CHAPTER 5 REVIEW SOLUTIONS – SL 1. (a) f′(x) = –sin 2x × 2 (= –2 sin 2x) Note: Award A1 for 2, A1 for sin 2x. 1 3 (b) g′(x) = 3 × 3x 5 3x 5 1 Note: Award A1 for 3, A1 for . 3x 5 (c) evidence of using product rule 3 h′(x) = (cos 2x) + ln(3x – 5)(–2 sin 2x) 3x 5 A1A1 N2 A1A1 N2 (M1) A1 N2 [6] 2. evidence of choosing the product rule f′(x) = ex × (–sin x) + cos x × ex (= ex cos x – ex sin x) substituting π e.g. f′(π) = eπ cos π – eπ sin π, eπ(–1 – 0), –eπ taking negative reciprocal 1 e.g. f ( π) 1 gradient is π e (M1) A1A1 (M1) (M1) A1 N3 [6] 3. (a) (i) –3e–3x π cos x 3 evidence of choosing product rule e.g. uv′ + vu′ correct expression π π e.g. –3e–3x sin x e 3 x cos x 3 3 π complete correct substitution of x = 3 (ii) (b) e.g. 3e 3 π 3 π h′ = e–π 3 A1 N1 A1 N1 (M1) A1 (A1) π π π 3 π π sin e 3 cos 3 3 3 3 A1 N3 [6] IB Questionbank Maths SL 1 4. (a) (b) (c) dy 3 cos 3x dx dy x accept x sec2 x + tan x tan x 2 dx cos x METHOD 1 Evidence of using the quotient rule 1 x ln x dy x dx x2 dy 1 ln x dx x2 METHOD 2 y = x1 In x Evidence of using the product rule dy 1 x 1 ln x 1 x 2 dx x dy 1 ln x dx x 2 x 2 A1 N1 A1A1 N2 (M1) A1A1 N3 (M1) A1A1 N3 [6] 5. (a) (b) (c) f (x) = 5e5x g (x) = 2 cos 2x h = fg + gf ′ = e5x (2 cos 2x) + sin 2x (5e5x) A1A1 A1A1 (M1) A1 N2 N2 N2 [6] 6. METHOD 1 (quotient) derivative of numerator is 6 derivative of denominator is –sin x attempt to substitute into quotient rule correct substitution cos x 6 6 x sin x e.g. cos x 2 substituting x = 0 cos 06 6 0 sin 0 e.g cos 02 h′(0) = 6 (A1) (A1) (M1) A1 (A1) A1 N2 [6] METHOD 2 (product) h(x) = 6x × (cos x)–1 derivative of 6x is 6 derivative of (cos x)–1 is (–(cos x)–2 (–sin x)) attempt to substitute into product rule correct substitution e.g. (6x) (–(cos x)–2 (–sin x)) + (6) (cos x)–1 substituting x = 0 e.g. (6× 0) (–(cos 0)–2 (–sin 0)) + (6) (cos 0)–1 h′(0) = 6 (A1) (A1) (M1) A1 (A1) A1 N2 [6] IB Questionbank Maths SL 2 7. (a) (b) evidence of choosing the product rule e.g. uv′ + vu′ correct derivatives cos x, 2 g′(x) = 2 x cos x + 2 sin x attempt to substitute into gradient function e.g. g′(π) correct substitution e.g. 2π cos π + 2 sin π gradient = –2π (M1) (A1)(A1) A1 (M1) (A1) A1 N4 N2 [7] 8. (a) evidence of choosing the product rule e.g. x × (– sin x) + 1 × cos x f′(x) = cos x – x sin x (M1) A1A1 N3 A1A1A1A1 N4 (b) Note: Award A1 for correct domain, 0 ≤ x ≤ 6 with endpoints in circles, A1 for approximately correct shape, A1 for local minimum in circle, A1 for local maximum in circle. [7] IB Questionbank Maths SL 3 9. (a) (b) d d sin x cos x, cos x sin x (seen anywhere) dx dx evidence of using the quotient rule correct substitution sin x( sin x) cos x(cos x) sin 2 x cos 2 x , e.g. sin 2 x sin 2 x 2 2 (sin x cos x) f′(x) = sin 2 x 1 f′(x) = sin 2 x METHOD 1 appropriate approach e.g. f′(x) = –(sin x)–2 2 cos x f″(x) = 2(sin–3 x)(cos x) sin 3 x Note: Award A1 for 2 sin–3 x, A1 for cos x. METHOD 2 derivative of sin2 x = 2 sin x cos x (seen anywhere) evidence of choosing quotient rule sin 2 x 0 (1)2 sin x cos x e.g. u = –1,v = sin2 x, f″(x) = (sin 2 x) 2 (A1)(A1) M1 A1 A1 AG (M1) A1A1 (d) N3 A1 (M1) 2 sin x cos x 2 cos x (sin 2 x) 2 sin 3 x