o For Water • To 50-66o For IF132 Fluid-Resist Interactions2 • Beginning Studies Of Linewidth Uniformity and CD Variation • Using 193 nm Dry Lithography • Post Exposure Soak Of Wafer Before Develop • Report On Results At SPIE06 1. R. H. French et al., JM3, 4(3), 031103, Jul–Sep 2005. 2. With ASML 2005/09/30 Roger H. French © 2005 19 193 nm Radiation Durability: IF131 How Does Abs./cm Change Over Time • Upon IF Irradiation IF131: Preliminary Rad. Durability Test Use A Flowing IF System 1 • With Repeated Uses Of The Fluid • With In-Situ 193 nm Ratiometry • Of Stepper Exposure • At Standard Flow Rates IF131: 193 nm Abs./cm Post Before Irradiation Irradiation: Clean Up 0.25 0.26 193 nm Optical Absorbance • Does Not Grow Dramatically • Can Be Remediated • Original Fluid Properties Achieved More Results At SPIE06 2005/09/30 Roger H. French © 2005 In Situ Ratiometry: Abs/cm Comparable To 12 Hour Lifetime 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 Time (Arb. Units) With J. Sedlacek, V. Liberman, R. Kunz & M. Rothschild, MIT-LL 2 20 193 nm Radiation Durability: IF132 IF132 Shows IF132: Preliminary Rad. Durability Test 0.6 Irradiation Induced Absorbance 0.5 • Can Be Remediated IF132: 193 nm Abs./cm Post Before Irradiation Irradiation: Clean Up 0.09 0.09 In Situ Ratiometry: Abs/cm • Lower Induced Absorbance • Fluid Had Lower Initial Absorbance 0.4 0.3 0.2 0.1 Initial Results Promising • More Experiments In Progress • More Results At SPIE06 0 0 1 2 3 4 Time (Arb. Units) With J. Sedlacek, V. Liberman, R. Kunz & M. Rothschild, MIT-LL 2005/09/30 Roger H. French © 2005 5 21 Effect of Fluid Index On Effective Wavelength Effective Lithography Wavelength • Determined By Litho Wavelength & Immersion Fluid Index of Refraction Immer. Fluid Water IF131 IF132 IF133 193 nm Index 1.436 1.6418 1.6468 1.6524 λeffective λ eff ≈ λlitho n IF 134.7 nm 117.8 nm 117.4 nm 117.0 nm Maximum Wet Numerical Aperture = 1.54 • Using These 2nd Gen. Immersion Fluids • Assuming A Dry NA Of 0.93 Minimum Feature Size Half Pitches • k1= 0.30 => • k1= 0.28 => • k1= 0.27 => • k1= 0.25 => 2005/09/30 Roger H. French © 2005 37.7 nm 1:1 Lines/Spaces 35.2 nm 1:1 Lines/Spaces 33.9 nm 1:1 Lines/Spaces 31.4 nm 1:1 Lines/Spaces 22 Conclusions 2nd Generation 193 nm Immersion Fluids Candidate Immersion Fluid 193 nm Index (ppm/K) Best 193 nm Abs/cm IF131 1.6418 -155 ppm/K 0.169/cm IF132 1.6468 -145 ppm/K 0.047/cm IF169 1.6524 -145 ppm/K 0.082/cm dn/dT These 2nd Gen. Fluids Meet Most Stated Requirements • 193 nm Index of Refraction • Temperature Dependence Of the Index: dn/dT • Optical Absorbance For Flat Last Lens Element • Close To Curved Lens Element Requirement Interference Imaging Of 32 nm 1:1 Lines And Spaces • Demonstrated With All Three Fluids • Using Two Different Imagers Preliminary Radiation Durability Results • Tested Over 12 Hour Equivalent Stepper Lifetime • With Ability To Remediate The 193 nm Induced Absorption These 2nd Gen. Immersion Fluids Enable • 38 nm hp Imaging with k1=0.3 • And 34 nm hp with k1=0.27 2005/09/30 Roger H. French © 2005 23 IF175: Highest Index Candidate IF IF175: n(193 nm)=1.664 Compare 1.66 n(d-line) • Increased To 1.498 Dispersion Δn • Increased To 0.166 n(193 nm) = 1.664 Index of Refraction: n • IF175 To Water 1.61 IF175: Δ n = 0.166 1.56 1.51 1.498 = n(d-line) 1.46 n(193 nm)=1.437 1.41 Water: Δ n = 0.103 1.36 1.31 190 1.334 = n(d-line) 290 390 Wavelength (nm) 2005/09/30 Roger H. French © 2005 490 590
© Copyright 2025 Paperzz