Standard x-ray diffraction powder patterns

AUG
1
2 n
mi
^ -r^-n
1
NBS MONOGRAPH 25-SECTION
3
fltt^^^'^
tak^Wfl^Ths
library.
Standard X-ray Diffraction
Powder Patterns
U.S.
DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
'^^
THE NATIONAL BUREAU OF STANDARDS
The National Bureau
assuring
maximum
of Standards
is
a principal focal point in the Federal
Government
for
application of the physical and engineering sciences to the advancement of
technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making
measurements consistent with those standards; determination of physical constants and prop-
development of methods for testing materials, mechanisms, and structures,
and making such tests as may be necessary, particularly for government agencies; cooperation
in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and
development of devices to serve special needs of the government; assistance to industry, business, and consumers in the development and accceptance of commercial standards and simplified
trade practice recommendations administration of programs in cooperation with United States
business groups and standards organizations for the development of international standards
of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific,
technical, and engineering information.
The scope of the Bureau's activities is suggested in
the following listing of its four Institutes and their organizational units.
erties of materials;
;
Metrology. Heat. Radiation Physics. Mechanics.
Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.
Institute for Basic
Electricity.
Materials Research. Analytical Chemistry. Polymers. Metallurgy. InorMaterials.
Reactor Radiations. Cryogenics.** Office of Standard Reference
Institute
ganic
Standards.
for
Materials.
Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space
Physics.
Technology. Textiles and Apparel Technology Center. Building
Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of
Weights and Measures. Office of Engineering Standards. Office of Industrial Services.
Institute
Research.
*NBS
for
Applied
Industrial
Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
**Located at Boulder, Colorado.
UNITED STATES DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
•
•
Luther H. Hodges, Secretary
A. V. Astin, Director
Standard X-ray Diffraction
Powder Patterns
Howard
E. Swanson, Marlene
Eloise
Cook
Morris,
H. Evans, and Linda Ulmer
National Bureau of Standards Monograph 25
— Section
Issued July 31, 1964
For
sale
by the Superintendent of Documents, U.S. Government Printing
Washington, D.C., 20402
-
Price 40 cents
Office
3
Library of Congress Catalog Card Number: 53-61386
,
Contents
Page
Introduction
Standard x-ray powder patterns:
Aluminum 3:2
Silicate
1
3Al203-2Si02
(mullite),
(NH4)2BeF4
Fluoberyllate,
NH4BF4
Lanthanum Arsenate, LaAs04 (monoclinic)
Lanthanum Niobium Titanium Oxide, LaNb-
Fluoborate,
Selenide, Sb2Se3 (orthorhombic)
7
Telluride, Sb2Te3 (trigonal)
8
Bromide
Monohydrate,
6
(mono-
AS2O3
claudetite,
9
clinic)
*Barium
BaBr2-H20
10
(orthorhombic)
Barium Stannate, BaSn03 (cubic)
Bismuth Orthophosphate, BiP04 (monoclinic)
*Bismuth Orthophosphate, BiP04 (trigonal)
*Bismuth Orthovanadate (low form), BiV04
Orthovanadate
(high
form)
11
13
BiV04
14
(monoclinic)
Bismuth
11
14
(tetragonal)
*Bismuth
(tellurobismuthite)
Telluride,
,
Bi2Te3
16
(trigonal)
Bismuth Trioxide, alpha
(bismite), Bi203 (pseudoorthorhombic)
Cadmium Perchlorate Hexahydrate Cd(C104)2-
6H2O
Sulfate,
CdS04 (orthorhombic)
Telluride,
CdTe
21
(cubic)
CeNbTiOe (orthorhombic)
*Cesium Chromate, Cs2Cr04 (orthorhombic)
Cesium Fluoride, CsF (cubic)
*Cobalt Fluosilicate Hexahydrate, CoSiF6-6H20
Perchlorate
Hexahydrate,
Sulfate,
Dysprosium
Erbium
22
24
25
26
CUSO4
(chalcocyanite),
(ortho-
Arsenate,
DyAs04
(tetragonal)
Arsenate, ErAs04 (tetragonal)
29
30
31
37
(tetragonal)
_ _
16 Hydrate,
K2Zn2Vi„028-16H20 (triclinic)
Rubidium Chromate, Rb2Cr04 (orthorhombic) .
Silver Antimony Telluride, AgSbTe2 (cubic)
Sodium Magnesium Aluminum
41
(hexag-
onal)
Potassium Perchromate, K3Cr08
Potassium Zinc Decavanadate
39
42
43
44
45
46
47
Boron, Hydroxy
NaMg3Al6B3Si6027(OH)4
(trig-
47
onal)
Trimetaphosphate,
NasPsOg
(ortho-
rhombic)
49
Sodium Trimetaphosphate
Monohydrate, Nas50
Stannous Fluoride, SnF2 (monoclinic)
Strontium 1 1 Borate, SrO-B203 (orthorhombic) .
Terbium Arsenate, TbAs04 (tetragonal)
Thallium Chromate, Tl2Cr04 (orthorhombic),. _
51
TmAs04
56
:
28
rhombic)
(orthorhombic)..
Potassium Chlorate, KCIO3 (monoclinic)
Potassium Lithium Sulfate, KLiS04
Thulium
Arsenate,
Titanium
Dioxide
(tetragonal)
brookite,
Ti02
Zinc Telluride,
53
54
54
(ortho-
rhombic)
Co(C104)2-
(hexagonal)
Copper
MgNH4P04-6H20
(struvite),
34
35
36
38
P3O9 H2O, (orthorhombic)
27
(trigonal)
6H2O
Li3P04 (orthorhombic)
Lithium Phosphate, high form, Li3P04 (orthorhombic)
Magnesium Ammonium Phosphate Hexahydrate,
Sodium
20
(fluor apatite),
Calcium Fluoride Phosphate,
CasF (PO4) 3 (hexagonal)
*Cerium Niobium Titanium Oxide, (eschynite),
*Cobalt
TiOe (monoclinic)
Lithium Phosphate, low form, (lithiophosphate)
Silicate, dravite,
17
(cubic)
19
(trigonal)
Cadmium
Cadmium
33
5
*Antimony
*Antimony
Trioxide,
32
Indium Arsenide, InAs
Ammonium
(orthorhombic).
Arsenate,
Arsenide,
3
(ortho-
rhombic)
*Arsenic
EuAs04 (tetragonal)
GaAs (cubic)
Holmium Arsenate, H0ASO4 (tetragonal)
Gallium
(orthorhombic)
Ammonium
Europium
57
ZnTe
(cubic)
Cumulative index to Circular 539, Volumes 1, 2,
3, 4, 5, 6, 7, 8, 9, and 10, and Monograph 25,
Sections 1, 2, and 3
Cumulative mineral index
58
59
64
Errata
Circular 539
Vol.
1,
Page
Swanson and Tatge, the d-values 0.8576, 0.8557,
and 0.8383 should have the following hkl values, 422, 511,
50, In the pattern of
0.8467, 0.8412,
513, 333,
and
206.
paragraph, column 1, line 3: Puma should read
This change was made in the Vol. 2 reprint.
Vol. 3, Page 54, On the line below hkl 121 insert hkl 012; on the line below hkl 200
insert hkl 031; hkl 040 should read 211; delete hkl values 230 and 410 and all
those following 421.
Vol. 5, Page 10, Column 1, bottom line, the index of refraction should read 1.710.
Page 11, In pattern of Swanson, Gilfrich, and Ugrinic, for hkl 721 d should
Vol.
2,
Page
46, Lattice constants
Pnma.
read 2.078.
Page 43, Reference No. 3: The fourth author's name should be F. E. Sennett.
Vol. 8, Page 42, Column 1: The density should be 4.697.
Page 65, TisSis should have 2 molecules per unit cell and the density 4.376.
Vol. 9, Page 6, (NH4)2PtBr6 table: Cu radiation applies to entire table.
iii
Errata
Page
Page
19, hkl
102 should be 012.
The density
47,
— C ontinu ed
of
KgZrFj should be 3.123.
Monograph 25
Sec.
1, Page 10, Lattice constants table: headings a b c should read b c a.
Page 12, The title should read: Erbium Gallium Oxide 3:5.
2, Page 1, Column 2 line 11: potassium nitroso chlororhenate should be
potassium nitroso chlororuthenate.
Page 2, In the left hand column, the sentence beginning in the seventh line
from the bottom should read: Factors for converting integrated intensities to
peak height intensities are on the left side of the chart.
Page 8, CdWOi space group should be C^h— P2/c (No. 13).
Page 11, Spectrographic analysis should read: 0.01 to 0.1 percent sodium
and ....
Page 34, The intensity of the line at (i = 4.21 should be 61. Insert the reading:
.
Sec.
M/=102,
c?
= 3.94,
1
.
.
= 2.
Page 35, Refe.'ence No. 7 should read: Helen M. Ondik, to be published
Acta Cryst.
in
Addenda
Monograph 25
Sec.
2,
Page
22, Insert this data:
d
hkl
930
965
1.
1.
10-8.2
13.5-0
14.3-3
Sec.
2,
.
.
.
Page 35, Add this data: The sample
and 2V^90°.
is
I
<1
<1
<1
<1
<1
2843
0225
9398
8408
8329
optically negative
and the
a
12.
12.
184
184
12. 181
12. 184
12. 184
indices of refraction are
N„ = 1.440,
N3= 1.458,
Ny= 1.474,
Standard X-ray Diffraction Powder Patterns
The eleven previous volumes
ment Printing OiRce, Washington
NBS
Circular 539,
in this series are available
from the Superintendent of Documents, U.S. Govern-
25, D.C., as follows:
Volume
1,
Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) 45
Volume
2,
Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) 45
Volume
3,
Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) 45
Volume
4,
Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) 45
Volume
5,
Standard X-ray Diffraction Powder Patterns (Data for 45 inorganic substances) 45
Volume
6,
Standard X-ray Diffraction Powder Patterns (Data for 44 inorganic substances) 40
cents
NBS
Circular 539,
cents
NBS
Circular 539,
cents
NBS
Circular 539,
cents
NBS
Circular 539,
cents
NBS
Circular 539,
cents
NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances) 40 cents
NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances) 45 cents
NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances) 40 cents
NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 40 substances) 40 cents
NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents
NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 37 substances) 35 cents
Send orders with remittance to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.
Those wishing to be notified of future issues should send mailing address to the Government Printing Office.
20402.
STANDARD X-RAY DIFFRACTION POWDER PATTERNS
—Data
Section 3
Howard
Marlene Cook Morris/
E. Swanson,
Eloise H. Evans,
Substances
for 51
'
and Linda Ulmer
Standard x-ray diffraction powder patterns are presented for the following fifty-one
(NH4)2BeF4; NH4BF4; Sb2Se3*; Sb2Te3*; AS2O3*,
substances: 3Al203-2Si02, (mullite)
claudetite; BaBr2-H20*; BaSn03; BiP04 (monoclinic) BiP04* (trigonal); BiV04* (tetragonal); BiVOi* (monoclinic); Bi2Te3, (tellurobismuthite) BijOs, (bismite); Cd(C104)2-6H20*;
CdS04; CdTe; Ca5F(P04)3, (fluorapatite) CeNbTiOe*, (eschynite); Cs2Cr04*; CsF; CoSiFe6H2O*; Co(C104)2-6H20*; CUSO4, (chalcocyanite) DyAsO**; ErAs04*; EuAsOi*; GaAs*;
H0ASO4*; InAs; LaAs04*; LaNbTiOe*; Li3P04, (lithiophospbate) low form; Li3P04 high
form; MgNH4P04-6H20, (struvite) KCIO3; KLiSOi*; K3Cr08*; K2Zn2Vio02s-16H20*; Eb2Cr04*; AgSbTez*; NaMg3Al6B3Si6027(OH)4*, dravite; Na3P309; Na3P309-H20; SnF2*; SrO-BaOs*;
TbAs04*; TlCr04*; TmAs04*; Ti02, brookite; and ZnTe. Twenty-one are to replace patterns
already given in the X-ray Powder Data File issued by the American Society for Testing
and Materials, and thirty patterns indicated by asterisks are for substances not previously
included.
The patterns were made with a Geiger counter x-ray diffractometer, using
samples of high purity. When possible, the d-values were assigned Miller indices determined
by comparison with calculated interplanar spacings and from space group extinctions. The
densities and lattice constants were calculated, and the refractive indices were measured
;
;
;
;
;
;
whenever
possible.
INTRODUCTION
The X-ray Powder Data File [1] ^ is a compilation
of diffraction patterns from many sources and is
used for the identification of unknown crystalline
materials by matching spacing and intensity
measurements. The National Bureau of Standards in its program ^ for
the revision and
evaluation of published x-ray data for the X-ray
Powder Data File presents data in this report
for 51
compounds. This compilation is the
thirteenth of a series of "Standard X-ray Dif-
The designation "Circular
used for the first 10 volumes has been
discontinued in favor of the new series, "Monograph 25." This compilation is the third section
of the new series Monograph 25.
Included are
patterns recommended to replace data on 26
cards now present in the File.
The other patterns
are for 30 compounds not included in the File.
fraction Patterns."*
539"
These compounds
mony
are: antimony selenide; antitelluride; arsenic oxide, claudetite; barium
bromide
monohydrate; bismuth orthophosphate
bismuth orthovanadate (tetragonal) bismuth orthovanadate (monoclinic) cadium perchlorate hexahydrate; cerium niobium titanium oxide,
eschynite; cesium chromate; cobalt fiuosilicate
(trigonal)
;
;
;
Research Associate at the National Bureau of Standards sponsored by
the Joint Committee on Chemical Analysis by Powder Diffraction Methods.
2 Figures in brackets indicate the literature references at the end of each
section of this paper.
3 This project is sponsored by the Joint Committee on Chemical Analysis
by Powder Diffraction Methods. This committee is composed of members
from the American Society for Testing and Materials, the American Crystallographic Association, and the British institute of Physics. Financial support
is also provided by the National Bureau of Standards.
< Other volumes were published as follows: Circular 539 Vol. 1 and Vol.
2,
June 1953; Vol. \ June 1964; Vol. 4, March 1955; Vol. 5, October 1955; Vol. 6,
September 1956; Vol. 7, September 1957; Vol. 8, April 1959; Vol. 9, February
1960; Vol. 10, September 1960; Monograph 25 Section 1, March 1962; and
Section 2, May 1963.
hexahydrate; cobalt perchlorate hexahydrate;
dysprosium arsenate; erbium arsenate; europium
arsenate; gallium arsenide; holmium arsenate;
lanthanum arsenate lanthanum niobium titanium
oxide; potassium lithium sulfate; potassium perchromate; potassium zinc decavanadate 16-hydrate; rubidium chromate; silver antimony telluride sodium magnesium aluminum boron hydroxy
silicate, dravite; stannous fluoride; strontium 1:1
borate; terbium arsenate; thallium chromate;
and thulium arsenate.
The experimental procedure and general plan of
this Monograph section 3 have not changed greatly
from previous publications. However, the basic
technique is discussed, in this section, with minor
;
;
changes.
Powder data cards. Under this heading are
given the Powder Data File card numbers, the
three strongest lines, and the literature references
for each card.
Cards listed through the 1962 index
to the Powder Data File are included in the table.
Additional published patterns. Literature references for patterns that have not been published as
Powder Data cards are listed.
NBS sample. Many of the samples used to
make NBS patterns were special preparations of
high purity obtained from a variety of sources or
prepared in small quantities in our laboratory by
Unless otherwise noted, the spectroJ. deGroot.
graphic analyses were done at NBS after preparation of the sample was completed.
The limit
of detection for the alkali elements was 0.05 percent for the spectrographic analysis. A microscopic inspection for phase purity was made on the
nonopaque materials during the refractive index
determination. Another check of phase purity was
1
usually provided
by
the x-ray pattern
itself,
when
was indexed by comparison with theoretical
Treating the sample by appropriate
rf-values.
it
recrystaUization, or heating in hydrothermal bombs improved the quality of most of
the patterns. The refractive index measurements
were made by grain-immersion methods in white
light, using oils standardized in sodium light, and
covering the range 1.40 to 2.00.
X-ray techniques. At least three patterns for
intensity measurements were prepared to check
Samples that gave satisfactory
reproducibility.
intensity patterns usuaUy had an average particleIn order to avoid the
size smaller than 10
[2].
orientation effects when samples are packed or
pressed, a sample holder was made that had an
extended rectangular cavity open at its top face
and end. To prepare the sample, a glass slide
was clamped over the top face to form a temporary
The powdered sample
cavity wall.
(See fig. 1.)
was then drifted into the remaining end opening
annealing,
while the holder was held in a vertical position.
With the sample holder returned to a horizontal
position, the glass sUde was carefuUy removed so
that the sample surface could be exposed to the
x-ray beam (as shown in fig. 2). To powders
that did not flow readily or were prone to orient
excessively, approximately 50-voliune percent of
finely-ground silica-gel was added as a diluent.
The intensities of the diffraction lines were measured as peak heights above background and were
expressed in percentages of the intensity of the
strongest fine.
Additional patterns were obtained
Specimens for these
for c^-value measurements.
patterns were prepared by packing into a shallow
holder a sample containing approximately 5-wt
percent tungsten powder that served as an internal
standard. When tungsten lines were found to
Figure
2
1
interfere, 25 percent silver
tungsten. If the internal
was used
in place of
standard
correction
varied along the length of the pattern, hnear
interpolations were used for the regions between
the peaks of the standard. For low values of 26,
the pattern peak was measured in the center, at a
place averaging about 75 percent of the peak
height.
For higher values of 26, where the ai and
a2 peaks were separated, the ai peak was measured
in the same way.
The internal standard correction appropriate to each region was then applied
to the measurement of 26.
The internal standard
used were 3.1648 A for tungsten
and 4.0861 A for silver at 25 °C. as determined by
Jette and Foote [3].
AU of the NBS patterns,
lattice constants
unless otherwise noted, are made at 25 °C, using
either filtered copper or cobalt radiation {Kai),
having the wavelengths 1.5405 A, and 1.7889 A,
respectively.
Structural data. For cubic materials a value
for the lattice constant was calculated for each
However, the constant reported is that
obtained by averaging the last five lines because
of the greater accuracy of measurement in the
c?-value.
large-angle region of the pattern.
The unit cell
values for each noncubic substance were determined by means of a least-squares calculation
made on the
7090, using those c?-values for
which only one set of Miller indices could be
assigned.
The number of significant figures
reported for f/-values in the
pattern is limited
by the quality of each sample as indicated by
residuals obtained from least squares refinement.
A portion of the indexing and cell refinement
calculation was performed on a Burroughs B 220
computer at the United States Geological Survey
using a program developed by H. T. Evans, Jr.
IBM
NBS
FiGTTEE 2
D. E. Appleman, and D. Handwerker. Lattice
constant errors are given only for data refined on
that program and are based on least squares
refinement of the variance-covariance matrix
derived from the unweighted Ad residuals.
Published unit cell data in kX units were
converted to angstrom units using the factor
1.00202 as recommended by an international
conference of crystallographers [4].