π evidence of substituting 2 π 2 cos 1 2 e.g. , π π sin 2 sin 3 2 2 p = –1, q = 0 second derivative is zero, second derivative changes sign f″(x) = (c) N0 A1 N3 M1 A1A1 N1N1 R1R1 N2 [13] 10. (a) METHOD 1 evidence of recognizing the amplitude is the radius e.g. amplitude is half the diameter 8 a 2 a=4 METHOD 2 evidence of recognizing the maximum height e.g. h = 6, a sin bt + 2 = 6 correct reasoning e.g. a sin bt = 4 and sin bt has amplitude of 1 a=4 IB Questionbank Maths SL (M1) A1 AG N0 2 N0 2 (M1) A1 AG 4 (b) (c) (d) METHOD 1 period = 30 2 b 30 b 15 METHOD 2 correct equation e.g. 2 = 4 sin 30b + 2, sin 30b = 0 30b = 2π b 15 recognizing h′(t) = –0.5 (seen anywhere) attempting to solve e.g. sketch of h′, finding h′ correct work involving h′ 4π π cos t e.g. sketch of h′ showing intersection, –0.5 = 15 15 t = 10.6, t = 19.4 METHOD 1 valid reasoning for their conclusion (seen anywhere) e.g. h(t) < 0 so underwater; h(t) > 0 so not underwater evidence of substituting into h 19.4π 2 e.g. h(19.4), 4 sin 15 correct calculation e.g. h(19.4) = –1.19 correct statement e.g. the bucket is underwater, yes METHOD 2 valid reasoning for their conclusion (seen anywhere) e.g. h(t) < 0 so underwater; h(t) > 0 so not underwater evidence of valid approach e.g. solving h(t) = 0, graph showing region below x-axis correct roots e.g. 17.5, 27.5 correct statement e.g. the bucket is underwater, yes (A1) A1 AG N0 2 N0 2 N3 6 N0 4 N0 4 (A1) A1 AG R1 (M1) A2 A1A1 R1 (M1) A1 A1 R1 (M1) A1 A1 [14] IB Questionbank Maths SL 5 11. (a) (b) (c) y = e2x cos x dy = e2x (–sin x) + cos x (2e2x) dx = e2x (2 cos x – sin x) d2 y = 2e2x (2 cos x – sin x) + e2x (–2 sin x – cos x) 2 dx = e2x (4 cos x – 2 sin x – 2 sin x – cos x) = e2x (3 cos x – 4 sin x) d2 y (i) At P, =0 dx 2 3 cos x = 4 sin x 3 tan x = 4 3 At P, x = a, ie tan a = 4 (ii) The gradient at any point e2x (2 cos x – sin x) Therefore, the gradient at P = e2a (2 cos a – sin a) 3 4 3 When tan a = , cos a = , sin a = 4 5 5 (by drawing a right triangle, or by calculator) 8 3 Therefore, the gradient at P = e2a 5 5 2a =e (A1)(M1) (AG) 2 (A1)(A1) (A1) (A1) 4 (R1) (M1) (A1) (M1) (A1)(A1) (A1) (A1) 8 [14] 12. (a) (b) evidence of finding height, h h e.g. sin θ = , 2 sin θ 2 evidence of finding base of triangle, b b e.g. cos θ = , 2 cos θ 2 attempt to substitute valid values into a formula for the area of the window e.g. two triangles plus rectangle, trapezium area formula correct expression (must be in terms of θ) 1 1 e.g. 2 2 cos 2 sin 2 2 sin , 2 sin 2 2 4 cos 2 2 attempt to replace 2sinθ cosθ by sin 2θ e.g. 4 sin θ + 2(2 sin θ cos θ) y = 4 sin θ + 2 sin 2θ correct equation e.g. y = 5, 4 sin θ + 2 sin 2θ = 5 evidence of attempt to solve e.g. a sketch, 4 sin θ + 2 sin θ – 5 = 0 θ = 0.856 (49.0º), θ = 1.25 (71.4º) IB Questionbank Maths SL (A1) (A1) (M1) A1 M1 AG A1 N0 5 N3 4 (M1) A1A1 6 (c) recognition that lower area value occurs at θ = 2 e.g. 4 sin 2 sin 2 , draw square 2 2 A=4 recognition that maximum value of y is needed A = 5.19615… 4 < A < 5.20 (accept 4 < A < 5.19) finding value of area at θ = 2 (M1) (M1) (A1) (M1) (A1) A2 N5 7 [16] IB Questionbank Maths SL 7
© Copyright 2025 Paperzz