Standard Form Linear Programs max cx s.t. Ax = b x 0 symmetric form max s.t. ⇥ 3 2.5 2 ⇤ x max 3 2 4.44 0 6 0 6 6.67 7 6 7x 6 4 4 4 2.86 5 3 6 x standard form 3 100 100 7 7 100 5 100 s.t. ⇥ 3 2.5 0 0 0 0 2 4.44 0 1 0 6 0 6.67 0 1 6 4 4 2.86 0 0 3 6 0 0 x 0 ⇤ 0 0 1 0 x 3 2 0 6 0 7 7x = 6 4 0 5 1 3 100 100 7 7 100 5 100 “slack variables” 0 bly em ass truck assembly e gin en x1 (thousands of cars) basic feasible solutions car assembly me tal sta m pi n g x2 (thousands of trucks) e62: lecture 8 2 6 6 6 6 6 6 4 0 0 100 100 100 100 1 3 2 7 7 7 7 7 7 5 6 6 6 6 6 6 4 22.5 0 0 100 10 32.5 3 7 7 7 7 7 7 5 2 6 6 6 6 6 6 4 22.5 3.5 0 76.6 0 11.5 3 2 7 7 7 7 7 7 5 “nonbasic variables” 6 6 6 6 6 6 4 20.4 6.5 9.4 56.6 0 0 3 7 7 7 7 7 7 5 20161020 Identification of a BFS max cx s.t. Ax = b } M constraints x 0 } N constraints • BFS = intersection of N linearly independent constraint boundaries select N-M nonbasic variables B. N linearly independent constraints? no vertex no vertex • vertex feasible? compute BS Solving for a BFS given B Ax = b xB = 0 e62: lecture 8 2 4.44 6 0 6 4 4 3 0 6.67 2.86 6 2 1 0 0 0 0 1 0 0 0 0 1 0 3 2 0 6 0 7 7x = 6 4 0 5 1 x3 = x5 3 100 100 7 7 100 5 100 0 0 2 6 6 6 6 6 6 4 22.5 3.5 0 76.6 0 11.5 3 7 7 7 7 7 7 5 20161020 Edges • Def. adjacent vertices: share N-1 constraint boundaries An edge is a part of the line that satisfies these constraints • • • Swap one constraint to switch between adjacent vertices In a standard form LP, swap one nonbasic variable 2 6 6 6 6 6 6 4 e62: lecture 8 22.5 3.5 0 76.6 0 11.5 3 7 7 7 7 7 7 5 adjacent 3 2 6 6 6 6 6 6 4 20.4 6.5 9.4 56.6 0 0 3 7 7 7 7 7 7 5 20161020 Traversing an Edge 2 4.44 6 0 6 4 4 3 2 6 6 6 6 6 6 4 e62: lecture 8 22.5 3.5 0 76.6 0 11.5 0 6.67 2.86 6 1 0 0 0 0 1 0 0 0 0 1 0 3 2 0 6 0 7 7x = 6 4 0 5 1 x3 = x5 2 3 6 6 6 6 6 6 4 7 7 7 7 7 7 5 4 3 100 100 7 7 100 5 100 0 20.4 6.5 9.4 56.6 0 0 3 7 7 7 7 7 7 5 20161020 Reduced Profits • Def. reduced profit = objective value increase per unit nonbasic variable increase 2 4.44 6 0 6 4 4 3 0 6.67 2.86 6 1 0 0 0 0 1 0 0 0 0 1 0 3 2 0 6 0 7 7x = 6 4 0 5 1 x3 = x5 3 100 100 7 7 100 5 100 0 x3 ! x !y cx ! cy reduced profit = e62: lecture 8 5 cy cx 20161020 Algorithm and Termination compute reduced profits maximum positive? no terminate yes traverse maximizing edge • Finite time termination There are a finite number of vertices • e62: lecture 8 6 20161020 Optimality of Result convex hull of adjacent vertices e62: lecture 8 7 20161020 Degeneracy and Cycling • Def. degeneracy = when there is a zero-valued basic variable When there are more than N active constraints at a BFS BFS lies at intersection of N+1 constraint boundaries When one of the basic variables takes value 0 • • • • Def. cycling = keep swapping basic variables without changing solution • Anticycling: logic to prevent cycling e62: lecture 8 8 20161020
© Copyright 2026 Paperzz