The space groups are listed with both the
Schoenflies and short Hermann-Mauguin symbols
as well as the space group numbers given in the
International Tables for X-ray Crystallography
centimeter and are computed with atomic weights
[7], and the Avogadro number
(6.02252X10^^).
based on carbon 12
References
[1]
Index to the X-ray Powder Data
[2]
Society for Testing and Materials, 1916 Race Street,
Philadelphia 3, Pa. (1962).
L. Alexander, H. P. Klug, and E. Kummer, Statistical
factors affecting the intensity of x-rays diffracted by
crystaUine powders, J. Appl. Phys. 19, No. 8,
[4]
Orthorhombic
dimensions
cell
Dana convention
are
[6]
The
[5]
6>a>c.
densities calculated from the
constants are expressed in grams
Aluminum 3:2
presented
[6]
NBS
lattice
per
cubic
[7]
E. R. Jette and F. Foote, Precision determination of
lattice constants, J. Chem. Phys. 3, 605-616 (1935).
The conversion factor for kX units to angstrom units,
J. Sci. Inst. 34, 27 (1947).
International Tables for X-ray Crystallography, 1,
1952.
Dana's System of Mineralogy, 1, 6 (1944).
International Union of Pure and Applied Chemistry,
Chem. Eng. News, Nov.
Silicate (mullite)* 3AI2O3
1.641,
Index
number
lines
6-0258
3.
2.
3.
41
39
3.
42
2.
54
3.
10-394
38
20
Source
2Si02 (orthorhombic)
F.
H. Cillery
H. Scholze
[21
and N^=1.652.
The c?-values of the^three strongest lines are:
3.390, 3.428 and 2.206 A.
Structural
[1].
Takeuchi
data.
Sadanaga,
Tokonami,
and
1962 determined that mullite
has the space group Dl^-Pbam (No. 55). Wyckoff, Grieg, and Bowen [5] in 1926 determined that
mullite has 3/4(3Al203-2Si02) per unit cell.
Several lattice constants have been converted from
kX to angstrom units for comparison with the
1955.
NBS
patterns.
Norton [3]
1925, Navias and Davey [4] 1925; Wyckoff,
Grieg, and Bo wen [5] 1926; Mark and Rosbaud
[6] 1926; Nahmias [7] 1933; Comeforo, Fischer,
and Bradley [8] 1948; and Kurylenko [9] 1952.
NBS sample. The sample of aluminum 3:2
silicate was prepared at
by C. Robbins.
Gamma AI2O3 and Si02 -711120 were mechanically
mixed in stoichiometric proportions of 3AI2O3 to
2Si02-7iH20.
This mixture was pressed into pellets and fired at 1400 °C and 1500 °C with little
reaction, then remixed and fired in an open system
at 1700 °C for 24 hr.
Reaction was nearly complete.
It was crushed, reground in an agate
mortar and refired at 1725 °C for 24 hr. Chemical
analysis of the finished product showed 61.6 mole
percent AI2O3 and 38.4 mole percent Si02 instead
of the beginning percentages of 60 and 40 in the
3:2 mixture. Spectrographic analysis showed the
following major impm-ities: 0.01 to 0.1 percent
iron, and 0.001 to 0.01 percent each of calcium,
Additional
•
20, 43 (1961).
The sample was colorless and optically positive
with the indices of refraction Na= 1.637, N^ =
Powder data cards
Card
American
742-753 (1948).
[3]
[5].
according to the
File,
in
[10]
values.
published
Lattice constants
a
b
c
NBS
chromium, magnesium, manganese, nickel,
*Some disagreement exists in the literature as to which ratio or ratios of
alumina to silica should be considered for mullite (3:2, 2:1, or both).
This sample was prepared as 3 2 at the request of P. Schroth of the Armco
Steel Corp. to be used as an identification, diSraction standard for mullite
in refractory brick.
o
1926
1928
1933
1952
1955
1960
Wyckoff,
o
A
A
52
7.
68
2.
86
7.
51
7.
54
7.
88
90
Kurylenko [9].--
7.
7.
580
537
5582
7.
Scholze
7.
65
67
689
671
2.
7.
7.
6878
Grieg,
and Bowen
Taylor [11]
Nahmias
Agrell
7.
[5].
[7]
[2]
and Smith
7.
2.
2.
895
878
8843
*2.
8854
2.
2.
[12].
1962
Sadanaga,
*7.
583
*7.
681
Tokonami,
and Takeuchi
[10].
1963
National Bureau
of
Standards
at 25 °C.
These
values are for 2Alj08-S10j.
7. 5456
±. 0004
7. 6898
±. 0005
2. 8842
±. 0002
tita-
nium, and zirconium.
:
o
A
The density calculated from the
constants is 3.170 g/cm^ at 25 °C.
NBS
lattice
3
2
Aluminum 3
hkl
:
220
Internal Standard,
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
u.
201
121
230
320
240
321
420
041
401
T
U
rl
J.
1
o
o
A
A
48
oy
1
X,
440
J..
on
151
J..
OrcU^
ooo\j
91
122
212
1
^9Q0
O. rriiO
O.
O t/v'
A.
oou
1
^Q^9
112
341
c
o
^ 774
1
"idQd
O^i/T:
6
}
1
X
9
£d
1
5
}
9 fiQ4
4
511
9
9
9
^.
A9R
^Q^
^OS
0\J0
2 9Q2
9 9nfi
9 191
9
1
1
09*^
iJ £tO
1
1.
SR7
OOI
1
Sfi^
7125
7001
1
9714
6
1
9ft "^0
1
X £d
600
132
312
1
X.
9ii74
/ ^
^9
1
9'^QR
X.
£iOiJ\J
ft
1
X.
9^4Q
^OrtV
9
441
260
232
531
1
X.
91
QQ
^xyy
1
X.
"^1
91
^ LO
L
1
X.
1 094
xy^^i
1 S'^'i
LOOO
402
1
X.
4(^7
1
L'±OI
261
242
1.
J.
422
270
1
X.
171
1
X.
252
1.
370, 522
1.
Q
9'^
7
9
<
9
Q
O
^9
1
1
1.
241
421
002
250
520
1.
1.
1.
1.
1.
1.
1.
1.
4731
4605
4421
4240
4046
1
X,
9
o
9
^9
4
Q
O
^9
6
^QQQ
411
331
150
510
7
222
521
1
Ol
U ou
5644
5461
5242
5067
4811
4
9771
J..
1.
"^004
OUUrt
981
1
1
Q
o
1
J..
1
1
14
1 n
w
90
1.
90
1
1
1
S41
1.
Orrl
1.
350
530
060
251
Ofi
1
J..
%
o
221
040
400
140
311
330
Internal Stannard,
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
hkl
111
130
310
021
—Continued
Silicate (muUite) SAI;l202-2Si02 (orthorhombic)
u
110
200
120
210
001
4
1
1
1
1
X.
1190
1 0^9
0081
uoox
01^48
uoio
01
^
u X 79
<^9
4
0133
0065
4
8
/
1
4
Q
2
2
37
<2
<2
<2
7
17
3
7
References
[7]
[1]
[2]
[3]
[4]
[5]
[6]
4
F. H. Gillery, The Pennsylvania State Univ., University Park, Pa.
H. Schoize, Zum Sillimanit-Mullit Problem, Ber. deut.
keram. Ges. 33, 381-5 (1955).
J. T. Norton, An x-ray study of natural and artificial
sillimanite, J. Am. Ceram. Soc. 8, 401 (1925).
L. Navias and W. P. Davey, Differentiation between
mullite and sillimanite by their x-ray diffraction
patterns, J. Am. Ceram. Soc. 8, 640 (1925).
R. W. G. Wyckoff, J. W. Grieg, and N. L. Bowen,
The x-ray diffraction patterns of mullite and sillimanite. Am. J. Sci. 11, 459-72 (1926).
H. Mark und P. Rosbaud, Uber die Struktur der
Aluminiumsilikate vom Typus AljSiOs und des
Pseudobrookits,
Neues Jahr.
Mineral.
Geol.
Beilage B. 54A, 127-64 (1926).
[8]
[9]
M. E. Nahmias, Bauxites
moyen des rayons X. Z.
et mullites, etudi^es au
Krist. 85, 355-69 (1933).
J. E. Comeforo, R. B. Fischer, and W. F. Bradley,
MuUitization of kaolinite, J. Am. Ceram. Soc. 31,
254-9 (1948).
Kurylenko, Ensayo sobre la estructura de la
pR Revista cientifica 2, 107-120 (1952).
R. Sadanaga, M. Tokonami, and Y. Tak^uchi, The
structure of mullite, 2Al203-Si02 and relationship
with the structures of sillimanite and andalusite,
Acta Cryst. 15, 65 (1962).
W. H. Taylor, The structure of silhmanite and mullite,
Z. Krist. 68, 503-521 (1928).
S. O. Agrell and J. V. Smith, Cell dimensions, solid
and identification of
solutions, polymorphism,
C.
mullita,
[10]
[11]
[12]
mullite and sillimanite,
69 (1960).
J.
Am. Ceram.
Soc. 43,
Ammonium
Fluoberyllate, (NH4)2BeF4 (orthorhombic)
Powder data cards
hkl
Index
oara
number
Internal Standard, „
Tungsten, a==3.1648 A
Cu, 1.5405 A at 25 °C
lines
d
3-0885
2.
48
27
4.
31
2.
Dow
The
Chemical Co.
o
A
020
U J. 1
5 229
5. 157
5
15
312
275
821
90
100
36
212
085
003
962
794
<2
4.
Additional published patterns.
None.
111
111
4.
3.
sample. The sample of ammonium fluoLaboratories,
and
beryllate was obtained from
Jamaica, Long Island, N.Y. Spectrographic analysis showed the following major impurities: 0.001
to 0.01 percent each of aluminum, calcium, and
NBS
K
K
silicon.
The sample was
and optically negative
with N„=1.397, N3=1.401, and N^ = 1.403.
The
colorless,
201
3.
990
3.
0^1
3.
009
2.
lo 1
2.
112
2 671
23
0J.0
2.
612
575
478
443
48
9^0
0
oiU
1 99
(^-values of the three strongest lines are:
4.275, 2.478,
2.
2.
2.
38
46
40
<2
15
96
69
and 4.312 A.
231
909
Structural data. Hultgren [1] in 1934 determined that ammonium fluoberyllate belongs to
the space group D^g-Pnam (No. 62) with4[(NH4)2BeF4] per unit cell. The lattice constants of
Mukherjee [2] have been converted from kX to
angstrom units for comparison with the NBS
values.
Q90
oil
1 ^9
b
A
7.
[1]
Mukherjee [2]...
National Bureau
of Standards at
7.
5
51
7. 645
±. 001
2
41
450
±. 001
10.
2.
2.
UOl
001
01^
UlOj oOl
1.
400
J.1
0
41U
1.
362
342
289
284
164
136
056
027
970
942
1.
911
879
8339
8192
8124
1.
7934
l!
1.
^Ul
1.
15
<2
75
<2
32
25
16
3
3
26
4
<2
10
2
<2
2
L 7526
7
7552
7193
6977
<2
O^l
1.
Uoo
IDU
1.
133
OOU
A09
233
252, 351
1.
8
90
5. 929
±. 001
1.
9PiO
411, 420
A
5.
2.
2.
c
A
10.
10.
2.
2.
o
Hultgren
2.
QQO
ooU
•^99
a
2.
321, 222
Lattice constants
1934
1945
1963
/
1.
3
4
5.
25 °C.
510
323
004
The density of ammonium fluoberyllate calculated from
lattice constants in 1.698 g/cm^
at 25 °C.
1.
1.
1.
1.
1.
1.
1.
6765
6168
6070
5668
5598
5124
4963
4821
4
<2
5
<2
2
3
<2
6
NBS
References
[1]
[2]
728-345
0—64
R. Hultgren, Crystal structures of ammonium beryllium fluoride, Z. Krist. (A) 88, 233-237 (1934).
Crystal structures of metallic
P. L. Mukherjee,
fiuoberyllates, double fiuoberyllates and sulphatofluoberyllates, Indian J. of Phys. 18, 148 (1945).
5
2
Ammonium
Powder data
Fluoborate,
NH4BF4 (orthorhombic)
The
cards.
c?-
values of the three strongest lines are:
4.482, 3.542, and 3.186 A.
Structural data. Hoard
Card
Index
nilTYiHpT
lines
1-0335
4.
3.
3.
50
55
18
and Blair [1] in 1935
determined that ammonium fluoborate has the
space group D^^-Pbnm (No. 62) and 4(NH4BF4)
Source
per unit cell. The cell constants of Hoard and
Blau' have been converted from
to angstrom
imits for comparison with the
values.
kX
NBS
Hanawalt, Rinn, and Frevel
[2]
1938.
,
Lattice constants
Additional published patterns. None.
NBS sample. The sample of ammoniiun fluoand
Laboratories,
borate was obtained from
Jamaica, Long Island, N.Y.
a
K
K
Spectrographic
analysis showed the following major impm^ities:
0.1 to 1.0 percent each of calcium and phosphorus
and 0.001 to 0.01 percent each of iron, titaniima,
hkl
d
1935
Hoard and
1963
5.
101
4.
120
200
3.
021
210
121
211
002, 220
3.
130
112
131
022
310
230
122
040
202
301
3.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
hkl
d
668
528
482
844
635
30
58
100
542
376
186
902
839
85
322
1.
708
2
11
411, 123
1.
701
<1
85
61
151
213
250
1.
680
653
622
3
19
4
593
575
558
532
510
<1
51
51
35
792
541
505
409
341
4
45
12
12
23
324
286
266
238
232
}
IS
176
165
1
45
37
35
10
312
410
150
023
142
242
223
430
402
060, 412
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
303
233
043
510
1.
161
1.
1.
2.
231
320
041
2.
151
11
2.
138
104
5
11
004
260
520
441
432
141
2.
222
330
103
241
2.
022
008
891
834
821
3
3
2
2
6
521
333
062
530
413
1.
/
o
2.
1.
7. 272
±. 001
A
212
1.
24
7.
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 26 °C
/
311, 140
2.
Blair
National Bureau
of
Standards
at 26 °C.
o
4.
c
A
A
9.
08
9.
063
o
5.
65
[1].
A
110
020
b
o
A
and strontium.
The sample was colorless and had extremely
low birefringence and indices of refraction.
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 26 °C
J
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
808
782
759
749
721
4933
4691
4535
4365
4316
4217
3954
3848
3755
3656
3459
3381
3344
3104
2983
8
2
<1
<1
5
3
2
1
<1
2
<1
5
4
4
2
<1
<1
<1
2
<1
1
<1
<1
2
±. 001
5. 686
±. 001
.
Ammonium
The density
from the
NBS
Fluoborate,
NH4BF4 (orthorhombic)
of ammonium fluoborate calculated
lattice constants is 1.858 g/cm^ at
26 °C.
—^Coiitinued
References
[1]
J.
Hoard and V. Blair, The crystal structures of
and ammonium fluoborates, J. Am.
Chem. Soc. 57, 1985-88 (1935).
D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Ind. Eng. Chem.
L.
rubidium
[2]
J.
Anal. Ed. 10, 457-512 (1938).
Antimony Selenide, SbsSes (orthorhombic)
Powder data cards. None.
Additional published patterns. Donges [1] 1950.
NBS sample. The sample of antimony selenide
was obtained from Semitronics, Inc., Winchester,
Mass. It was heated in an evacuated tube at
450 °C overnight to obtain a sharper pattern.
Spectrographic analysis showed the followingmajor impurities: 0.01 to 0.1 percent tellurium and
L
7 7
hkl
0.001
to
percent
0.01
each of aluminum and
silicon.
The sample was a dark gray opaque powder.
The c/- values of the three strongest lines are:
and 3.253 A.
Structural data.
Donges [1] in 1950 determined that antimony selenide has the antimony
sulfide structure, the space group Dah-Pbnm (No.
62), and 4(Sb2Se3) per unit cell.
2.868, 3.162,
Lattice constants
Internal Standard, „
Tungsten, a= 3.1648 A
Cu, 1.5405 A at 25 °C
a
d
/
o
1950
1963
110
020
200
120
220
5.
28
89
82
4.
14
101
3.
76
11
130
310
021
231
3.
720
682
297
253
32
15
211
3.
040
400
2.
221
301
2.
5.
3.
3.
3.
7
24
Donges
[1].
2.
2.
330
311
240
420
321
2.
041
2.
340
430
2.
141
411
2.
510
331
250
520
440
2.
431
501
530
151
002
060
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1.
1.
1.
910
868
776
A
11.
58
11.
68
3.
98
at 25°
C
11.
633
11.
780
3.
985
5
Oo
10
hkl
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
11
71
73
2
4
100
62
o
112
160
610
212
7
1.
938
936
913
1.
861
8
1.
1.
841
837
826
797
788
4
3
8
15
1.
1.
10
22
367
345
337
319
303
23
620
441
540
351
531
13
13
061
1.
761
1.
282
268
184
164
070
8
312
322
621
710
752
698
672
646
142
412
640
270
720
1.
61
22
31
35
12
/
A
759
703
629
608
513
015
010
002
998
989
963
o
A
National Bureau
of
Standards
d
162
945
c
o
A
A
8.
b
1.
1.
1.
1.
1.
1.
7
7
3
47
20
13
5
5
7
35
19
9
35
31
31
23
26
242
422
370
7
171
1.
1.
1.
1.
1.
1.
1.
1.
632
628
619
617
600
586
582
544
568
<1
<1
6
8
12
17
10
8
5
7
Antimony Selenide, SbgSea (orthorhombic)
—Continued
Reference
The
from
density of antimony selenide calculated
°C.
NBS lattice constants is 5.843 g/cm^ at 25
[1]
E.
Donges, Uber Selenohalogenide des dreiwertigen
Antimons und Wismuts und tiber Antimon (III)selenid, Z. anorg. Chem. 263, 280-291 (1950).
Antimony Telluride, SbaTcs
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of antimony telluride was obtained from Semitronics, Inc., WinIt was heated at 450 °C overchester, Mass.
night in an evacuated tube to sharpen the pattern.
Spectrographic analysis showed the following
major impurities: 0.001 to 0.01 percent each of
aluminum and silicon.
The sample was dark gray opaque powder.
The c?-values of the three strongest lines are:
3.157, 2.349, and 2.130 A.
Structural data.
Donges [1] in 1951 showed
that antimony telluride is isomorphous with
bismuth tellmide, having the space group Dsj—
(No. 166), and 3(Sb2Te3) per unit hexagonal
cell, or
l(Sb2Te3) per unit rhombohedral cell.
E3m
unit cell measurements reported by Semiletov
have been converted from kX to angstrom
(trigonal)
hkl
(hex.)
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
I
d
o
A
003
006
009
104
015
10.
107
2.
018
I-O-IO
O-l-ll
110
2.
5
Z.
3.
3.
16
1
08
383
3
321
157
5
1
100
815
651
349
215
130
<1
030
977
L 964
1. 875
1. 804
4
4
766
692
661
611
578
10
2
2.
2.
2.
1
34
5
23
The
[2]
units for comparison with
NBS
values.
0-0-15
1-0-13
116
0-1-14
119
205
0-0-18
208
0-1-17
0-2-10
Lattice constants
a
o
A
1951
1956
1963
Donges
4.
