SP212 Spring 2014 Equation Sheet, page 1 103 kilo k , Prefixes: 10−3 milli m , 106 mega M , 10−6 micro µ , 10−9 nano n , me = 9.109 × 10−31 kg , mp = 1.673 × 10−27 kg , Coulomb’s Law and Electric Charge: dq = λds , ~ ~ = FE , E q0 dq = σdA , ΦE = Gauss’ Law: Electric Potential: V = 1 4π0 ~ · dA ~, E Es = − q = CV , Capacitance: U= R q2 1 = CV 2 , 2C 2 L , A Circuits: dW , dq q = CE 1 − e−t/RC , q = q0 e−t/RC , e = 1.602 × 10−19 C µ0 = 4π × 10−7 T·m/A ≈ 1.26 × 10−6 T·m/A H i= q = ne, n = 0, ±1, ±2, ±3, .... ~ r) = dE(~ 1 dq r̂ 4π0 r2 p~ = q d~ , ~ , F~E = q E ~ · dA ~ = qenc , E 0 E= σ , 0 Z f ~ · d~s , Vf − Vi = − E ∆U , q ∂V , ∂s 1 |q1 ||q2 | , 4π0 r2 1 q r̂ , 4π0 r2 ~ , ~τ = p~ × E E= V = i Ex = − κ0 A C= , d dq i= , dt ρ − ρ0 = ρ0 α(T − T0 ) , E = 10−15 femto f ∂V , ∂x λ , 2π0 r n X n X ∂V , ∂y Ez = − σ 20 E= Vi = i=1 Ey = − Ceq = ~ U = −~ p·E n 1 X qi 4π0 ri i=1 ∂V , ∂z U= 1 q1 q2 4π0 r n Cj (parallel) , j=1 X 1 1 = (series) Ceq Cj j=1 1 u = 0 E 2 2 Current and Resistance: R=ρ ~ = E FE = dq = ρdV , ∆V = dq , r 10−12 pico p , 1015 peta P 1 eV = 1.602 × 10−19 J c = 3.00 × 108 m/s , Electric Fields: 1012 tera T , 1 = k = 8.99 × 109 N·m2 /C2 , 4π0 0 = 8.85 × 10−12 C2 /N·m2 , Constants: Z 109 giga G , Pemf = iE , Z i= ~, J~ · dA P = iV = i2 R = Req = n X j=1 CE = q0 , i = nAevd , RC = τC , q dq 0 =− e−t/RC dt RC J~ = (ne)~vd , R= V , i ~ = ρJ~ E V2 R n Rj (series) , X 1 1 = (parallel) Req Rj j=1 dq E i= = e−t/RC , dt R VC = E 1 − e−t/RC SP212 Spring 2014 Equation Sheet, page 2 Magnetic Fields: ~ ×B ~ , F~B = iL ~ , F~B = q~v × B ~ ×B ~ , dF~B = idL ~ · d~s = µ0 ienc , B B = µ0 in , Electromagnetic Oscillations: I Maxwell’s Equations: I Savg = I = θc = sin−1 Interference: λ λn = , n n2 , n1 , m=− pr = θB = tan−1 2L = m a sin(θ) = mλ, m = 1, 2, 3, ... , µ0 Lia ib 2πd µ0 iR2 2(R2 + z 2 )3/2 I dΦB ~ · d~s , E = BLv , E = E dt E 1 − e−Rt/L , τL = L/R i= R E = −N di , dt 1 , i = −ωQ sin(ωt + φ) LC I I , c ~ · d~s = − dΦB E dt pr = |m| = c= 2I , c E 1 =√ , B µ 0 0 1 I = I0 , 2 ~ ×B ~ ~= 1E S µ0 I = I0 cos2 θ n2 n1 n1 n2 n2 − n1 + = p i r 1 1 1 2 + = = , p i f r i , p Fba = ~ · d~s = µ0 id,enc + µ0 ienc B h0 h 1 d sin θ = m + λ, m = 0, 1, 2, ... 2 d sin θ = mλ, m = 0, 1, 2, ... , 1 λ 2L = m + , m = 0, 1, 2, ... , 2 n2 Diffraction: ω=√ µ0 iφ , 4πR Bloop (z) = B = Bm sin(kx−ωt) , PS , 4πr2 i = −p, Images (Mirrors and Lenses): 1 1 − r1 r2 I= dΦB , dt EL = −L I B= µ0 iN 1 , 2π r ~ · dA ~=0, B dΦE i d = 0 , dt E = Em sin(kx−ωt) , n2 sin(θ2 ) = n1 sin(θ1 ) , I ~ · dA ~ = qenc , E 0 Em Erms = √ , 2 1 2 , E cµ0 rms 1 1 1 + = = (n − 1) p i f L = µ 0 n2 A , l B2 = 2µ0 q = Q cos(ωt + φ) , ~ · d~s = µ0 0 dΦE + µ0 ienc , B dt Electromagnetic Waves: E =− ~ U = −~ µ·B µ0 i , 2πR B= Btoroid = ~ · dA ~, B 2π |q|B = 2πf = T m ~ , ~τ = µ ~ ×B µ0 id~s × r̂ , 4π r2 n = N/L , Z Induction and Inductance: ΦB = I ~ · d~s = − dΦB , L = N ΦB , E dt i 1 i = i0 e−Rt/L , UB = Li2 , uB 2 ω= ~, µ ~ = N iA ~ = dB Magnetic Fields Due to Currents: I mv 2 , r |q|vB = λ , m = 0, 1, 2, .. n2 sin θ = 1.22 λ , d θR = 1.22 λ , d d sin θ = mλ, m = 0, 1, 2, ...
© Copyright 2026 Paperzz