In[1]:= No = SqrtB8 a32 Π F 2 2 u = No ã- a x IntegrateAu2 x2 , 8x, 0, ¥<, Assumptions ® Re@aD > 0E 2 234 Out[1]= Π14 2 234 Out[2]= Out[3]= In[4]:= a32 a32 ã-a x 2 Π14 1 IntegrateA- x2 u HH1 xL D@D@x u, xD, xD L 2, 8x, 0, ¥<, Assumptions ® Re@aD > 0E 3a Out[4]= 2 In[5]:= kin = IntegrateAx2 D@u, xD2 2, 8x, 0, ¥<, Assumptions ® Re@aD > 0E 3a Out[5]= 2 In[7]:= Out[7]= In[6]:= Z=2 2 Upot = IntegrateAx2 u2 H- Z xL, 8x, 0, ¥<, Assumptions ® Re@aD > 0E 2 Out[6]= -2 a Z Π In[8]:= ene = kin + Upot 3a 2 In[9]:= 2 -4 Out[8]= a Π Plot@8kin, Upot<, 8a, 0.8, 1.6<D 2 1 1.0 Out[9]= -1 -2 -3 -4 1.2 1.4 1.6 2 variat_gaus.nb In[10]:= Plot@ene, 8a, 0.8, 1.6<D -1.64 -1.65 -1.66 Out[10]= -1.67 -1.68 1.0 In[11]:= Solve@D@ene, aD 0, aD Out[11]= ::a ® 32 >> 9Π 32 In[12]:= soluz = 9Π 32 Out[12]= 9Π 1.2 1.4 1.6 variat_gaus.nb In[13]:= Π No = SqrtB8 soluz32 F 2 um = No ã- soluz x 32 2 2 3 Out[13]= 3Π 32 x2 32 2 3 - ã 9Π Out[14]= 3Π 23 In[15]:= PlotB:um, Sqrt@4 ΠD ã-2 x >, 8x, 0, 2<F Π 5 4 3 2 1 0.5 In[16]:= 1.0 1.5 2.0 kiny = IntegrateA- x2 um HH1 xL D@D@x um, xD, xD L 2, 8x, 0, y<, Assumptions ® Re@aD > 0E 64 y2 - 16 16 ã 9Π 8y y I- 27 Π + 128 y2 M + 81 Π2 ErfB 3 Out[16]= 243 Π3 Π F 3 4 variat_gaus.nb In[17]:= upoty = IntegrateAx2 um2 H- 2 xL , 8x, 0, y<, Assumptions ® Re@aD > 0E 64 y2 - 32 1 - ã Out[17]= 9Π 3Π Plot@8kiny, upoty<, 8y, 0, 3<D 1 0.5 1.0 1.5 2.0 2.5 3.0 -1 -2 -3 23 In[18]:= ue = Sqrt@4 ΠD ã-2 x Π 2 ã-2 x Out[18]= 4 In[19]:= kinye = IntegrateA- x2 ue HH1 xL D@D@x ue, xD, xD L 2, 8x, 0, y<, Assumptions ® Re@aD > 0E Out[19]= 2 + ã-4 y H- 2 + 8 y H- 1 + 2 yLL variat_gaus.nb In[20]:= upotye = IntegrateAx2 ue2 H- 2 xL , 8x, 0, y<, Assumptions ® Re@aD > 0E Out[20]= - 4 I1 - ã-4 y H1 + 4 yLM In[38]:= Plot@8kiny, kinye, kiny + upoty, kinye + upotye, upoty, upotye<, 8y, 0, 2<D 2 1 0.5 1.0 Out[38]= -1 -2 -3 -4 Plot@8kiny - kinye, upoty - upotye<, 8y, 0, 3<D 0.5 0.5 -0.5 -1.0 1.0 1.5 2.0 2.5 3.0 1.5 5
© Copyright 2026 Paperzz