[1]
Semiletov [2]
National Bureau of Standards at 25 °C.
4.
25
25
c
o
A
30.
29.
35
92
262
30.
450
density of antimony telluride claculated
°C.
NBS lattice constants is 6.513 g/cm^ at 25
[1]
Uber Chalkogenohalogenide des dreiwertiIII. Uber Tellurogen Antimons und Wismuts.
halogenide des dreiwertigen Antimons und Wismuts
und iiber Antimon und Wismut (III) Tellurid und
Wismut (III) Selenid, Z. anorg. u. Allgem, Chem.
E. Donges,
—
—
[2]
S.
265, 56-61 (1951).
A. Semiletov, Electronographic determination of
antimony telluride
403-406 (1956).
8
structure,
Kristallografiya
1,
1.
1.
1.
0-0-21
0 1 20
125
1.
1-1-18
1.
•
1-1-21
2-0-20, 1-2-14
1-0-25
2-1-16
2-0-23
References
1.
1.
0.1-23
300
0.2-19
The
1.
1.
2-0-11
0-0-24, 2-1-10
from
1.
1-0-19, 1-1-15
•
4.
2.
220
2-1-19
1-0-28
1-2-20
0-2-25
0-1-29
3-0-18
1-3-10
2-2-15
i.
1.
1
i.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
0.
.
.
1
3
2
<1
2
7
537
470
450
7
2
408
3597
7
3249
OfiQQ
^OOO
2462
2303
2102
1988
1742
1563
1252
0759
0655
0522
0431
0286
0167
0096
9952
9704
9434
1
1
1
c;
*j
2
1
2
<1
1
<1
<1
<1
1
<1
<1
<1
1
1
<1
1
<1
Arsenic Trioxide, claudetite, AS2O3 (monoclinic)
Powder data
cards.
None.
None.
Additional published patterns.
NBS
sample.
The sample of claudetite was
obtained from the National Museum, No. 1737
from the San Domingo mines, Portugal. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of aluminum,
yttrium, and zinc; 0.01 to 0.1 percent each of
barium, calcium, cobalt, chromium, iron, magne-
hkl
Due
The
c^-
to
and 2.771 A
Structural data. Buerger [1]
References
J.
[
2]
The unit cell and space group of
Am. Mineralogist 37, 216 (1942).
Buerger,
tite,
AS2O3,
claude-
K. A. Becker, K. Plieth, and I. N. Stranski, Strukturuntersuchung der monoklinen Arsenikmodifikation
Claudetit, Z. anorg. allgem. Chem. 366, 293-301
(1951).
A.
[4]
Palache,
J.
The crystal structure
AS2O3) Am. Mineralogist
Frueh,
[3]
clinic
Berman, and Frondel,
4.
<3
586
454
356
328
245
14
50
20
18
100
3.
111
3.
130
101
3.
040
3.
031
140
131, 041
210
211, 150
3.
002
2.
051
2.
264
253
012
2.
231
221, 151
2.
151
2.
104
048
112, 160
2.
042
1.
142
251, 170
071
1.
T71
080
152, 261
180
113
1.
of claudetite calculated from the
lattice constants is 4.186 g/cm^ at 25 °C.
M.
on
496
924
277
118
717
TOl
The density
[1]
4.
3.
3.
9
26
4
9
determined
that claudetite has the space group Cih-P2i/n
(No. 14) and 4(As203) per unit cell.
NBS
6.
110
4.
.
in 1942
020
120
021
values of the three strongest lines are:
3.245, 3.454,
/
0
the high
indices of refraction a complete optical analysis
was not obtained, but partial results seemed to
confirm the data given in Dana [4].
colorless.
=
d
sium, titanium, and tungsten.
The sample was
Internal Standard
a 4.0861 A
Cu, 1.5405 A at 25 °C
Silver,
of claudetite
(mono-
36, 833-850 (1951).
Dana's System of
Mineralogy, 7th Ed. 1, 546 (1951).
2.
2,
7
24
5
11
6
5
<3
005
857
788
7514
7163
1.
1.
11
4
5
8
6477
6228
oyso
5522
4716
1.
1.
1.
1.
4
<3
<3
7
4
<3
1.
3915
3749
2937
2667
2220
1.
1423
<3
123
1.
1.
182
213
163
1.
O-IM
5
34
15
14
608
333
2.
332, 091
372,
129
771
640
2.
1.
4
3
<3
<3
Lattice constants
a
b
0
0
Becker, Plieth and Stranski
Frueh
[2]
[3]
National Bureau of Standards at 25 °C
25
25
5. 339
±. 002
90
87
12. 984
±. 001
0
0
A
A
1951
1951
1963
c
A
5.
12.
4.
5.
12.
4.
53
54
4. 5405
±. 0005
93°53'
93°49'
94°16.
±.
9'
1'
Barium Bromide Monohydrate, BaBrj-HaO (orthorhombic)
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of barium bromide
monohydrate was prepared from barium bromide
dihydrate obtained from City Chemical Co., New
York, N.Y. The hydrate was heated overnight
Spectrographic analysis showed
at 85 to 90 °C.
the following major impurities: 0.01 to 0.1 percent
each of sodium and strontium; and 0.001 to 0.01
percent each of calcium, magnesium, silicon, and
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
d
0
A
A
liU
UzU
1 on
titanium.
101
sample was too
111
111
UZl
The
c?-values of the three strongest lines are:
3.170, 2,512, and 2.999 A.
Structural data. Vainstein and Pinsker [1]
in 1950 determined that barium bromide monohydrate has the barium chloride monohydrate
structure, the space group Djh-Pbnm (No. 62),
and 4(BaBr2-H20) per vmit
cell.
7.
5.
4.
4.
The color of the sample was white. The refractive index could not be determined because the
fine.
1^21
01
1
4.
3.
3.
3.
3.
230
2.
U4U
2.
1 Q 1
lol
2.
a
b
o
o
A
1950
1963
Vainstein and
Pinsker [1]
National Bureau
of Standards
at 25 °C
9.
41
9. 434
±. 001
A
A
11.
59
650
±. 001
11.
4.
59
4. 6062
±. 0005
OQ 0
2
3
2.
091
2.
038
863
827
807
<2
<2
<2
2.
[1]
10
B. K. Vainstein and Z. G. Pinsker, Electron diffraction
study of BaBr2- H2O, Zhur. Fiz. Khim. 24, 432 (1950).
1.
1.
1.
1.
611
1.
080
CIO
Zlo, OlZ
1.
Ct
Z
4ol
no
Uol
1
0 no
coo
062
043
323 362
272
Reference
1.
1.
A £i^
density of barium bromide monohydrate
calculated from the NBS lattice constants is 4.135
g/cm^ at 25 °C.
2.
Uol
A A 1
441
4 no
4U/
A A
The
2.
1.
4:4:
343
082
571, 063
100
48
189
142
2.
042
01 0
13
8
2
2.
2.
61U
12
34
26
26
1)41
01 0
377
170
999
5
5
462
359
303
2.
c
91
613
6
23
18
14U
oUl
231
UUz
A on
4^U
022
36
83
96
38
14
913
836
784
596
512
2.
Lattice constants
I
1
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
788
703
648
569
476
A CA
400
448
434
425
3882
3
4
14
64
16
4
11
12
11
9
3
0
0
6
2
5
4
3796
3658
3582
3426
2964
<2
2470
2308
2041
<2
<2
6
<2
<2
6
3
Barium Stannate, BaSnOs
The density
Powder data cards
the
Card
Index
number
lines
(cubic)
NBS
of barium stannate calculated from
lattice constant is 7.238 g/cm^ at 25 °C.
Source
Internal Standard, „
Tungsten, 0^3.1648 A
Cu, 1.5405 A at 25 °C
hkl
3-0675
2.
91
68
2.
06
2.
H. D. Megaw, Philips Lamps
Ltd.
IJ
CL
o
A
Additional published patterns. None.
NBS sample. The sample of barium stannate
was prepared at NBS from stoichiometric amounts
of barium carbonate and stannic oxide, pressed
into a pellet and heated at 1400 °C for 1 hr.
Spectrographic analysis showed the followingmajor impurities: 0.1 percent calcium and 0.01 to
0.1 percent each of aluminum, magnesium, silicon,
and strontium.
The sample was very light gray. The indices
of refraction could not be determined because the
sample was too fine.
The c?-values of the three strongest lines are:
2.911, 1.6805, and 2.058 A.
Structural data. Megaw
[1]
in 1946
110
111
9 Ql
200
2.
2.
oil
1.
220
1.
310
222
321
400
411
1.
1.
1.
1.
0.
420
332
422
510
.
.
.
.
Average
determined
A
A
Ill
t. 117
4 117
4. 117
1
376
058
6805
4555
4
31
35
16
4.
3017
1882
1002
0291
9702
13
5
13
3
7
4.
9204
8776
8402
8073
6
5
5
4.
15
4.
1162
1163
1163
1164
4.
1163
value
of
4.
4.
4.
4.
4.
4.
4.
1163
1160
1166
1164
1161
last
five lines
that barium stannate has the perovskite structure,
the space group Oi-Pm3m (No. 221), and 1
(BaSnOa) per unit cell.
1164
1167
References
Lattice constants
[1]
H. D. Megaw, Crystal structure
of double oxides of the
perovskite type, Proc. Phys. Soc.
A
1946
1957
1958
1963
Megaw
-
[1]
Roth [2]
Wagner and Binder [3].
National Bureau of Standards
at 25 °C
_
4.
4.
4.
1168
114
1157
[2]
R.
S.
Roth,
Classification
ABOs-type compounds,
(1957)
[3]
4.
London
58, 133
(1946).
1163
G.
of
J.
perovskite and other
Res. NBS 58, 75-88
.
Wagner and H. Binder,
BaO-Sn02 and BaO-PbOz.
The binary systems
II.
determinations, Z. anorg. allgem.
(1958)
Crystal structure
Chem. 298, 12-21
.
Bismuth Orthophosphate, BiP04 (monoclinic)
Powder data cards
sodium and 0.01 to 0.1 percent each
aluminum, copper, iron, magnesium,
of silver,
lead, and
silicon.
Card
Index
number
lines
1-0812
3.
2.
4.
Additional
08
87
20
The color of the sample was white. The indices of refraction could not be obtained because
the sample was too fine.
The (l-values of the three strongest lines are:
Source
Hanawalt, Rinn, and Frevel
[1]
1938.
published
patterns.
and 4.156 A.
Structural data. Zemann [2] in 1950 determined that monoclinic bismuth orthophosphate
has the monazite structure, the space group C2IP2i/n (No. 14), with 4(BiP04) per unit cell. According to Mooney-Slater [3] 1962, three forms of
bismuth phosphate exist: a hexagonal low phase
formed from precipitation at room temperature,
a high monocHnic phase formed about 700 °C and
the monoclinic monazite phase formed above
350 °C.
3.066, 2.862,
Zemann
[2]
1950.
NBS sample. The sample of monoclinic bismuth orthophosphate was obtained from Bios
Laboratories, Inc., New York, N.Y.
Speptrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of calcium and
11
Bismuth Orthophosphate, BiP04 (monoclinic)— Continued
Lattice constants
a
b
o
o
L
7 7
hkl
Zemann
6.
[2]
National Bureau of Standards at 25 °C__
6.
75
752
Internal Standard,
Tungsten, a= 3.1648 A
Cu, 1.5405 A at 25 °C
d
96
933
6.
6.
hkl
A
6.
42
104°
6.
468
103°42. 5'
Internal Standard,
Tungsten, o = 3.1648 A
Cu, 1.5405 A at 25 °C
/
d
o
5.
4.
4
4.
4.
111
3.
020
200
002
120
3.
021
210
211
3.
3.
3.
3.
2.
2.
2.
202
2.
211
112
212
2.
220
022
2.
130
031
103
311
131
2.
2.
2.
2.
2.
2.
2.
2.
310
2.
131
2.
212
301
213
1.
1.
1.
18
761
655
156
079
514
466
282
142
066
036
963
934
862
597
484
438
433
382
328
180
170
150
128
112
085
013
959
929
916
I
o
A
101
110
oil
111
101
/3
o
A
A
1950
1963
c
A
230
231
103
032
320
8
12
50
58
22
23
8
57
13
100
19
19
16
73
22
4
11
24
9
8
1.
513
1.
140
1.
400
402
313
1.
314
421
431
303
423
501
7
5
1.
1.
214
042
411
133, 223
242
3
23
23
18
23
1.
023
322
231
040
132
410
330
312
412
240
3
18
16
1.
1.
1.
1.
1.
1
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
889
882
872
862
850
5
15
6
20
13
794
755
745
733
729
14
21
679
676
640
620
608
5
596
589
581
576
533
13
14
28
7
6
8
3
9
4
7
6
15
530
518
467
455
442
15
418
379
363
360
355
350
4
3
2
6
4
7
7
3
2
5
References
The density of monoclinic bismuth orthophosphate calculated from NBS lattice constants is
ft OAQ
/r.Tv,3 of op; on
v^.
D.esDO g/cm
ai
D- Hanawalt, H. W. Rinn, and L. K. Freyel,
^hemical analysis by x-ray diffraction, Ind. Eng.
Ohem. Anal. ii.d. 10, 457-512 (193»).
Zemann, Beitrage zue Kristallchemie des Wismuts,
Tschermaks mineralog. petrog. Mitt. 1, 361-377
[1]
J-
[2]
j.
[3]
R. C. L. Mooney-Slater, Polymorphic forms of bismuth
phosphate, Z. Krist. 117, 371-385 (1962).
(1950).
12
Bismuth Orthophosphate, BiP04
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of trigonal bismuth
orthophosphate was precipitated at NBS from a
mixture of bismuth nitrate and phosphoric acid.
Spectrographic analysis showed the following major impurities 0.01 to 0.1 percent sodium and 0.001
to 0.01 percent silicon.
The sample was colorless. The indices of refraction could not be determined because the sample
(trigonal)
hkl
Internal Standard,
Tungsten, 0=3.1648 A
Cu, 1.5405 A at 25 °C
T
1
a
:
was too
The
fine.
a
A
100
6.
101
^.
06
4Zi
110
111
o.
ly-i
o.
U/o
AA
'±'1
82
c?-values of the three strongest lines are:
200
and 2.854 A.
Structural data. Mooney-Slater [1] in 1962 determined the structure of the trigonal bismuth
orthophosphate; it has the space group D|-P3i21
(No. 152) and 3 (BiP04) per unit cell. This form
is transformed to a monoclinic monazite structure
102
112
210
202
211
2.
854
^.
OI O
Z.
iOD
103
2.
300
301
212
113
Z.
032
DID
yzo
80/
oo7
65
iUU
4.421, 3.025,
350 °C and to another higher temperature
monoclinic form above 700 °C.
at
203
220
302
310
311
Lattice constants
a
o
A
1962
1963
Mooney-Slater [1]
National Bureau of
Standards at 25 °C-
6.
966
6. 9820
±0. 0004
c
o
A
6.
460
6. 4764
±0. 0007
The density
of trigonal bismuth orthophosphate
calculated from
lattice constants is 5.538
g/cm^ at 25 °C.
NBS
R.C.L. Mooney-Slater, Polymorphic forms of bismuth
phosphate, Z. Krist. 117, 371-385 (1962).
728-345
114
402
321
214
322
105
304
403
412
501
330
331
420
502
215
413, 421
Reference
[1]
213
104
222
400
312
O— 64
3
510
422
511
ZoD
1
O
c
1.
1.
1.
1.
1.
1.
1.
1.
0
c
Oi1
6
4
OO
51
a
O
7571
745Z
7115
0774
ozoy
24
Id
ori
o
IZ
1
1 i
5693
0044
OoOO
Olio
A ono
4»yz
ii
e
O
0
1 o
4687
ooyo
oooo
10
Q
O
1 A
14
i. 6l\j\i
15
5
1.
2667
ZDZ4
OO
O
z3»4
1.
llVi
1.
1885
1.
1639
1450
1425
1328
1267
1.
i.
1.
1.
1
1.
1.
1.
i.
1.
1.
1
1.
1.
1.
1.
1.
1.
1.
1.
/I
1255
0860
0774
0709
6
7
Z
5
5
8
3
4
5
7
5
4
3
2
Bismuth Orthovanadate (low form), BiV04
(tetragonal)
Powder data cards. None. (Card No. 12-293
gives data for a mineral pucherite, BiV04, which
orthorhombic
is
and does not compare with
either of the synthetic forms of BiV04.)
Additional published patterns. None.
NBS sample. The sample of low form
bismuth
orthovanadate was obtained from City Chemical
Corp., New York, N.Y.
Spectrographic analysis showed the following major impm-ities: 0.001
to 0.01 percent each of aluminum and silicon.
The sample was also precipitated at NBS from
solutions of Na3V04 and Bi(N03)3.
If the precipitate is heated below 400 °C, the tetragonal
form is unchanged. Between 400 and 500 °C the
changed to the stable monoclinic form occurs.
The color of the sample was orange-yellow. The
indices of refraction could not be determined
because the sample was too fine.
The (i-values of the three strongest hnes are:
3.649, 2.738, and 1.879A.
Structural data. The structure of low form
bismuth orthovanadate has not been reported in
the literatm-e. However, because of the similarity
of patterns it is thought to be isostructural with
zircon, having the space group DJ^-l4i/amd (No.
141) and 4(BiV04) per unit cell.
Lattice constants
c
o
o
A
A
National Bureau
of Standards at
26 °C
7.
a
/
A
A
oo n
ooy
049
101
4.
200
211
6.
112
z.
990
2.
too
582
z.
419
202
301
103
321
^1 9
400
213
411
420
o
47
100
22
61
21
mo
3
18
1.
1.
1.
1.
1.
1.
065
9oZ
879
11
14
48
825
797
708
632
614
15
10
10
6
7
5
11
UU'l
1.
332
204
1.
501
1.
5183
4765
4240
1.
3261
3
3087
2169
2092
2008
1799
12
6
1673
1543
1478
6
1.
7
224
a
1963
hkl
Internal Standard,
Tungsten, a 3.1648 A
Cu, 1.5405 A at 26 °C
2999
6.
4573
512
600
404
215
611
532
620
424
1 1
1 1
1.
1.
1.
1.
1.
1.
1.
1.
9
5
2
7
9
The
density of low form bismuth orthovanadate
calculated from NBS lattice constants is 6.252
g/cm^ at 26 °C.
Bismuth Orthovanadate (high form), BiV04 (monoclinic)
Powder data cards. None. (Card No. 12-293
gives data for a mineral pucherite, BiV04, which
is orthorhombic and does not correspond to either
form of BiV04 which we prepared.)
Additional published patterns. None.
NBS sample. The sample of high form bismuth orthovanadate was prepared by R. S. Roth
NBS
by heating stoichiometric mixtures of bismuth oxide and vanadium oxide at 895 °C for 16
hr.
Spectrographic analysis showed the following
at
major impurities: 0.001 to 0.01 percent each of
aluminum and silicon. The monoclinic form was
also prepared from the low form which was made
by precipitation from solutions of Na3V04 and
Bi(N03)3. The low form sample is tetragonal up
14
to approximately 400 °C.
