University of Pennsylvania Math 103 Spring 2012 Final Exam Donagi and Rimmer Answers provided on the last page 1. Suppose that f and g are integrable and that 2 5 5 1 1 1 ∫ f ( x ) dx = −4, ∫ f ( x ) dx = 6, ∫ g ( x ) dx = 8. Find I) II) III) 1 5 5 ∫ g ( x ) dx ∫ f ( x ) dx ∫ 4 f ( x ) − g ( x ) dx 5 2 1 2. Archimedes (287-212 B.C.), inventor, military engineer, physicist, and the greatest mathematician of classical times in the Western world, discovered that area under a parabolic arch is two-thirds the base times the height. Let h = height and b = base Use calculus to find the area and verify Archimedes’ discovery for the parabola 4h y = h − 2 x2 b whose graph is given to the right. given that h = 8 and b = 3. Math 103 Final Exam 3. Let e y= x2 ∫ 0 1 dt t Spring 2102 A) e E) 2e 2 B) e 2 F) 4e 2 C) e 4 D) 2e G) 2 H) 4 Find y′ ( 2 ) . 4. Evaluate 4 ∫ 0 6x 2 1 2 B) 1 C) 2 D) 4 A) dx x +9 5. Find the area of the shaded region 13 4 10 B) 3 16 C) 5 8 D) 3 A) y=2 y=x x2 y= 8 E) 6 F) 8 G) 12 H) 16 11 4 14 F) 5 E) G) 3 H) 19 6 Math 103 Final Exam Spring 2102 6. For what values of a, m and b does the function 3, x=0 2 f ( x ) = − x + 3 x + a, 0 < x < 1 mx + b, 1≤ x ≤ 2 Satisfy the hypotheses of the Mean Value Theorem on the interval [ 0, 2] ? 7. Suppose that f ′ ( x ) = 2 x for all x and that f ( −2 ) = 3 . Find f ( 2 ) . A) B) C) D) −2 −1 0 1 E) F) G) H) 2 3 4 5 8. Let x2 − 3 f ( x) = . x−2 I) Find the interval(s) where the functions is increasing and where the function is decreasing. II) Find the critical points of f ( x ) , if any, identify whether these lead to local maximum values, local minimum values, or neither. III) Find the interval(s) where the function is concave up and where the function is concave down. IV) Find the inflection point(s) of f ( x ) , if any. V) Sketch the graph of f ( x ) . Take into account the domain, symmetry, intercepts, asymptotes. Math 103 Final Exam 9. Evaluate the limit Spring 2102 1 2 3 B) 4 1 C) 4 2 D) 3 E) 0 A) x −x e − e − 2x x →0 x − sin ( x ) lim F) 1 G) 2 H) 3 10. A right triangle whose hypotenuse is 3 m long is revolved about one of its legs to generate a right circular cone. Find the radius, height, and volume of the cone of greatest volume that can be made this way. 11. Let A) 4 y = (1 + cos 2t ) π . 4 Find y′ −4 1 3 2 C) 3 1 D) 2 B) E) 8 F) 2 1 4 1 H) 8 G) Math 103 Final Exam Spring 2102 12. Find the equation of the tangent line to the curve 6 x 2 + 3 xy + 2 y 2 + 17 y − 6 = 0 at ( −1, 0 ) . 13. Let y= A) ln x x Find y′ 1 1 x+ 7 7 3 3 B) y = x + 7 7 5 5 C) y = x + 7 7 −1 1 D) y = x− 7 7 ( e ). 14. Let y = ln ( arctan x ) Find y′ (1) . 2 2 x+ 7 7 4 4 F) y = x + 7 7 6 6 G) y = x + 7 7 −3 3 H) y = x− 7 7 A) y = 1 e2 1 2e e C) 2 B) E) y = E) e 8 e 4 2 G) e F) D) 1 2 H) 0 A) 1 2 E) 1 B) 3 2 C) π D) π 2 F) G) H) 4 π 3 π 2 π Math 103 Final Exam Spring 2102 15. Charlotte flies a kite at a height of 300 ft, the wind carries the kite horizontally away from her at a rate of 25 ft./sec. How fast must she let out the string when the length of the string is 500 ft.? 16. Estimate the volume of material in a cylindrical shell with length 30 in., radius 6in., and shell thickness 0.5 in. using differentials. 17. Find the slope of the tangent line to the function y = 5 − x 2 at the point (1, 4 ) using the definition of the derivative. 18. Let f ( x ) = 19 − x , x0 = 10, and ε = 1. Find L = lim f ( x ) . Then find a number δ > 0 such that x → x0 for all x 0 < x − x0 < δ ⇒ f ( x) − L < ε 19. For what value of a is x 2 − 1, x < 3 f ( x) = 2ax, x ≥ 3 continuous at every x ? 20. Evaluate lim x →∞ ( x 2 + 3x − x 2 − 2 x ) Math 103 Final Exam Spring 2102 Answers: 1. I) -8 II) 10 9. G III) 16 2. 16 10. h = 1, r = 2, V = 3. F 11. E 4. G 12. G 5. B 13. B 6. a = 3, m = 1, b = 4 14. H 7. F 8. I) Increasing: ( −∞,1) ∪ ( 3, ∞ ) Decreasing: (1,3) II) Critical points: x = 1 leads to a local maximum value, x = 3 leads to a local minimum value III) Concave Up: ( 2, ∞ ) Concave Down: ( −∞, 2 ) IV) No inflection points V) 15. 20 ft/s 16. 180π in 3 17. m = −2 18. L = 3, δ = 5 19. a = 20. Domain: ( −∞, 2 ) ∪ ( 2, ∞ ) , No Symmetry, Vertical asymptote x = 2, Slant asymptote y = x + 2 x − int . ( 3 3, 0 , − 3, 0 , y − int. 0, 2 )( ) 5 2 4 3 2π 3
© Copyright 2026 Paperzz