The nonreversible
change to the monoclinic form takes place between 400 and 500 °C.
The color of the sample was orange-yellow.
The indices of refraction could not be determined
because the sample was too fine.
The c?-values of the three strongest lines are:
3.095, 3.082, and 3.120 A.
Structural data. Roth and Waring [1] in 1963
reported that high form BiV04 is thought to be
isostructural with fergusonite because of the similarity of patterns.
Ferguson [2] in 1955 reported
that the fergusonite structure
is
monoclinic.
The
probable space group is Czh— l2/a (No. 15) with
4(BiV04) per unit cell.
—Continued
Bismuth Ortho vanadate (high form), BiV04 (monoclinic)
Lattice constants
a
h
o
o
A
1963
National Bureau of Standards at 26 °C-
5.
c
o
A
195
11.
/3
A
701
5.
092
38°
90.
Internal Standard
Silver, o
hkl
= 4.0861 A
Cu, 1.5405
A
Internal Standard
a = 4.0861 A
Cu, 1.5405 A at 26 °C.
at 26 °C.
Silver,
hkl
d
/
d
o
I
A
020
110
Oil
130
3.
031, 121
3.
5.
4.
4.
847
749
670
120
095
A
2
23
27
T23
i.
1.
32
100
1.
1.
T21
040
200
002
220
3.
2.
2.
2.
2.
141
2.
141, 211
2.
211
112
112
2.
150
051
OO1
231
231
132
2.
T32
060
240
042
202
202
222
161
161
310
013
251
251
152
152
170
071
330, 321
321
123
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
082
924
598
546
374
282
277
264
250
239
96
26
12
14
1
3
5
970
949
7
812
726
719
717
713
680
648
644
639
633
4
4
2
3
4
2447
2417
2175
2117
2028
3
3
1.
361
1.
163
163
1.
1.
352, 253
1.
253
370
1.
1.
431
1.
073, 323
1.
440
323
044
1.
1.
1.
402
204
282
2
2
4
2725
2683
2598
2566
2536
1.
1.
3
2
3
5562
2
1.
1
1
2
1.
1.
1.
1
4
2
1
1
1958
1906
1871
1831
1670
<1
1600
1461
1411
<1
2
3
4
1
1
1
References
[1]
033
3318
2989
2747
1.
004
082
3
1.
1.
1.
£i
1
9sn
8
2
18
17
1.
1.
3
1.
4
15
16
6
4
5
10
9
8
1.
3481
2
O
1
9fi9
7
591
587
582
5757
5580
1.
T72
351
9
7
988
976
1.
1.
6
11
11
5
1.
uoo
I.
971
3
<1
1.
181
t
11
5
4167
4146
4067
3744
3566
1.
143, 213
9 1^
6
133
127
995
943
920
824
312
OD^^
5482
5405
4625
R.
S.
Roth and
J.
and stability
and chemically
L. Waring, Synthesis
of bismutotantalite, stibiotantalite,
ABO4 compounds, Am. Mineralogist 48, No.
1348-1356 (1963).
Ferguson, The crystallography of synthetic
similar
The density
of high form bismuth orthovanadate calculated from NBS lattice constants is
6.951 g/cm^ at 26 °C.
11, 12,
[2]
R.
B
YTa04 and
fused fergusonite, Bull. Geol. Soc. Amer.
66, 1557 (1955).
15
Bismuth Telluride (tellurobismuthite), Bi2Te3
Powder data cards
.
J
index
T
<^arci
number
3.
2.
2.
10-54
2.
3.
3.
22
37
19
03
20
25
Thompson
The sample was a gray opaque powder.
The d-values of the three strongest Hnes
[1].
3(Bi2Te3) per unit hexagonal
Vasenin and Konovalov
cell.
[2].
Lattice constants
a
Additional
published
patterns.
Harcourt
c
[3]
1942.
o
sample. The sample of bismuth telluride
was obtained as a single crystal from Semitronics
Inc., Winchester, Mass.
Spectrographic analysis
showed the following impurities: 0.0001 to 0.001
percent each of magnesium and silicon.
^
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
d
1940
1940
1951
1954
1963
Frondel [5]
Peacock and Berry
Donges
The density
the
[7].
of
NBS lattice
bismuth
16
3
7
3.
2.
689
2
O u
9fi
238
192
142
4
3.
3.
4.
3852
30.
483
telluride calculated
is
from
7.857 g/cm^ at 25 °C.
/
078
767
398
222
5.
4.
30. 7
30. 45
30. 3
30. 46
4.
4.
constants
o
10.
...
A
39
384
35
39
4.
[6]..
Semiletov [8].
National
Bureau of
Standards at 25 °C..
A
003
006
101
104
015
o
A
NBS
hkl (JiPT
are:
and 2.192 A.
Structural data. Lange [4] in 1939 determined
that bismuth telluride has the tetradymite structure with the space group D^a-R3m (No. 166) and
3.222, 2.376,
source
lines
8-21
(trigonal)
hkl (hex.)
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
3
<
d
1
/
100
o
018
I-O-IO
O-l-ll
110
113
0-015
116
1-0-13
0-1-14
205
1-0-16
0-0-18
0-2-10
2-0-11
1-1-15
0-2-13
0-0-21
0-1-20
125
0-2-16
1-1-18
2-1-10
300
0-1-23
2-1-13
1-1-21
2-0-20
1-0-25
2-1-16
0-1-26
16
1
2.
2.
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
031
113
995
890
812
702
693
611
565
4901
4756
4513
4140
3970
3449
24
1
5
4
2
<1
8
A
220
2-0-23
3-0-15
1-0-28
315
0-2-25
0-0-30
2-0-26
1-3-10
1-2-23
1.
1.
1.
1.
1.
1.
1.
.
.
.
0963
0868
0744
0464
0379
<1
<1
<1
<1
<1
0261
0163
9978
9956
9738
<1
<1
<1
9649
9540
9518
9444
9382
<1
<1
<1
<1
9294
9238
9080
9064
8750
<1
<1
<1
<1
<1
8673
8666
8626
8512
8488
<1
<1
<1
<1
8377
8286
<1
<1
2
<1
2
<1
6
<1
7
2-2-15
3-0-21
1-0-31
0-2-28
045
.
.
.
.
.
<1
1
<1
3
6
1
2-1-25
0-1-32, 0-0-33
1-2-26, 3-1-17
4-0-10
2-2-21
.
.
.
.
.
<1
3404
2986
2660
2514
2242
<1
<1
2103
1886
1610
1464
1201
<1
<1
<1
<1
<1
3
2
2-1-28
3-1-20
235
1-1-33
0-1-35
3-2-10
410
.
.
.
.
.
.
.
2
J
.
Bismuth Telluride (tellurobismuthite), BizTes
References
[5]
(trigonal)
Frondel,
C.
Redefinition
vandiestite.
[1]
M. Thompson, The
R.
[2]
[3]
Am.
382 (1949).
I. Vasenin and P. F. Konovalov, Ionization x-ray
structure investigation of bismuth telluride, J. Tech.
Phys. 26, part 7, 1376 (1956).
G. A. Harcourt, Tables for the identification of ore
minerals by x-ray powder diffraction, Am. Mineralo-
F.
gist 27,
[4]
minerals and their
Mineralogist 34, 342-
telluride
occurrence in Canada,
100 (1942).
W. Lange, Ein
P.
zwischen
Bismuth Trioxide
Card
numbers
M.
[7]
E.
Bi2Te3
und
(bismite), alph;
Am.
of
Donges, Uber Chalkogenohalogenide dreiwertigen Antimons und Wismuts III. tlber Tellurohalo-
und Wismuts und
Antimon und Wismut
III-Tellurid und Wisraut
Ill-Selenid, Z. anorg. allgem. Chem. 265, 56 (1951).
S. A. Semiletov, An electron diffraction study of films
of Bi-Se and Bi-Te prepared by evaporation, Trudy
Inst. Krist. Akad. Nauk SSSR 10, 76-83 (1954).
liber
Bi203 (pseudo-orthorhombic)
cards.
Index
Source
hkJ
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
lines
3.
1.
1.
6-0307
and
A. Peacock and L. G. Berry, Rontgenographic
observations on
ore
minerals,
Univ.
Toronto
Studies Geol. Ser. 44-48, 67 (1940-1943).
d
6-0294
tellurobismuthite
238, 880-888 (1940).
J. Sci.
genide des dreiwertigen Antimons
[8]
vergleieh
Bi2Te2S, Naturwissenschaften 27, 133 (1939)
Powder data
[6]
—Continued
3.
2.
1.
26
96
75
Sill6n [1] 1941.
23
68
67
Frondel
o
A
[2]
1943.
120
111
9nn
^uu
vox
990
The color of the sample was light yellow. The
refractive indices were too high to be determined
by the usual liquid-grain immersion method.
The
values of the three strongest lines are:
and 2.708 A.
Structural data. Sill6n [1] in 1941 determined
that alpha bismuth oxide is monoclinic or pseudoorthorhombic having the monoclinic space group
C^2h-P2i/c (No. 14), with 4(Bi203) per unit monoclinic cell, or 8(Bi203) per unit pseudo-orthorhombic cell. According to Sillen [1], the
monoclinic indices hkl are transformed into the
pseudo-orthorhombic indices h'k'l' by the following relations
3.253, 2.693,
(±) l'=2l-h
lattice constants reported by Sill6n have
to angstrom units for
converted from
The
been
comparison with the
kX
NBS
4.
3.
3.
3.
131
3.
91
i.
1
AO
3.
2.
NBS
sample. The sample of bismuth trioxide
was obtained from Johnson, Matthey, and Co.,
Ltd. Their spectrographic analysis showed the
following major impurities: less than 0.001 percent each of silicon aluminum, lead, silver, and
sodium.
5.
4.
040
1
h'=h, k'=k,
7
231
2.
022
2.
i.
99
Q9n
1
051
311
lOi
099
2.
2.
2.
2.
2.
2.
2.
142
340
251
400
260
2.
276
498
084
622
517
2
4
4
8
2
456
310
253
184
753
19
33
100
25
708
693
638
559
532
38
499
429
390
244
176
6
6
15
9
7
6
A
14
"1
6
6
5
2
2.
154
138
132
041
2.
0064
5
302
420
013
322
411
1.
9922
9584
9317
9136
9098
4
26
113
071
351
171
1.
062
1.
033
431
162
360
133
1.
242,
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
8
2
<1
2
4
8787
8720
8409
8237
8087
9
17
6
7967
7790
7660
7590
7549
<1
7
1
2
8
9
6
values.
17
Bismuth Trioxide
(bismite), alpha Bi203 (pseudo-orthorhombic)
—Continued
Lattice constants
Internal Standard,
hkl
Tungsten, a=3.1648 A
Cu, 1.5405 A at 25 °C
a
b
o
o
a
1941
1963
o
A
A
213
342
180
402
262
233
422
053
280
451
313
153, 511
442
333
531
1.
1.
1.
1.
1.
1.
1.
1
1.
1
1.
16
12
6431
6273
E no c
10
oy/u
e o1 e
5815
1.
1
1.
004
104
124
282
1.
073
471
551
1.
1.
1.
1.
1.
1.
3882
3792
3672
3637
3485
3462
13.
81
5.
84
8.
166
13.
827
5.
850
o
O
ID
7
6
5
1.
16
2
A
A
4854
4625
1. 4391
L 4093
1. 3983
1.
8.
10
3
1.
[1]
National Bureau
of Standards at
25 °C
A
1
5754
5632
5065
4994
4888
1.
091
I-IO-O
433
044
7452
7265
0914
d743
o561
Sill6n
o
A
A
1
c
6
6
5
5
The
density of alpha bismuth trioxide calcuNBS lattice constants is 9.371 g/cm^
lated from
at 25 °C.
1
3
6
1
References
3
4
[1]
3
3
3
[2]
L. G. Sill6n, On the crystal structure of monoclinic
a-BiaOs, Z. Krist. 103, 274-290 (1941).
C. Frondel, Mineralogy of the oxides and carbonates
of bismuth, Am. Mineralogist 38, Nos. 9 and 10.
521-535 (1943).
1
Cadmium
Powder data
cards.
Perchlorate Hexahydrate, Cd(C104)2*
1.479.
rf-values of
3.995, 4.223,
the„ three strongest lines are:
and 2.902A.
Structural data. West [1] in 1935 rep»orted that
cadmium perchlorate hexahydrate is trigonal, the
space group CL-P3ml (No. 156) with l[Cd(C104)26H2O] per unit cell. West reported that the
structure is very similar to the hexagonal magnesium perchlorate structure. Moss, Russell, and
Sharp [2] confirmed West's determinations. The
value of "a" reported by West has been divided
by 2 as he suggested. The unit cell values reported
by West have been converted from kX to angstrom
units for comparison with the NBS values.
flKl
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
d
o
1
Art
uui
1 rti
6.
5.
lUl
4.
1 1 rt
ill)
3.
200
3.
111
111
3.
2.
UUz
0 1 rt
2.
2.
102
2.
Ol
Zl
2.
1
1
Qrtrt
1 1
o
Qrt
1
202
2.
2.
2.
2.
1.
1
QrtO
Lattice constants
1.
1.
1.
1.
1.
1 AO
lUo
A
401
113
320
1.
orto
Z\)6
1.
1.
/I
a
c
o
o
A
West
[1]
National Bureau of
Standards at 25 °C.-
1.
1.
1.
A
7.
92
5.
30
7.
9939
5.
3304
6/1
410
213
1.
Alt
411
1.
1.
1.
303
o no
density of cadmium perchlorate hexahydrate calculated from the NBS lattice constants
is 2.361 g/cm^ at 25 °C.
References
[1]
C. D. West,
pounds.
[2]
The
II.
crystal structures of hydrated
Structure
type
com-
Mg(C104)2-6H20,
Z.
Krist.
A91, 480-493 (1935).
K. C. Moss, D. R. Russell, and D. W. A. Sharp, The
lattice constants of some metal fluoroborate hexahydrates, Acta Cryst.
14, 330 (1961).
197
902
667
617
489
51
350
309
217
25
117
1119
26
27
9985
9201
8670
8064
7771
19
8
7446
7205
6463
6231
5880
5808
5577
5223
5107
4700
66
2
1
18
9
7
37
9
3
6
7
4
3
4
9
5
6
6
5
4
2
2438
2400
2287
2107
1872
3
3
2
1.
1841
1743
1537
1510
1270
3
3
3
3
3
1.
1088
3
1.
UU4, OOrt
ooO
1.
A OA
4z0
O1o
313
1.
.421
1.
114
1.
1.
OA
204A
403
502
511
1.
214
1.
224
17
75
100
4
3325
3082
3042
2705
2641
1.
1.
323
422
600
413
512
25
11
11
501
Art 4
921
326
223
995
463
4539
4519
4078
3642
3402
1.
The
/
A
Q rt
olU
zlz
oil
003
1935
1963
(trigonal)
None.
Additional published patterns. None.
NBS sample. The sample of cadmium perchlorate hexahydrate was obtained from the City
Chemical Corp., New York, N.Y. Spectrograp>hic
analysis showed the following major impurities:
0.0001 to 0.001 percent each of lead and silicon.
The sample was colorless and optically negative
with indices of refraction No= 1.490 and Ne=
The
6H2O
1.
1.
1.
1.
1.
1.
1.
2
3
4
5
4
4
5
2
Cadmium
Sulfate,
CdS04 (orthorhombic)
The sample was white. The indices of refraction could not be determined because the sample
Powder data cards
was too
Card
Index
number
lines
Source
fine.
The
c?-values of the three strongest lines are:
3.329, 3.277, and 2.961 A.
Structural data.
3-0453
3.
2.
2.
30
97
35
!
Dow
Chemical company.
Kokkoros and Rentzeperis
|
[1]
determined cadmium sulfate is orthorhombic with the most probable space group Dz*Pmmn Qso. 59) with 2(CdS04) per unit cell.
j
in 1961
I
Lattice constants
Additional published patterns.
NBS sample. The sample of
None.
cadmium sulfate
from cadmium carbonate
at
treated with an excess of sulfuric acid and heated
Spectrographic analysis showed the
to dryness.
major impurities to be 0.001 to 0.01 percent each
of aluminum and silicon.
was prepared
a
NBS
o
1961
Kokkoros and
c
o
o
A
A
A
4.
709
6.
562
4.
694
4.
7174
6.
5590
4.
7012
Rentzeperis
[1].
1963
hkl
b
Internal Standard, „
Tungsten, a= 3.1648 A
Cu, 1.5405 A at 25 °C
National Bureau
of Standards
at 25 °C.
The density
of
cadium
sulfate calculated from
at 25 °C.
NBS lattice constants is 4.759 g/cm^
/
rl
o
A
001
110
A 701
O. O^D
101
1
7
4.1
1
no
79
68
d
a
D
A
u^u
3.
277
111
2.
961
021
9 fi88
9
^. ooo
9 Qf;9
^9
336
212
37
24
200
002
2.
012
201
211
031
2.
0 1 r\A A
9
nOfiR
4. UUOo
1.
1.
131
122
202
040
212
032
1.
1.
1.
1.
1.
1.
041
1.
310
013
231
301
1.
1.
1.
1.
222
1.
141
1.
311
113
321
1.
1.
1.
9827
9155
8273
7704
6648
6391
6135
6004
5485
5290
5250
5179
4908
4843
4704
4537
4497
3571
hkl
142
051, 150
331
133
151
20
1.
1.
1.
1.
1.
1.
1.
1.
3459
3243
3059
2934
2634
2317
2293
2204
I
o
322
223
400
014
052
114
251
OA
ZD
1 S
±o
22
21
17
420, 303
024
341
313
060
19
3
12
18
421
124
11
204
412
3
8
7
7
6
161
252
342
134
224
260
4
9
7
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
0.
2140
2127
4
1794
1570
1454
1235
1136
3
3
5
3
3
1100
1062
1032
0943
0933
3
5
0798
0777
0519
0407
0387
2
2
0305
0221
0113
0016
9918
6
4
6
5
4
7
6
3
2
3
3
3
17
333
11
351, 153
240
232
302, 203
Internal Standard, „
Tungsten, a =3. 1648 A
Cu, 1.5405 A at 25 °C
6
261
9
440
044
432
4
8
.
.
.
.
.
.
9897
9839
9702
9576
9552
9498
5
4
3
3
4
5
1
7
11
5
[1]
P. A. Kokkoros and P. J. Rentzeperis, X-ray investigation of the anhydrous cadmium and mercuric
sulphates, Acta Cryst. 14, 329-330 (1961).
!
i
—
Cadmium
Telluride,
CdTe
(cubic)
Powder data cards
Card
Index
Number
Lines
Source
Internal Standard,,,
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
hkl
10-207
3.
2.
1.
Vaughan
74
29
95
[1].
a
a
/
o
A
A
Additional published patterns. None.
NBS sample. The sample of cadmium telluride
was obtained from Semi-Elements
Saxon-
Inc.,
Spectrographic analysis showed the
burg, Pa.
following impurities: 0.01 to 0.1 percent silicon
and 0.0001 to 0.001 percent each of barium, iron,
and
lead.
The sample was a black opaque powder.
The (^-values of the^three strongest lines
are:
and 1.954 A.
Structural data. Zachariasen [2] in 1926 determined that cadmium telluride has the zinc sulfide
3.741, 2.290,
structure, the space group Td-F43m (No. 216),
and 4(CdTe) per unit cell. The lattice constants
of Zachariasen and Goldschmidt have been converted from
to angstrom units for comparison
with the
value.
lUO
D.
1.
6
9
1.
323
94.7
10
4
6.
1
146
095
025
2
6.
4
4
Q.
2
6.
<1
6.
3.
220
311
400
331
2.
422
511
1.
1.
440
1.
531
1.
620
1.
533
444
711
642
731
0.
Average value
kX
NBS
A
742
290
954
019
4ao
111
.
.
.
.
9884
9356
9076
8661
8438
6.
0.
6.
2
3
3
of last five lines
6.
6.
6.
481
479
4o/
476
484
482
481
480
479
481
6.
481
482
481
481
482
6.
481
6.
6.
Lattice constant
o
References
A
1926
1926
1963
Zachariasen
[2]
Goldschmidt [3]
National Bureau
at 25 °C
6.
.
6.
of
477
453
Standards
6.
[1]
D. A. Vaughan, Battelle Memorial Institute, Colum-
[2]
W. H.
bus, Ohio.
481
[3]
The
the
density of cadium telluride calculated from
lattice constant is 5.856 g/cm^ at 25 °C.
NBS
Zachariasen, Ubcr die Kristallstruktur der
Telluride von Beryllium, Zink, Cadmium, und
Quecksilver, Z. physik Chem. 124, 277 (1926).
V. M. Goldschmidt, Geochemische Verteilungsgesctze
der Elements VII Die Gesetze der Krystallochemie,
Norske Videnskaps-Adad. Oslo,
Naturv. KI. No. 2 (1926).
Skrifter
I:
Mat.
21
728-345
O— 64
4
1
Calcium Fluoride Phosphate
(fluorapatite),
Powder data cards
Index
2.
81
71
1.
84
2.
12-261
2.
2.
2.
hki
82
72
26
McConnell
[4]
1937.
Carobbi and Mazzi
1930, Bale
[6]
Ndray-Szab6
patterns.
1940.
NBS sample. The sample of calcium fluoride
phosphate was prepared at NBS by J. H. deGroot.
A mixture of calcium fluoride and tricalciuin
orthophosphate was heated in a covered platinum
Source
lines
3-0736
published
Additional
[2]
Card
number
Ca5F(P04)3 (hexagonal)
dish to 1250 °C.
Spectrographic analysis showed
the following major impurities: 0.1 to 1.0 percent
each of magnesium and sodium; and 0.01 to 0.1
[13] 1959.
percent each of aluminum, barium, germanium,
and strontium.
iron, silicon,
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
hkl
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
d
d
/
I
A
511
1.
332
1.
<1
413
CIO
512
i.
8
8
4oU
AO t
431
1.
A
100
8.
101
5.
110
X
l.\J
200
111
4.
201
002
102
210
211
4.
3.
12
25
684
055
872
8
4
494
442
<1
3.
3.
167
3.
067
800
13
17
100
3.
2.
42
1.
1.
1.
521
i.
1.
1.
1.
1.
112
2.
300
202
2.
301
212
310
221
2.
2.
2.
2.
2.
31
2.
302
2.
113
2.
2.
90'?
999
312
320
1.
1.
91 %
1.
321
1.
410
402
004
1.
1.
1.
104
1.
322
1.
313
501
1.
330
1.
420
331
214
421
502
510
304
323
22
1.
1.
1.
1.
1.
1.
1.
1.
772
702
624
517
289
54
62
29
6
one
7
oil
coo
522
250
218
140
128
061
22
028
997
937
884
862
1
837
797
771
748
722
3
6
3
4
26
14
4
32
15
13
13
15
504
315
440
334
433
006
424
106
523
116
514
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
702, 532
710, 216
1.
622
1.
1.
684
637
607
<1
6
3
524
1.
580
562
1
703, 533
1.
534
524
501
497
468
<1
335
226
712
1.
4
630, 316
1.
4
800
631
614
406
1.
5
1.
1.
4U15
3418
3336
3095
2995
27do
2748
2635
2560
2438
2372
2341
2271
2176
2154
1805
1743
1709
1563
1532
1474
1448
1359
1306
1144
1118
1069
0984
0745
0694
5
4
2
2
<1
3
2
Q
O
2
<1
3
2
4
6
9
4
3
<1
<1
1
2
3
1
2
<1
<1
3
2
2
5
<1
<1
0368
0346
0326
0303
0257
<1
<1
0221
0140
0110
2
2
2
2
4
8
1.
457
4
1.
452
446
6
1.
610
414
426
422
7
1.
1.
0.
0047
9986
1
1
1
<1
Calcium Fluoride Phosphate
(fluorapatite),
The sample was colorless and optically negative
with the indices of refraction No= 1.633 and Ng
(Z-values of the three strongest lines are:
2.800, 2.702,
— Continued
Structural data. Hentschel [1] in 1923 determined that fluorapatite has the space group
CL-P6/m (No. 176) and 2[Ca5F(PO,)3] per unit
= 1.628.
The
Ca5F(P04)3 (hexagonal)
cell.
The
and 2.772 A.
density of synthetic fluorapatite calculated
NBS lattice constants is 3.201 g/cm^ at
from the
25 °C.
Lattice constants
1923
1930
1931
1939
1940
1941
1946
1950
1952
1952
1952
1959
1963
Hentschel
[1]
Ndray-Szab6
Mehmel
Thewlis, Glock, and
Bale [6]
Klement and Dihn [7] _
Beevers and Maclntyre
Wallaeys and Chaudron
6.
Brasseur
[10]
McConnell [11]
9.
9.
_
[8]-[9]
9.
9.
_
.
9.
_
9.
and Barlow [12] .
Carobbi and Mazzi [13] _
National Bureau of Standards synthetic samAltschuler, Cisney
A
6.
9.
[5]
A
33
9.
Murray
c
{I 43
9.
[2]
[3]
a
9.
9.
*9.
39
38
38
39
38
39
350
364
395
386
424
3684
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
*6.
83
89
89
86
88
89
89
89
870
879
882
878
888
8841 at 25 °C
ple described above.
Sample from Durango, Mex.^
Sample from Llallagua, Bolivia.''
9.
9.
3923
3712
6.
6.
8821 at 25 °C
8824 at 26 °C
•The error in these values was ±0.0003.
"•bThese samples were obtained from the National Museum; the number of the Mexican sample is 104021, of the Bolivian sample 103869. These cell constants were derived from powder diffraction measurements made at the same time as those on the synthetic sample.
» This particular sample from Durango may not be typical because of its lanthanum content.
Spectrographic analysis showed 1 to 4 percent of lanthanum
and 0.1 to 1.0 percent each of cerium and sodium as major impurities. The error on these lattice constants was ±0.0005.
b Spectrographic analysis showed major impurities to be 0.1 to 1.0 percent of manganese and 0.01 to 0.1 percent each of iron and strontium.
References
[1]
[2]
[3]
[4]
[5]
[6]
[7]
H. Hentschel, Rontgenographische Untersuchungen
am Apatit, Centr. Mineral. Geol. p. 609 (1923).
St. Ndray-Szabo, The structure of apatite (CaF)Ca4
(POOa, Z. Krist. 75, 387-398 (1930).
M. Mehmel, Beziehungen zwischen kristallstruktur
und chemischer formel des apatits, Z. physik Chem.
B15, 223-41 (1931).
D. McConnell, The substitution of SiOj- and SO4groups for PO4- groups in the apatite structure;
ellestadite, the end-member. Am. Mineralogist 22,
981 (1937).
Thewlis, G. E. Glock, and M. M. Murray, Chemical
and x-Ray analysis of dental, mineral, and synthetic
apatites. Trans. Faraday Soc. 35, 358-63 (1939).
W. F. Bale, A comparative roentgen-ray diffraction
study of several natural apatites and the apatitelike constituent of bone and tooth substance. Am.
J. Roentgenol. 43, 735-47 (1940).
R. Klement and P. Dihn, Isomorphc Apatitarten,
Naturwissenschaften 29, 301 (1941).
[8]
C.
A. Beevers and D. B. Maclntyre, The atomic
structure of fluorapatite and its relation to that of
tooth and bone material, Mineralog. Mag. 27, 254
(1946).
[9]
[10]
[11]
R. Wallaeys and G. Chaudron, Sur la preparation de
certaines apatites mixtes, Compt. rend. 231, 355357 (1950).
H. Brasseur, Note sur les constantcs roticulaires et
les indices de refraction des fluor-, chlor-, et hydroxylapatites. Proceedings of the International
Symposium on the reactivity of solids, Gothenburg
Part 1, 363-7 (1952).
D. McConnell, The Problem of the carbonate apatites
IV, Structural substitutions involving CO and OH,
Bull. Soc. Franc. Mineral, et Crist. 75, 428 (1952).
Z. S. Altschuler, E. A. Cisney, and I. li. Barlow,
X-Rav evidence of the nature of carbonate-apatite,
Bull. Geol. Soc. Amer. 63, 1230-31 (1952).
G. Carobbi and F. Mazzi, Sulla possibiHta di una
sostituzione parziale del calcio con I'uranio nel
reticolo dell' apatite, Atti. accad. naz. Lincei, Mem.
Classe Sci. Fis. Mat. Nat. Ser. II« [8] 5, 159-71
j
J.
[12]
[13]
(1959).
23
9
Cerium Niobium Titanium Oxide
Powder data
Additional
cards.
(eschynite),
CeNbTiOe (orthorhombic)
None.
published
Komkov
patterns.
[1]
1959.
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 26 °C
NBS sample. The sample of cerium niobium
titanium oxide was prepared at NBS by R. S.
Roth from stoichiometric mixtures of cerium
oxide, niobium oxide, and titanium oxide.
The
sample was heated first at 1300 °C for 3 hrs. and
then reheated at 1325 °C for three more hours.
Spectrographic analysis showed the following
major impurities: 0.001 to 0.01 percent each of
020
Oil
120
aluminum, calcium, iron, magnesium, and silicon.
The sample was a dark brown opaque powder.
101
111
4.
021
200
3.
121
3.
220
031
3.
211
131
2.
The
values of the three strongest lines are:
2.975, 3.024, and 3.106 A.
Komkov [1] in 1959 deterStructural data.
mined that cerium niobium titanium oxide has the
space group D^^Pmnb (No. 62) with 4 (CeNbTiOe)
per unit cell. The lattice constants reported by
Komkov have been converted from kX to angstrom units for comparison with NBS values.
rf-
Lattice constants
a
b
o
o
A
Komkov
1959
1963
7.
[1]
National Bureau of
Standards at 26°C.
7.
56
538
c
o
A
A
10.
99
5.
10.
958
5.
43
396
The
density of cerium niobium titanium oxide
calculated from NBS lattice constants is 5.617
g/cm^ at 26 °C.
Reference
[1]
A.
I.
Komkov, Minerals
of the series euxenite-polycrase
and priorite-blomstrandite, Dokl. Akad. Nauk SSSR
126,
24
641-644
(1959).
hkl
d
T
o
A
5.
48
24
4.
841
431
5
24
390
075
10
13
847
773
427
106
024
4
4
36
80
975
808
2 698
100
99
98
2.
474
7
041
122
320
301
240
2.
443
7
032
2.
132
222
051
2.
151
1.
331
042
400
142
340
1.
002
140
112
060
312
420
160, 013
4.
4.
3.
3.
2.
283
2 278
2. 215
2.
2.
2.
1.
1.
1.
1.
170
085
037
031
961
933
922
885
862
852
7
e
O
2'i
1
26
11
5
22
9
9
827
813
783
775
750
2
1.
744
712
667
643
614
6
19
g
5
e
O
1.
606
13
J..
TJV/VJ
22
1.
1.
1.
1.
1.
322
242
123
260
033
1.
252
402
412
342
043, 071
Q
Q
o
Q
Q
y
OKJKJ
341, 103
213
431
351
223
440
5
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
162
360
1.
143, 171
1.
1.
556
553
551
545
528
526
503
483
477
474
2
4
7
4
17
7
10
10
10
3
4
7
4
4
4
Cesium Chromate, Cs2Cr04 (orthorhombic)
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of cesium chromate
was obtained from the Fairmount Chemical Co.
Spectrographic analysis
Newark, N.J.
Inc.,
showed the following major impurities: 0.1 to 1.0
percent rubidium; 0.01 to 0.1 percent each of
potassium and sodium; and 0.001 to 0.01 percent
each of aluminum, barium, calcium, and silicon.
The color of the sample was yellow and it is
The refractive indices are
optically positive.
N„=1.750, N^=1.753, and N^=1.762.
The
(^-values of the three strongest lines are:
and 3.364 A.
Structural data. Miller [1] in 1938 determined
that cesmm chromate has the potassium sulfate
structiire, the space group Dgh-Pnam (No. 62)
with 4(Cs2Cr04) per unit cell.
The lattice constants reported by Miller have
been converted from kX to angstrom units for
comparison with NBS values.
3.342, 3.207,
Lattice constants
MUler
8.
[1]
National Bureau
of Standards
25°C
d
o
120
111
200
210
121
4.
66
4.
602
8
9
4.
213
946
749
20
69
201
3.
130
220
211
031
3.
3.
3.
342
3.
207
002
3.
131
221
2.
230
310
2.
150
998
969
794
725
34
140
122
231
311
212
2.
2.
654
611
554
501
463
15
6
6
17
141
321 240
2.
449
2.
2.
331
314
301
244
The
2.
2.
2.
o
o
o
239
241
2.
150
2.
051 400
2.
8. 429
±0. 001
11.
11.
157
190
±0. 001
2.
2.
18
21
77
100
87
66
8
17
24
11
17
13
31
29
13
A
A
6.
6. 302
±0. 001
Reference
Miller,
2.
132
222
330
density of cesium chromate calculated from
the NBS lattice constants is 4.266 g/cm^ at 25 °C.
J. J.
2.
c
The
32-37 (1938).
3.
8
505
411
364
186
163
109
090
062
8
15
10
15
15
10
1.
004
999
982
977
971
411
123
341
242
1.
967
1.
9152
8
8
26
060
1.
232
312
2.
113
401
2.
340
250
420
[1]
3.
b
380
/
A
a
A
1938
1963
hkl
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
structure of CsjCrOi, Z. Krist. 99A,
2.
1.
1.
1.
1.
1.
8911
8743
8653
9
7
10
14
7
6
213
1.
430
1.
8542
8349
033
332
152
±.
OOL/O
13
6
1 Q
1.
8280
7833
8
16
431
1.
402
1.
1.
2^0
143
1.
1.
7615
7521
7499
7060
6474
441
1.
6263
1.
4
11
6
4
7
6
Cesium Fluoride, CsF
(cubic)
Powder data cards
/~1
1
Card
Index
number
lines
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
hkl
Source
d
1-0872
3.
00
2.
12
3.
48
Davey
[1]
o
colorless.
and Wyckoff
[2]
in
sodium chloride structure, the space group Oh
FmBm (No. 225), and 4 (CsF) per unit cell. The
unit cell measurements reported by Davey,
Posnjak, and Wyckoff, have been converted from
kX to angstrom units for comparison with the
NBS
3.
400
331
420
422
1.
731
determined that cesium fluoride has the
1922
3.
533
622
711
642
c?-values of the three strongest lines are:
3.003, 3.469, and 2.125 A.
Structural data.
Posnjak
111
200
220
311
222
511
440
531
600
620
nesium, nickel, silicon, and sodium. The amount
of rubidium impurity was not determined. The
The
(X
o
A
Additional published patterns. None.
NBS sample. The sample of cesium fluoride
was obtained from Semi-Elements Inc., Saxonburg, Pa. X-ray patterns were prepared from
samples maintained in dry air because of the
deliquescense.
Spectrographic analysis showed
the following impurities: 0.1 to 1.0 percent
potassium; and O.OQl to 0.01 percent each of
aluminum, calcium, copper, iron, lithium, mag-
sample was
/
1923.
Average value
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
0.
.
.
.
.
.
469
003
125
8131
7366
A
81
6.
100
37
25
6.
6.
10
6.
7
6.
6
6.
5036
3798
3446
2278
1576
0630
0166
0024
9512
9173
9067
8420
8036
7830
of last five lines
6.
10
6.
5
6.
4
6.
2
3
3
6.
4
6.
1
6.
2
2
6.
6.
6.
008
007
Oil
013
016
014
014
013
015
015
013
014
014
016
1
6.
2
6.
015
014
013
014
014
6.
014
6.
value.
Lattice constants
A
1922
1923
1963
The
Posnjak and Wyckoff
Davey
[1]
_
.
6.
04
020
6.
014
6.
[2]
.
National Bureau of Standards at
25 °C.
density of cesium fluoride calculated from
the NBS lattice constant is 4.638 g/cm^ at 25 °C.
26
References
[1] W. p. Davev,
[2]
Precision measurements of crystals of
the alkali halides, Phys. Rev. 21, 143-61 (1923).
E. Posnjak and R. W. G. Wyckoff, The crystal structures of the alkali halides II, J. Wash. Acad. Sci.
12, 248-51 (1922).
Cobalt Fluosilicate Hexahydrate, CoSiFe'GHzO (trigonal)
Powder Data
cards.
None.
Additional published patterns. None.
NBS sample. The sample of cobalt fluosilicate
hexahydrate was obtained from the City Chemical
Spectrographic analysis
Co., New York, N.Y.
showed the following major impurities: 0.01 to 0.1
percent each of aluminum, copper, magnesium,
nickel, and sodium; and 0.001 to 0.01 percent each
of calcium, iron, and manganese.
The color of the sample was pink. The indices
of refraction were too low to be measured by the
usual liquid grain immersion method.
The (/-values of the three strongest lines are:
4.69, 4.18, and 2.595 A.
Structural data. Hassel and Richter-Salvesen
1927 determined that cobalt fluosilicate
[1] in
hexahydrate has the nickel chlorostannate structure, the space group CsVRSm (No. 160), and
l[CoSiF6-6H20] per unit rhombohedral cell, or
sICoSiFe 6H2O] per unit hexagonal cell. The unit
cell measurements of Hassel and Richter-Salvesen
have been converted from kX to angstrom units
for comparison with the ISBS values.
hkl
(hex.)
d
0
1962
4.
122
104
311
2.
595
2.
331
193
024
2.
303
2.
312
2.
401
1.
214
223
042
0
A
Hassel and RichterSalvesen [1]_
National Bureau of
Standards at 25 °C.-
110
102
202
211
113
2.
69
18
116
927
2.
668
4.
3.
2.
1.
1.
1.
321
410
232
134
330
1.
413
502
324
422
152
1.
306
600
226
520
244
1.
1.
1.
1.
1.
1.
1.
1.
1.
086
078
100
63
5
11
5
29
2
3
1
<2
042
986
907
900
872
®
}
3
1
}
5
829
771
738
652
562
<2
555
540
479
462
397
<2
4
3
7
<^2
2
<'2
\—
2
c
0
1927
/
A
Lattice constants
a
Internal Standard, „
Tungsten, a = 3. 1648 A
Co, 1.7889 A at 25 °C
A
9.
35
9.
69
9.
370
9.
732
1.
1.
1.
1.
1.
018
416
440
532, 072
1.
1.
1.
1.
3916
3524
3335
2993
2969
2868
2028
1963
1712
1279
2
<2
<2
5
4
2
<2
<2
<2
<2
Reference
[1]
The density of cobalt fluosilicate hexahydrate
calculated from the NBS lattice constants is
2.081 g/cm^ at 25 °C.
0. Hassel and J. Richter-Salvesen, Uber den Kristallbau
der trigonal kristallisierenden heteropolaren Verbindungen von der Zusammensetzung MGe-LRj und
MG5D.LR6 und MG4D2LR6, Z. physik. Chem. 128,
345-361 (1927).
27
Cobalt Perchlorate Hexahydrate, Co(C104)2*6H20 (hexagonal)
Powder data cards- None.
Additional published patterns. West [1] 1935.
NBS sample. The sample of cobalt perchlorate hexahydrate was obtained from the City
Chemical Corp., New York, N.Y. Spectrographic
analysis showed the following major impurities:
0.01 to 0.1 percent of nickel, and 0.001 to 0.01
percent each of copper, magnesium, and silicon.
The color of the sample was pink. It is optically negative with the indices of refraction
Internal Standard,
Silver,
hkl
d
o
200
101
c?-values of the three strongest lines are:
and 2.840 A.
Structural data. West [1] in 1935 determined
that cobalt perchlorate hexahydrate has the
magnesium perchlorate hexahydrate structure,
the space group Dgh-PB/mmm (No. 191), and
4[Co(C104)2-6H20] per unit cell. The lattice constants of West have been converted from kX to
angstrom units for comparison with the
values.
3.900, 4.139,
6.
4.
211
311
401
3.
661
2
3.
<2
002
420
2.
052
840
618
556
4.
3.
2.
2.
1935
1963
West
[1]
National Bureau of
Standards at 26 °C.
55
610
±. 002
15.
15.
2.
069
8
1.
952
874
9
1.
1.
828
10
1.
7655
6
1.
2
3
1.
6907
5502
4869
4753
2
4
1
1.
4201
2
1
1.
3011
4
1.
2413
2
1
1
c
o
A
5.
21
2372
±. 0007
5.
1.
1.
443
660
224
8
3
2.
402
640
641
820
802
821
60
10
2.
440
620
422
441
621
3
62
100
440
296
253
2.
601
A
3
4
4.
421
600
Lattice constants
763
881
345
139
900
111
201
220
202
NBS
a
/
A
Ne=-1.492 and No=1.512.
The
a= 4.0861 A
A at 26 °C
Co, 1.7889
3
3
2
Reference
The
density of cobalt perchlorate hexahydrate
calculated from the NBS lattice constants is
2.199 ±0.001 g/cm^ at 26 °C.
28
[1]
The
C. D. West,
pounds
Z. Krist.
II.
A
crystal structures of hydrated comStructure
type
Mg(C104)2-6H20,
91, 480 (1935).
9
1
1
1
Copper Sulfate (chalcocyanite), CUSO4 (orthorhombic)
The
Powder data cards
the
Card
J-L
U 111 U
density of copper sulfate calculated from
constants is 3.903 g/cm^ at 26 °C.
NBS lattice
Source
Irdex
Internal Standard,
lines
J.
a = 4.0861 A
Cu, 1.5405 A at 26 °C
Silver,
12-779
Hanawalt, Rinn, and Frevel
62
20
55
2.
4.
3.
flfCl
[1]
=
1938.
1J
ii
I
Additional
published
Pistorius
pattern.
o
Ui 1
1960.
NBS
sample. The sample of copper sulfate
was obtained from the NBS laboratories in
Boulder, Colo. The sample was ground and
fumed off with sulfuric acid and placed immediSpecial care was
ately in a dry atmosphere.
necessary to keep it anhydrous. The sample
was mounted in a holder which maintained a dry
atmosphere while the patterns were run. Spectrographic analysis showed the following major
impurities: 0.01 to 0.1 percent silicon, and 0.001
to 0.01 percent each of aluminum, iron, magnesium, and nickel.
The sample was
colorless.
The
indices
of
could not be obtained because the
sample was too fine.
The (Z-values of the three strongest lines are:
refraction
2.611), and 4.187 A.
Structural data. Kokkoros and Rentzeperis
[3] in 1958 determined that copper sulfate has the
space group D^g-Pmnb (No. 62) and 4(CuS04)
per unit cell. Rama Rao [4] in 1961 made
refinements on the structure.
3.549, (2.616
and
b
o
69
c
8.
39
83
6.
811
6982
± 0.
0006
6.
[2]
National Bureau
of Standards
at 26 °C.
8.
8.
±
.
391
3956
0006
3.
3.
4.
4.
±
.
791
8291
0004
References
[3]
[4]
3
4
91
1
9
9 fil
9
^. fil
oil1
031
002
2.
n
viz
99
9
^9 1
^. OZ
"^01
9
^. OUl
1
1
2.
z.
301
140
Q9n oil
Q1
o^U,
9*3
1
999
400
042
Uio
2.
2.
1
\
95
I
50
421
416
1
u
9
7
1
uyo
027
003
3
4
Q
1
1.
Q71
y
/
1.
yoo
1
1
1.
774.Q
it
98
1
1
.
1.
o
9
fi74.Q
o / tty
1
5843
11
1
0
1.
OoUO
ODOU
OOOO
1 ^1
101
1.
tJ^OO
*J
341
1.
4578
<1
1
1.
A.'X^VX
^ooU
22
1.
'±zyo
1.
1.
A
9n
HAH
A n9
422
303
9
il
c
o
•x
1.
oyyo
4.
1.
o / uU
19
1.
3073
3056
1.
1
1.
O
1
o
062
004
1
1.
1
L.
1.
1.
U14A
1
lo2
1
9
1
C\'\
1.
1.
1.
1.
1.
1.
[2]
346
172
191
413
214
D. Hanawalt, H. W. Rinn, and L. K. Frevel,
Chemical analysis by x-ray diffraction, Ind. Eng.
Chem. Anal. Ed. 10, 457-512 (1938).
C. W. F. T. Pistorius, Lattice constants and probable
space group of anhydrous cupric sulfate (artificial
chalcocyanite), Am. Mineralogist 45, 744-746 (1960).
P. A. Kokkoros and P. J. Rentzeperis, The crystal
structure of the anhydrous sulfates of copper and
zinc, Acta Cryst.
11, 361 (1958).
B. Rama Rao, A note on the crystal structure of
anhydrous copper sulfate. Acta Cryst. 14, 321
J.
77
a
D
021
/I /I
[1]
87
TOO
200
OZU, oil
[3].
Pistorius
1
111
111
A
4.
Rentzeperis
1960
1963
4
I
5
^
/
o
A
A
6.
m
91
Q
zio
a
Kokkoros &
1
ZOl
Lattice constants
1958
A
[2]
DiU, oil
1.
4d3
371
181 631
1.
244
622
462
424
282
0.
1.
1.
.
.
.
.
90 O
/yiy
9on9
/yuz
1
H
J
97^*3
Do
2107
2075
1 0/1 c
iy4o
1 O
Q
lyio
1 C^HQ
lOUo
1496
1258
1
0964
0790
0721
0323
0138
9990
9850
9812
9536
9249
3
2
}
2
J
1
^
}
3
4
5
4
<1
1
3
3
4
3
2
(1961).
728-345
0^64
5
29
Dysprosium Arsenate, DyAs04
Powder data
cards.
None.
Additional published patterns. None.
NBS sample. The sample of dysprosium
arsenate was prepared at NBS from a water soludysprosium trichloride and arsenic
of
tion
pentoxide.
The sample was dried at 110 °C.
Spectrograph ic analysis showed the following
major impurities: 0.01 to 0.1 percent antimony
and 0.001 to 0.01 percent each of calcium,
magnesium, lead, and sUicon.
The sample is colorless. The indices of
refraction could not be determined because the
sample was too fine.
The
values of the three strongest lines are:
3.537, 2.669, and 1.8246 A.
Durif and Forrat [1] in 1957
Structural data.
determined that dysprosium arsenate has the
zircon structure with the space group Dlh-/4i/amd
(No. 141) and 4[DyAs04] per unit cell.
rf-
Lattice constants
a
c
o
1957
1963
Durif and Forrat [1]
National Bureau of
Standards at 25 °C.
The density
from the
NBS
of
o
A
A
09
7. 0733
±0. 0003
315
6. 3133
±0. 0003
7.
dysprosium arsenate calculated
lattice constants
is
6.338 g/cm^ at
and
F. Forrat, Sur quelques ars6niates des
terres rares k structure zircon, Compt. Rend. 345,
1636-38 (1957).
30
hkl
= 4.0861 A
Co, 1.7889
a
A
°C
at 25
1
o
713
537
9 898
lUi
4.
15
200
211
112
220
3.
100
OUl
103
321
2.
312
400
91 ^
411
420
303
332
224
512
440
o
O
U
1
99
2.
209
017
1
87'^
1
894.R
47
1
7R81
1 A
1^
1.
7522
6556
Ool^
1,
Oi\jZ
1.
1.
8
8
0
3
<3
A
14
1
A
1 A
14
1.
501
Ann
404
532
424
631
1 1
A
415
444
552
316
Reference
A. Durif
Internal Standard,
Silver, a
1.
1.
4413
3802
oo^O
1
1.
97m
ZiKJl
1.
ZoU4
12
<3
6.
25 °C.
[1]
(tetragonal)
604
624
1.
1.
1.
1.
1.
1.
1.
0.
.
.
.
.
1790
1773
lo^o
1172
0400
0297
0171
9803
9535
9521
9444
9126
6
7
A
0
11
3
5
3
7
9
10
4
9
1
Erbium Arsenate, ErAs04
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of erbium arsenate
was prepared at NBS from a water solution of
Specarsenic pentoxide and erbium trichloride.
trographic analysis showed the following major
impurities: 0.01 to 0.1 percent each of nickel and
antimony and 0.001 to 0.01 percent each of
aluminum, calcium, magnesium, lead, and silicon.
The sample was very pale pink. The indices
of refraction could not be determined because
the sample was too fine.
The a- values of the three strongest lines are:
3.510, 2.652, and 1.812 A.
Durif and Forrat [1] in 1957
Structural data.
determined that erbium arsenate has the zircon
structure with the space group Dlt-l4i/amd
(No. 141) and 4(ErAs04) per unit cell.
a
c
o
o
A
1957
1963
hkl
7.
04
7.
0203
±. 0002
A
6.
6.
±
.
30
2761
0004
J
density of erbium arsenate calculated from
the NBS lattice constants is 6.574 g/cm^ at 25 °C.
Reference
[1]
A. Durif and F. Forrat, Sur quelques ars^niates des
terres rares a structure zircon, Compt. Rend. 345,
1636-38 (1957).
7
I
o
101
4.
200
211
112
220
3.
2.
339
301
103
321
312
2.
193
8
L.
UU5
ooy
ol^
0
204
501
224
512
440
bUO, 404
532
620, 424
116
613
The
Internal Standard,
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
a
400
213
411
420
332
Lattice constants
Durif and Forrat [1]
National Bureau of
Standards at 25 °C.
(tetragonal)
A f\
AAA
640, 444
712, 316
604
624
732
800
820
516
660
752
679
510
O
A0
Z. 4ol
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1
1.
1.
i.
0.
.
.
.
.
.
.
.
.
.
12
100
4A
DO
2
7
OZ
755
741
643
5698
4638
14
4
2
15
4328
3702
3z64
2610
2411
9
1701
1240
1 nno
luyo
U^o4
uluy
14
1
o
8
10
3
7
7
o
\A
Q
o
1
9734
9465
9380
9062
8845
6
11
4
5
5
8777
8516
8329
8274
7898
<1
<1
4
5
10
Europium Arsenate, EuAs04
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of europium arsenate
was prepared at NBS from a water solution of
arsenic pentoxide and europium trichloride.
It
was dried at 110 °C. Spectrographic analysis
showed the following major impurities: 0.01 to
0.1 percent each of antimony and silicon; 0.001
to 0.01 percent each of aluminum, calcium, iron,
magnesium, and titanium.
The sample was
The
colorless.
indices
of
refraction could not be determined because the
sample was too fine.
The (Z-values of the three strongest lines are:
and 1.8467
A
3.578, 2.704,
Structural data. No reference to the structure
of europium arsenate was found but it is apparently isostructural with yttrium arsenate
with the space group Dlg-l4i/amd (No. 141)
and 4(EuAs04) per unit cell.
Lattice Constants
a
c
o
A
A
1963
The
National Bureau of
Standards at 25 °C.
7.
1541
±. 0004
3953
±. 0004
6.
density of europium arsenate calculated
from the NBS lattice constants is 5.902 g/cm^
at 25 °C.
32
(tetragonal)
hkl
Internal Standard,
Tungsten, a = 3. 1648 A
Co, 1.7889 A at 25 °C
d
/
o
A
101
200
112
220
202
301
103
321
312
400
420
332
204
224
512
4.
3.
2.
2.
2.
2.
2.
1.
1.
1.
77
578
704
530
386
236
0430
8953
8467
7886
2
100
63
17
5
5
3
5
45
12
11
1.
5997
4914
4595
3511
2847
440
1.
2646
600, 404
1.
3
7
1.
1.
1.
1.
12
8
8
8
1.
1921
1455
1308
116
1.
0428
10
5
444
316
604
624
0.
9919
9643
9557
9233
5
11
3
6
532
424
1.
.
.
.
8
Gallium Arsenide, GaAs (cubic)
Powder data cards. None.
Additional published patterns.
j
I
IS
structure, the space
and 4 (GaAs) per unit
hlrl
d
o
1 1 1
111
oil
group Td-F43m (No. 216),
cell.
1.
1.
4.99
1.
Oi i
1.
440
0.
1.
531
.
620
.
Average value
o
3.
^uu
331
711
Lattice constant
National Bureau of Standards at
25 °C
a
/
A
533
444
1963
Internal Standard,
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
one.
NBS sample. The sample of gallium arsenide
was obtained from Semitronics Inc., Winchester,
Mass. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent iron,
0.01 to 0.1 percent chromium, nickel, and lead;
and 0.001 to 0.01 percent each of cobalt, copper,
indium, manganese, molybdenum, and silicon.
The sample was a dark gray opaque powder.
The c?-values of the three strongest lines are:
3.262, 1.998, and 1.704 A.
Goldschmidt [1] in 1927 deStructural data.
termined that gallium arsenide has the zinc sulfide
.
.
.
262
100
5.
61
5.
704
413
297
29
5.
7
11
5.
154
088
9993
9557
8938
17
5
3
6
6
5.
8621
8159
7916
4
2
6
of last five lines_.
5.
0.
5.
5.
5.
648
650
650
648
652
647
o4s
652
653
652
5.
652
652
652
5.
652
5.
5.
A
5.
652
Reference
The density
the
NBS
of gallium arsenide calculated from
lattice constant is 5.321 g/cm^ at 25 °C.
[l]
V.
M. Goldschmidt, Geochemische Verteilungsgesetze
S'k? 8?390 a°926-27^!'^'°'^'
33
Holmium
Arsenate,
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of holmium arsenate
was prepared at NBS from a water solution of
Specarsenic pentoxide and holmium trichloride.
trographic analysis showed the following major
impurities: 0.01 to 0.1 percent antimony and
0.001 to 0.01 percent each of aluminum, calcium,
iron, lead,
and
silicon.
(tetragonal)
hkl
color of the sample was very pale pinkish
white.
The indices of refraction could not be
determined because the sample was too fine.
The c?-values of the three strongest lines are:
and 1.822 A.
Structural data. The structure of holmium
arsenate was not found in the literature; however,
it is apparently isostructural with erbium arsenate
~
having the space group
iH4i/amd (No. 141)
and 4 (H0ASO4) per unit cell
D
d
r
a
c
a
0
A
National Bureau of Stand- 7. 0548
ards at 25 °C.
±.0003
A
3159
±. 0005
6.
0
2.
528
819
668
494
202
om
oUi
2.
203
Wo
2.
017
868
822
3.
01
1
2.
2.
oi-Z
1.
400
4zU
i.
/DO
1.
5774
4710
4411
3769
1.
1.
KA1
oUl
1.
224
i.
1.
1.
441)
1.
404, 600
1.
532
4z4
llD
OAC
zUb
C Af\
640
552
CA
oU4A
CO
DZ4
1.
1.
1.
0.
.
.
yl
.
'TOO
.
800
The
density of holmium arsenate calculated
from NBS lattice constants is 6.420 g/cm^ at 25 °C.
34
820
516
644
660
100
4
67
20
a
1.
CIO
512
Lattice constants
/
A
OA
^U4A
1963
Internal Standard, „
Tungsten, a = 3.1648 A
Cu 1.5405 A at 25 °C
101
The
3.528, 2.668,
H0ASO4
.
.
.
.
.
oooy
3279
2670
2470
1763
1159
0301
0086
9781
9516
9428
9110
8890
8818
8556
8378
8317
8314
0
7
5
4
50
ID
14
15
9
1
A
y
4
9
3
5
0
10
3
1
4
7
2
3
4
<1
1
2
3
2
Indium Arsenide, InAs
(cubic)
Powder data cards
Internal Standard, Tungsten, a
A
Cu, 1.5405
Card
number
lines
T
d
8-387
1.
1.
2.
Liu and Peretti
24
[1]
1953.
d
J
o
o
A
02
10
Additional published patterns.
= 3. 1648 A
°C
hkl
Source
Index
at 25
A. landelli
[2]
111
3.
200
220
311
222
3.
2.
1.
1.
498
030
100
8
6.
059
6.
060
142
Oi
D.
8263
7489
«JO
D.
9
o.
uoy
UO
uoo
9
6.
13
9
6.
058
057
D.
UO /
Q
ft
nt=iR
/
1941.
NBS sample. The sample of indium arsenide
was obtained from Semitronics, Inc., Winchester
Mass. Spectrographic analysis showed the fol-
400
331
420
422
511
lowing impurities: 0.01 to 0.1 percent each of
silver, aluminum, bismuth, chromium, iron, gallium, and titanium; and 0.001 to 0.01 percent each
of barium, calcium, cobalt, magnesium, nickel,
antimony, and tin.
The sample was an opaque metallic powder.
The
c?-values of the three strongest lines are:
3.498, 2.142,
1941
deter-
mined that indium arsenide has the zinc
sulfide
Structural
data.
landelli
[2]
in
group Td-F43m (No. 216), and
4(InAs) per unit cell. The unit cell measurement
reported by landelli has been converted from kX
to angstrom units for comparison with the NBS
1.
1.
1.
1.
440
1.
531
1.
600
620
533
0.
444
711
642
731
and 1.8263 A.
1.
i.
.
.
.
.
.
5145
3895
3544
2366
1658
0707
0241
uuy
9578
9239
7
6.
10
6.
1
6.
6
3
6.
3
6.
6
15
8
6.
/
8745
8483
8096
7887
6.
057
058
058
058
058
6.
059
058
058
058
6.
058
6.
structure, the space
Average value of
last five lines.
value.
Lattice constants
A
1941
1953
1963
landelli
[2]
Liu and Peretti [1]National Bureau of Standards at
25 °C
6.
048
058
6.
058
6.
References
[1]
The
NBS
density of indium arsenide calculated from
lattice constant is 5.668 g/cm^ at 25 °C.
Liu and E. A. Peretti, The indium-arsenic system.
Am. Soc. Metals 45, 677-85 (1953).
A. landelli, Sulla struttura dei composti, InP, InAs, e
InSb, Gazz. chim. ital. 71, 58-62 (1941).
T.
S.
Trans.
[2]
35
Lanthanum Arsenate, LaAs04
(monoclinic)
The sample was
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of lanthanum
arsenate was prepared at NBS from a water solution of arsenic pentoxide and lanthanum triSpectrographic
It was dried at 110 °C.
chloride.
analysis showed the following major impurities:
0.01 to 0.1 percent each of aluminum, iron, and
silicon, and 0.001 to 0.01 percent each of calcium, magnesimn, lead, and antimony.
The
colorless.
indices of re-
could not be determined because the
sample was too fine.
The (Z-values of the three strongest lines are:
fraction
and 3.391 A.
Structural data.
No reference to the structiire
of lanthanum arsenate was found; however, it is
apparently isostructural with lanthanum phosphate with the space group Cfh-P2i/n (No. 14)
and 4(LaAs04) per unit cell.
3.185, 2.983,
Lattice constants
a
b
o
o
A
1963
The
National Bureau of Standards
at 25 °C.
7.
±
.
0078
0007
7.
Internal Standard,
fifct
d
A
°C
at 25
212
6.
±
Silver, a
tifct
101
5.
110
Oil1
111
101
4.
36
4.
4.
4.
111
020
200
002
120
3.
210
012
202
212
112
3.
3.
3.
3.
3.
45
95
85
35
215
635
606
391
278
185
d
/
322
1.
12
231, 223
1.
10
040
132
140, 321
4
8
<1
7
16
60
8
100
24
87
2.
527
220
2.
471
6
122
2.
8
301
031
2.
430
326
103
2.
311
221
122, 310
013, 131
212
2.
2.
257
252
24
22
15
6
11
10
2.
213
185
159
089
4
2.
023
31
1.
991
3
5
2.
2.
301
231
103, 132
1.
320
1.
023
1.
1.
959
942
916
868
A
°C
at 25
/
o
2.
2.
±.
A
068
983
722
546
2.
104°29. 3'
= 4.0861 A
Cu, 1.5405
o
A1
7670
0007
lattice constants is 5.572
A
_
.
Internal Standard,
= 4.0861 A
Cu, 1.5405
o
±. 001
NBS
0
A
A
density of lanthanimi arsenate calculated from the
Silver, a
c
1.
1.
1.
400
402
410
330, 114
004
1.
312
214
332, 240
1.
142
124
1.
322
411
413
242
314
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
7
341, 421
1.
6
431,423
340
124, 043
1.
1.
134
1.
332, 511
204, 412
1.
414
510
052
1.
3
32
14
4
1.
1.
1.
1.
832
808
803
795
743
20
696
689
651
647
638
4
7
6
5
22
11
11
11
5
632
604
593
4
581
531
2
6
519
516
504
502
487
2
425
416
410
391
383
374
348
337
333
320
7
8
1
2
2
3
2
4
3
9
8
9
4
6
3
8
6'
g/cm^ at 25 °C.
Lanthanum Niobium Titanium Oxide, LaNbTiOe
Powder data
j
j
cards.
(monoclinic)
None.
Additional published patterns. None.
NBS sample. The sample of lanthanum niobium titanium oxide was prepared at NBS by
K. S. Roth from stoichiometric mixtures of the
oxides of lanthanum, niobium, and titanium.
The sample was first heated at 1300 °C for 3 hr
and then heated at 1350 °C for 3 hr. Spectrographic analysis of the original oxides showed no
impurities greater than 0.05 percent.
The
sample
was
colorless.
The
refractive
could not be determined because the
sample was too fine.
The (i-values of the three strongest lines are:
indices
and 3.306 A.
Structural data.
P. M. de Wolff [1] in 1962
determined that lanthanum niobium titanium
oxide has a C-centered monoclinic lattice.
3.444, 3.331,
Lattice constants
a
b
o
o
hkl
de Wolff [1]
National Bureau of Standards at
25 °C.
11.
11.
20
196
8.
8.
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
d
o
A
A
1962
1963
c
A
85
851
hkl
5.
27
5.
265
115°18'
115°16'
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu 1.5405 A at 25 °C
d
/
/
o
A
110
200
6.
111
111
4.
220
3.
311
021
221
310
130
5.
3.
3.
3.
3.
3.
2.
202
2.
131
2.
400
312
421
2.
331
311
330
2.
2.
2.
2.
2.
511
2.
022
2.
112
422
041
241
132
2.
2.
2.
1.
1.
68
063
523
444
331
306
241
183
153
833
632
573
531
421
355
332
202
331
531
241
22
10
10
100
100
31
30
20
1.
761
1.
1.
4
10
10
31
16
744
731
10
1.
1.
721
1.
715
678
10
8
150
441
222
621
1.
151
1.
530
113
042,223
511
620
1.
94
36
16
10
11
1.
916
868
825
783
1.
1.
1.
1.
1.
669
651
620
603
579
9
6
9
6
10
11
4
6
8
273
249
223
170
096
14
4
10
065
033
006
993
941
12
16
10
8
8
711
1.
333
1.
152
531
1.
1.
563
507
459
427
5
9
4
4
6
9
Reference
[1]
P.
M. de
Wolff, private communication.
37
Lithium Phosphate, low form (lithiophospiiate), Li3P04 (orthorhombic)
Powder data cards
Card
Index
number
lines
12-230
3.
The density of lithium phosphate, low form,
calculated from the NBS lattice constants is 2.480
g/cm^ at 25 °C.
Source
3.
2.
Fisher
[1]
1958.
Silver, a
hkl
A high form is obtained from samples that have
been heated above approximately 500 °C.
Additional published pattern. Matias and Bondareva [2] 1957.
NBS sample. The sample of lithium phosphate
was obtained from the City Chemical Co., New
York, N.Y. Spectrographic analysis showed the
following major impurities: 0.1 to 1.0 percent calcium; 0.01 to 0.1 percent each of aluminum, sodium, and strontium; and 0.001 to 0.01 percent
each of barium, iron, magnesium, and silicon.
The sample was colorless. The indices of refraction could not be determined because the
sample was too fine.
values of the three strongest lines are:
3.973, 3.797, and 2.640 A.
Structural data. Zemann [3] in 1960 studied a
crystal of Li3P04 that had been grown in molten
LiCl and determined that it has the space group
D^«-Pmnb (No. 62) and 4(Li3P04) per unit cell.
find that the lower form apparently has the
same structure with only slight changes in the
lattice constants, principally in the c-direction.
The cell constants of Zambonini and Laves have
been converted from kX to angstrom units for
comparison with the NBS values.
c?-
We
Lattice constants
a
b
1932
1963
Zambonini and
Laves [4].
National Bureau
6.
6.
±
of Standards
at 25 °C.
.
08
1155
0004
c
a
o
A
Cu, 1.5405
= 4.0861 A
A
10.
28
467
±. 001
T
4.
4.
87
101
021
121
8452
[4]
38
o.
lyl
3.
554
071
059
3.
200
3.
220
040
002
221
041
2.
2.
640
bl6
423
318
303
022
2.
199
141
122
320, 202
2.
I.
2.
2.
O
ICC
2. 155
1.
301
1.
241
222
321
142
160
1.
1.
1.
1.
1.
34
100
56
\
26
64
oa
00
47
\
<1
4
070
899
879
3
839
785
769
4
14
7074
6777
1
2
9
1
2
061
L 6415
1
340
1.
161
1.
6
2
103
023, 312
1.
6083
5855
5616
5431
400
260
L 5287
11
16
1.
1.
123
1.
420
1.
421
1.
223
143
1.
440
080
402
303
422
243
J. Fisher, Note on lithiophosphate, Am. Mineralogist
43, 761-2 (1958).
V. V. Matias and A. M. Bondareva, Lithiophosphate,
a new mineral, Doklady Akad. Nauk S.S.S.R.
112, 124-6 (1957)
an English abstract exists in
Am. Mineralogist i2, 585 (1957).
280
520
Zemann, Die Kristallstrukturvon Lithiumphosphat,
LiaPOi, Acta Cryst. 13, 863-7 (1960).
F. Zambonini and F. Laves, tJber die Kristallstruktur
des Li3P04 und seine Beziehung Zum Strukturtyp
des OHvin, Z. Krist. 83, 26-28 (1932).
460
343
380
D.
J.
3.
232
973
5152
4959
4675
4043
4
3
1
1
2
L 3776
3409
1. 3203
L 3078
L 2931
14
2
2
<1
4
.
;
[3]
5.
± 0005
References
[2]
I
A
020
120
053, 361
[1]
°C
at 25
o
A
A
10.
i,
t
a
The
I,
I
Internal Standard
98
80
67
j
501
281
442
L 2848
8
2788
L 2656
L 2550
1. 2533
4
2027
L 1909
1. 1860
L 1676
L 1591
<1
1498
1394
1014
<1
<1
1.
1.
1.
1.
1.
2
1
1
2
2
3
2
2
Lithium Phosphate, high form, Li3P04 (orthorhombic)
Powder data cards. None. Powder data card
No. 12-230 has a pattern by Fisher [1] which seems
The sample is changed
to be for the low form.
to the high form when it has been heated above
approximately 500 °C.
Additional published patterns. Tien and Hummel [2], 1961.
NBS sample. The sample of lithium phosphate
was obtained from the City Chemical Co, New
York, N.Y. It was heated at 800 °C for 15 min.
hkl
InternarStandard, „
Tungsten, a = 3.1648 A
Cu 1.5405 A at 25 °C
d
Spectrographic
1.556,
and N^=1.560.
The
c?-
values of the^three strongest lines are:
and 2.640 A.
3.978, 3.834
hkl
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu 1.5405 A at 25 °C
I
d
o
o
^4
46
3. 978
O OO A
3. 834
o
oD
6. 588
29
171
7
162
143
431
233
093
058
640
619
583
18
17
121
3.
3.
2.
131
2.
311
002
140
221
041
2.
141
122
231
051
212
311
241
151
222
042
321
060
160
331
061
251
340
103
023
341, 400
A
5.
200
220
040
2.
100
93
£i O
bd
67
37
27
853
844
838
800
793
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
260
420
1.
1.
133
1.
213, 332, 071
1.
421
1.
772
745
679
657
646
6305
6080
5848
5659
5285
5158
4673
4429
4322
4067
1.
1.
1.
1
1.
1.
3198
3095
2984
OA
1 A
2910
2806
2682
2651
2414
2390
2002
2
6
520, 253
1.
1905
1875
X.
J. 1
3
501
163
281
1.
<1
034
1.
460
214
1.
531
1.
380
234
1.
1.
4
2
522
314
154
363
064, 382
1
2-10 0
0.
3
3
o
1.
1
1.
095
1.
1
333
2.
927
885
1.
1.
4
163
1.
1.
3943O
3873
3562
o4d7
O 0£J
66bl
1.
2.
1.
1.
181
2.
2.
1.
Oft A
1.
14
47
2.
440
080
402
262
180, 361
1
313
081
323
521
462
406
327
313
2.
/
A
4.
er
0.1 to 1.0
The sample was colorless and optically positive,
with the indices of refraction N„= 1.550, N;3=
A
101
021, 111
showed
the following
percent calcium; 0.01
to 0.1 percent each of aluminum, sodium, and
strontium; and 0.001 to 0.01 percent each of
barium, iron, magnesium, and silicon.
A
020
Oil
120
analysis
major impurities-
5
4
4
14
5
6
<1
3
3
4
5
9
182,
391
453
472, 503, 621
481
17
283, 552
1
533
602, 354
7
5
1.
1.
1.
1.
1.
1.
1.
1.
1.
.
.
.
.
.
.
.
O
J-
<1
<1
<1
<1
2
1
<1
5
o
0
5
4
2
<1
<1
4
o
3
2
2
1688
1608
3
1499
1354
1231
1015
0850
<1
<1
<1
0719
0481
0456
0314
0056
<1
9910
9902
9867
9805
9749
<1
<1
9705
9442
9414
<1
<1
<1
1
2
1
1
<1
<1
1
<1
<1
<1
<1
39
Lithium Phosphate, high form, Li3P04 (orthorhombic)
Structural data. Zemann [3] in 1960 studied a
crystal of Li3P04 that had been grown in molten
LiCl and determined that
it has the space group
(No. 62) and 4(Li3P04) per unit cell.
The cell constants of Zambonini and Laves have
been converted from kX to angstrom units for
comparison with the NBS values.
—Continued
The density of lithium phosphate, high form
calculated from the NBS lattice constants is 2.43
g/cm^ at 25 °C.
D^^Pmnb
Lattice constants
a
b
c
References
o
o
A
o
A
A
[1]
D.
J.
40
1932
Zambonini and
Laves [4].
1960
1963
Zemann
[3]
National Bureau
of Standards
at 25° C.
6.
08
10.
28
4.
87
[2]
6.
12
10.
53
4.
93
9228
[3]
1147
±. 0005
6.
475
±. 001
10.
4.
±. 0005
[4]
Note on lithiophosphate. Am. Mineralo
761-2 (1958).
Fisher,
gist 43,
T. Y. Tien and F. A. Hummel, Studies in lithium oxide
systems: X, lithium phosphate compounds, J. Am.
Ceram. Soc. U, 206-8 (1961).
Zemann, Die Kristallstruktur von Lithiumphosphat,
Li3P04, Acta Cryst. 13, 863-7 (1960).
F. Zambonini and F. Laves, Uber die Kristallstruktur
des Li3P04 und seine Beziehung Zum Strukturtyp
des Ohvin, Z. Krist. 83, 26-28 (1932).
J.
1
Magnesium Ammonium Phosphate Hexahydrate
(struvite),
MgNH4P04 6H2O
•
(orthorhombic)
Powder data cards
Card
Index
number
lines
5-0316
4.
2.
2.
Source
hkl
Hanawalt, Rinn and Frevel
28
93
69
Internal Standard,
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
7
I
[1]
1938.
o
A
7
001
110
Additional published patterns.
NBS
020
None.
The sample
NBS
hydrogen orthophosphate. Spectrographic analysis showed the following major impm-ities: 0.01
to 0.1 percent sodium, and 0.001 to 0.01 percent
each of calcium, iron, and silicon.
The sample was colorless and optically positive.
indices of refraction are Na=1..493, N^=
l. 501.
1.496, and N^
The c?-values of the three strongest lines are:
4.257, 5.601, and 2.919 A.
Structural data. Bland and Basinski [2] in
1959 determined that struvite has the space group
C2;-Pm2in (No. 31) and 2(MgNH4P04-6H20) per
The
unit
5
fiOl
1
5.
101
4.
378
600
111
021
121
4
1
m
of struvite was precipitated at
from a solution of magnesium
sulfate by adding a solution of ammonium mono-
sample.
=
27
6
1
"^Q
00
40
Ot
kJk}
3.
27
Q9
9
rt
t
130
3.
475
289
031
002
201
O.
OfiV
UU
Q
O
2.
211
2.
099
958
919
4
23
54
040
112
022
9 809
9 799
9 RQO
S4
2.
660
548
43
041
1
2.
11
1
3
cell.
1944
Palache, Bernaan
1959
and Frondel [3]Bland and Basinski
1963
[2]
National Bureau
of Standards at
25 °C
a
b
c
o
o
o
A
The
A
A
6.
10
11.
20
6.
97
6.
13
11.
19
6.
92
6.
945
11.
±. 001
208
±. 002
density calctdated from the
constants is 1.706 g/cm^ at 25 °C.
1355
±. 0008
6.
NBS
lattice
References
D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemby x-ray diffraction, Ind. Eng. Chem.,
Anal. Ed. 10, 457-512 (1938).
J. A. Bland and S. J. Basinski, Crystal symmetry of
struvite (guanite), Nature 183, 1385-7 (1959).
C. Palache, H. Berman, and C. Frondel, Dana's
System of Mineralogy, 7th Ed. 2, 715 (1944).
O
9
231
909
212
9 ^^9
2.
300
253
4
240
301
9
1
SO
J.
t:
150
999 oil1
^.
042
2.
LOO
127
069
o
O
o
7
6
2.
2.
241
003
151
103, 232
1.
113
023
331
1.
1
9Q
052
251
033
203
133, 400
1
1
11
9
^. niA
ux^
1.
312
J.
7
122
141
Lattice constants
[1]
41
t:X
983
960
1
0
5
14
9
1.
1.
1.
921
873
851
822
3
5
3
3
1.
810
801
794
762
737
1.
714
5
1.
681
1.
657
4
4
1.
1.
1.
1.
8
14
10
9
14
ical analysis
[2]
[3]
341
223
332
41
4
Potassium Chlorate, KCIO3 (monoclinic)
Powder Data cards
Card
Index
number
lines
Source
hkl
Internal Standard, ^
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 26 °C
d
1-0599
3.
2.
2.
12-571
3.
2.
2.
45
79
86
46
88
80
/
Hanawalt, Rinn and Frevel
[1]
1938.
Institute of Physics, University College, Cardiff.
Additional published patterns. None.
NBS sample. The sample of potassium chlorate
was obtained from the General Chemical Co.,
A
001
101
Oil
110
002
6.
4.
4.
3.
3.
T02
3.
101
3.
012
020
2.
111
2.
021
120
201
102
511, 113
2.
022
112
T22
013
203
2.
2.
69
41
10
29
45
34
100
60
234
204
868
794
779
3
5
3
4
35
33
23
New
York, N.Y., and recrystallized to sharpen
the pattern. Spectrographic analysis showed the
following impurities: 0.001 to 0.01 percent each
of aluminum, barium, iron, rubidium, sUicon,
sodium, and strontium.
The color of the sample was white. It is
optically negative with the indices of refraction
N„ = 1.408, N0= 1.516, and N^= 1.524; 2V was
very small.
The
c?-
values of the three strongest lines are:
and 2.868 A.
Structural data. Zachariasen [2] and [3] in 1928
determined that potassium chlorate has the space
group CLP2i/m (No. 11) and 2[KC103l per
unit cell.
The unit cell measiirements of levin §
and Ozols and Zachariasen have been converted
from kX to angstrom units for comparison with
the NBS values.
3.45, 3.34,
References
2.
2.
[3]
D. Hanawalt, H. W. Rinn, and L. K. Frevel,
Chemical analysis by X-ray diffraction, Ind, Eng.
Chem. Anal. Ed. 10, 457-513 (1938).
W. H. Zachariasen, The crystal structure of sesquioxides and compounds of the type ABO3, Skrifter
Norske Videnskaps-Akad. Oslo I: Mat.-Naturv. Kl.
Nr. 4, 82 (1928).
W. H. Zachariasen, The crystal structure of potassium
[4]
A.
[2]
42
J.
chlorate, Z. Krist. 71, 501 (1929).
levinl and J. Ozols, Precision determination of
lattice constants of monoclinic crystals, Doklady
Akad. Nauk SSSR 91, 527-30 (1953).
3
18
2
6
1.
919
5
201
213
211
221, T23
122
1.
902
815
800
7888
7800
5
Tn4-
1.
\JO
1.
<1
<1
130
113
1.
7730
7615
7421
7149
6800
032
0^
1.
0
J.
2.
2.
1.
1.
1.
1.
1.
1.
1.
J.
1.
014
223
1.
921
1.
91
1.
1.
302
124
123
1.
311
1.
1.
1.
1.
[1]
4
2.
i.
density of potassium chlorate calculated
from the NBS lattice constants is 2.339 g/cm^
at 26 °C.
2.
579
356
327
309
149
145
135
115
070
i.
The
2.
6279
6145
6111
6014
5820
5722
5539
5428
4973
4897
4848
4700
7
7
17
2
2
1
2
1
1
2
1
5
2
2
3
<1
<1
<1
<1
4
4
4
<1
1
X
\JOO
313
310
1.
040
203
005, 233
1.
215
1.
213
1.
3 23
1.
042
1.
1.
1.
1.
4213
4137
3978
3517
3371
3254
3136
3009
2899
2
<1
2
<1
1
<1
<1
2
<1
Potossium Chlorate, KCIO3 (monoclinic)
—Continued
Lattice constants
a
b
o
0
A
J.
v^v
4.
levins and Ozols
1953
1963
4!
[4]
National Bureau of Standards at
26 °C
c
0
A
A
656
6569
4. 6553
±. 0002
|3
fj.
OV\J
7 090
5.
59089
7.
5. 5905
±. 0006
0991
7. 1006
±. 0005
1 oq°^S'
109°38.9'
109°41.1'
±.
3'
Potassium Lithium Sulfate, KLiS04 (hexagonal)
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of potassium lithium
sulfate was prepared at NBS by dissolving stoichiometric amounts of solid potassium hydroxide and
lithium hydroxide in a small amount of water.
When the mixture was at room temperature a
drop of 1 percent bromcresol-purple was added
and the mixture neutralized with H2SO4. The
solution was evaporated to dryness and the precipitate
was then heated
hkl
d
0
the pattern. Spectrographic analysis
showed the following impurities: 0.01 to 0.1 percent each of calcium, indium, and sodium; and
0.001 to 0.01 percent each of aluminum, rubidium,
sharpen
and
silicon.
The sample
The indices of
=
and optically negative.
refraction are No = 1.471 and Ne
is
colorless
1.469.
The (i-values of the three strongest lines are:
and 2.573 A.
Nowacki [1] in 1942 deterStructural data.
mined that potassium lithium sulfate has the
space group Q-P6/3 (No. 173) and 2(KLiS04)
per unit cell. The lattice constants of Nowacki
have been converted from kX to angstrom units
3.960, 3.099,
for
comparison with the
NBS
1942
1963
The
Nowacki
[1]
National Bureau of
Standards at 26°C_-
5.
5.
14
1457
8.
3.
110
111
2.
2.
12
100
70
34
16
418
225
5
8
211
158
981
20
919
762
1. 683
L 653
1. 6096
2.
2.
1.
12
4
1.
2
1.
1.
1.
1.
1.
311, 304
1.
1.
0
206
215
107, 312
313
62
401, 224
1.
216
402
108
403
306
1.
6298
19
1.
1.
density of potassium lithium sulfate calfrom NBS lattice constants is 2.385
g/cm^ at at 26 °C.
320
960
099
573
465
113
203
210
114, 211
105
2.
205
214
220
116
222
A
8.
3
212
204
300
213
106
c
0
4.
101
102
2.
Lattice constants
A
002
103
200
112
201, 004
202
values.
a
/
A
about 750 °C to
to
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 26 °C
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
5690
5499
4852
4533
3687
3647
3276
2864
2550
2329
2237
2081
2055
1880
1356
1048
0939
0787
0484
0389
0335
3
11
5
11
4
11
2
2
3
3
5
5
2
6
2
3
3
1
2
1
2
1
1
1
Reference
culated
[1]
W. Nowacki, Beziehungen zwischen K[AlSi04]
(TiefKaliophilit), Ba[Al20,], K[LiS04], Na[AlSi04] (Nephelin) und Sij04 (/3-Tridymit), Naturwissenschaften
30, 471-472 (1942).
Potassium Perchromate, KsCrOg (tetragonal)
Powder data
cards.
None.
Additional published patterns. Wilson [1] 1941.
NBS sample. The sample of potassium perchromate was obtained from City Chemical Corp.,
New York, N.Y. Spectrographic analysis did not
show any impurities greater than the range 0.0001
to 0.001 percent.
The color of the sample was deep red. The
No=
Ne=
1.730.
1.774 and
indices of refraction are
It is optically negative.
The rf- values of the three strongest lines are:
and 1.856 A.
Structural data. Wilson [1] in 1941 determined
that potassium perchromate has the space group
D^H42m (No. 121) and 2(K3Cr08) per unit cell.
Potassium perchromate is used as a structure type.
The unit cell measurements reported by Wilson
have been converted from kX to angstrom units
2.979, 2.372,
for
comparison with
NBS
values.
Lattice constants
a
c
o
o
A
Wilson [1]
National Bureau of
Standards at 25 °C.
1941
1963
The
density
culated from
at 25 °C.
of
NBS
A
6.
71
7.
6.
711
7.
62
641
potassium perchromate callattice constants is 2.869 g/cm^
Reference
[1]
44
I.
A. Wilson, X-ray analysis of potassium perchromate, KaCrOg and isomorphous compounds, Arkiv.
Kemi Minerali. Geol. B15, 1-7 (1941).
hkl
Internal Standard,
Tungsten, a = 3.1648 A
Cu, 1:5405 A at 25 °C
U
7
1
o
A
101
110
5.
4.
002
200
112
s!
211
202
220
301
310
2.
3.
2.
054
749
822
357
979
42
18
1
36
100
2.
795
524
372
147
2.
121
222
004
312
2.
016
7
1.
911
1
85fi
g
47
321
1.
303, 400
I.
808
677
7
5
204
330
402
420
224
1.
659
7
332
314
413
501
404
2.
2.
1
*i^fi5
1.
5004
4880
1
17
5
53
5
2
10
12
10
1.
1.
1.
1.
512
1.
116, 521
1.
440
325
600
532
316
1.
1.
1.
1.
1.
4198
3718
3219
2607
<1
2445
2299
1863
1808
1183
1020
0920
10
2
<1
6
5
4
4
2
3
2
Potassium Zinc Deca vanadate 16 Hydrate, K2Zn2 V10O28 I6H2O
*
(triclinic)
Powder data
None.
cards.
Additional published patterns. None.
NBS sample. The sample of potassium zinc
decavanadate 16 hydrate, was obtained from H. T.
Evans, Jr., U.S. Geological Survey, Washington,
D.C. It was prepared from a solution of potassium meta vanadate and zinc acetate in water with
the
adjusted between 3 and 4 with acetic acid.
Spectrographic analysis showed the following
major impurities: 0.1 to 1.0 percent sodium; 0.01
to 0.1 percent silicon, and 0.001 to 0.01 percent
each of aluminum, barium, calcium, chromium,
iron, magnesium, molybdenum, lead, and rubidium.
The color of the sample was bright orange. The
indices of refraction could not be determined
because of imperfections in the crystals.
The (^-values of the three strongest lines are:
8.18, 7.40,
and 9.45 A.
Evans, Mrose, and Marvin [1],
determined that potassium zinc decavanadate 16 hydrate, has the space group CJ-Pl (No.
2) and l(K2Zn2Vio028- I6H2O) per unit cell.
Structural data.
in 1955
Internal Standard,
Tungsten a = 3. 1648
hkl
d
of potassium zinc
calculated from the
2.708 g/cm^ at 25 °C.
NBS
lattice
decavanadate
constants
is
Reference
[1]
H. T. Evans,
M.
E. Mrose, and R. Marvin, Constitution of the natural and artificial decavanadates,
Am. Mineralogist 40, 314 (1955).
Jr.,
A
°C
at 25
7
0
A
010
100
110
001
111
10.
9.
8.
8.
7.
01
45
61
18
40
23
28
20
100
35
TOl
Oil
Oil
17
81
3
6.
5.
95
5
101
5.
6
211
5.
52
17
020
5.
00
200
201
4.
111
221
4.
4.
72
63
60
53
14
9
4
4
220
4.
33
166
094
960
759
7.
4.
102
4.
002
4.
121
211
3.
201,
The density
Cu, 1.5405
222
3.
3.
131
3.
202
231
321
3.
3.
3.
102
3.
022
230
030
3.
112
3.
3.
3.
301
3.
232, 300
3.
212
022
031
3.
332, 330
032, 123
2.
003
203
242, 341
2.
3T3
2.
222, 113
2.
2.
2.
2.
2.
2.
420
2.
133, 432
103, 331
2.
303
042
2.
2.
697
630
580
548
487
448
402
373
333
279
229
149
Oil
977
951
883
778
730
680
595
7
9
<1
<1
3
16
3
4
7
2
3
4
8
6
3
1
4
2
3
5
6
3
5
3
11
14
1
<1
569
557
525
485
458
2
2
2
9
8
6
8
4
2
151
2.
313
532
2.
389
278
164
139
2.
102
1
204
234
2.
213, 232, 152
2.
085
071
065
046
006
2
2.
2.
334
2.
142, 133
2.
530
1.
043, 033
1.
411
1.
133
1.
987
985
964
930
„
A
1
<1
1
4
4
4
1
<1
Potassium Zinc DecaTanad^te 16 Hydrate, KzZnaVioOzs I6H2O
•
(triclinic)
—Continued
Lattice constants
a
h
0
A
Mar-
10.
National Bureau of Standards at 25 °C.
10.
Mrose and
Evans,
1955
vin
1963
A
76
11.
17
11.
146
a
c
7
A
&
77
104°50'
109° 29'
65°05'
774
104°57'
109°32'
65°0'
[1].
778
±. 003
±. 003
8.
±1'
±. 003
±2'
±1'
Rubidium Chromate, Rb2Cr04 (orthorhombic)
Powder data
cards.
None.
Additional published patterns. None.
NBS sample. The sample of rubidium chromate was obtained from the Fairmount Chemical
Spectrographic analysis
Co., Inc., Newark, N.J.
showed the following major impurities: 0.1 to 1.0
percent potassium; 0.01 to 0.1 percent sodium;
and 0.001 to 0.01 percent each of aluminum,
barium, calcium, and silicon.
The color of the sample was yellow and it is
The refractive indices are
optically positive.
and N.,= 1.759.
1.725,
1.715,
The dl-values of the three strongest lines are:
3.207, 3.191, and 3.083 A.
Structural data. Smith and Colby [1] in 1940
N^=
N„=
Internal Standard,
Tungsten a = 3.1648
hkl
d
NBS
kX
to
values.
angstrom
Lattice constants
a
h
o
o
A
1940
1963
Smith and
Colby [1].
National Bureau
of Standards
10.
001
±. 001
10.
8.
726
722
±. 001
6.
301
074
±. 001
6.
at 25° C.
The
from
density of rubidium chromate calculated
lattice constants is 3.657 g/cm^ at
NBS
25° C.
Reference
[1]
46
/
4.
3.
201
130
3.
131
221
365
451
004
749
Oyo
3.
342
263
207
3.
191
o.
Uoo
3.
037
872
838
680
3.
2.
2.
1
2
6
14
OD
16
18
100
100
yo
57
4
13
12
1 R
040
230
2.
022
310
140
122
231
2.
3
2.
30
320
2.
311
2.
212
2.
141
2.
240
2.
222
330
241
150
051
2.
644
588
2. 541
2. 509
9 AA9
6
11
o
o
A
A
999
7.
c
4.
o.
002
Colby have been converted from
5.
121
by Smith and
units for comparison with
°C
at 25
A
020
120
200
210
220
211
031
lattice constants reported
A
.
determined that rubidium chromate has the potassium sulfate structure and the space group
Dl^-Pnam (No. 62) with 4(Rb2Cr04) per unit cell.
The
Cu, 1.5405
H. W. Smith, Jr. and M. Y. Colby, The crystal structure of rubidium chromate, Rb2Cr04, Z. Krist.
103, 90-95 (1940).
2.
2.
2.
2.
042
232
400
312
401
2.
340
420
411
123
341, 251
1.
060
213
033
430
1.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
388
380
359
344
226
205
138
091
071
021
0098
0035
0010
9697
8997
„
A
4
14
22
14
25
30
11
7
12
4
11
20
18
12
10
8908
8737
8703
8426
8047
5
7859
7813
7621
7461
6
13
15
10
7
9
6
1
Antimony Telluride, AgSbTe2
Silver
Powder data
cards.
None.
Additional published patterns. Geller and Wernick [1] 1959.
NBS sample. The sample of silver antimony
telluride was obtained from Semitronics Inc., WinSpectrographic analysis showed
chester, Mass.
the following major impurities: 0.01 to 0.1 percent
each of aluminum, bismuth, copper, iron, indium,
and tin; and 0.001 to 0.01 percent each of gold,
calcium, chromium, magnesium, nickel, and titanium.
The sample was an opaque metallic gray
powder.
The c?-values of the three strongest lines are:
3.042, 2.151, and 1.7554 A.
Internal Standard,
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
d
data.
7
a
A
111
3.
511
200
3.
040
2.
151
Q1
1
400
331
and Wernick [1] in
1959 determined that silver antimony telluride has
the sodium chloride structure, the space group
Oi-FmSm (No. 225), and 2(AgSbTe2) per unit
Structural
(cubic)
Geller
cell.
1.
7554
1.
5203
3946
3597
Z4il
1703
1.
A
on
1.
A
OO
i.
01
1.
440
531
DUU
A on
AOO
1.
1.
1.
0.
.
444-
.
711
640
Lattice constants
.
.
642
o
.
0748
0276
0133
9614
9166
8775
8513
8433
8125
A
081
UoU
1
6.
nn
65
D.
<1
6.
084
080
19
6.
081
9
6.
<i
D.
081
u/y
081
079
081
1
6.
18
9
6.
6.
<1
6.
4
6.
<1
6.
4
6.
3
2
6.
1
6.
<1
6.
6.
2
2
080
079
080
080
080
079
079
6.
081
080
6.
080
6.
A
1959
1963
and Wernick [1] at 25 "C.
National Bureau of Standards at
25 °C
Geller
6.
078
6.
080
Average value
of last five lines
Reference
The density
lated
of silver
from the
NBS
antimony
lattice
telluride calcu-
constant
is
7.163
Sodium Magnesium Aluminum Boron Hydroxy
Silicate,
NaMg3Al6B3Si6027(OH)4
cards.
None.
Additional published patterns.
I
j
I
I
'
None.
NBS sample. The sample of dravite is
U.S. National Museum No. 103791 from Dobruva,
This mineral sample was
Carinthia, Austria.
picked by C. R. Robbins, NBS, as a true end
member representative of the magnesium rich
variety of tourmaline.
The chemical analysis
by H. B. Wiik, Hilsingfors, Westend, Finland,
showed the following: 36.99 percent Si02; 0.39
percent Ti02; 32.00 percent AI2O3; 0.01 percent
MnO; 11.58 percent MgO; 0.50 percent CaO;
0.01 percent Li20; 3.11 percent NagO; 0.08 percent K2O; 3.08 percent H2O+; 10.77 percent B2O3;
0.25 percent F; and 0.90 percent total Fe as FeO.
The color of the sample was light brown and
it is optically negative.
The indices of refraction are No= 1.634 and Ne= 1.613.
The (i-values of the three strongest lines are:
2.576, 3.985, and 2.961 A.
J.
compounds
g/cm^ at 25 °C.
Powder Data
and
H. Wernick, Ternary semiconducting
with sodium chloride-like structure:
AgSbSez, AgSbTes, AgBiS2, AgBiSez, Acta Cryst.
13, 46-54 (1959).
S. Geller
[1]
dravite
(var.
of tourmaline),
(trigonal)
Structural data. Buerger and Parrish [1] in
1937 determined the structure of the tourmalines;
they have the space group C|^,-R3m (No. 160)
and 3[NaMg3Al6B3Si6027(OH)4] per unit hexagonal cell.
Lattice constants
a
c
0
1948
Hamburger and Buerger
1949
1951
1963
Belova and Belova [3]
Kurylenko [4] .
National
Bureau
of
Standards at 25 °C---
[2]
The density
0
A
A
15.
951
7.
16.
7.
15.
00
676
7.
24
24
03
15.
931
7.
197
of dravite calculated from
g/cm^ at 25 °C.
NBS
lattice constants is 3.019
47
Sodium Magnesium Aluminum Boron Hydroxy
Silicate,
dravite
(var.
of tourmaline),
NaMg3Al6B3Si6027(OH)4 (trigonal)— Continued
7
7
7
hkl
Internal Standard
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
I. 7« 7
{tiex)
Internal Standard „
Tungsten, o = 3. 1648 A
Cu, 1.5405 A at 25 °C
\Jiex)
d
d
/
o
/
o
A
A.
101
AO 1
6.
4.
dOO
4.
211
4.
220
3.
Ulz
3.
ooo
666
AO A
c oo
062,
377
981
595
221
985
66
84
C 1
541
1.
262
480
375
62
16
28
25
17
3.
401
410
122
3.
Ill
5
3.
008
961
12
bOo
0'71
/71
CCA
ooO
/ICO
4oz
83
811
9
324
461
2.
321
2.
330
312
051
042
2.
241
2.
003
232
2.
511
2.
600
2.
502
431
303
422
2.
2.
2.
2.
451
396
376
342
300
<1
100
1
19
21
5
040
019
46
2.
].
991
7
5
1.
920
901
34
6
877
849
828
817
784
7
2.
2.
152
161
2.
701
1.
413
1.
621
1.
710
612
104
1.
1.
1.
244
514
642
A1 C
015
651
1
20
17
14
16
10
21
2.
900
722
820
7
189
163
127
112
054
2.
2.
223
440
342
897
656
622
576
490
205
125
381
[2]
48
G. E. Hamburger and M. J. Buerger, The structure of
tourmaline. Am. Mineralogist 33, 532-540 (1948).
1.
660
1.
641
24
16
592
586
575
<1
<1
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
912
1.
1.
1.
1.
lO-l-O
1.
571
1.
903
505
1.
1.
1.
155
1.
0-lM
1.
482
850
Parrish, The unit cell and space
group of tourmaline (an example of the inspective
equiinclination treatment of trigonal crystals),
Am. Mineralogist 23, 1139-1150 (1937).
1.
742
729
715
690
lO-O-l
AO
9211
045
660, 553
8
2
2
9
References
[1] M. J. Buerger and W.
781
1.
/I
131
TOT
1.
[3]
[4]
1.
1.
7
5
4
2
1
21
565
5456
5326
5262
5056
<1
4807
4555
4485
4318
4178
3
19
11
8
8
4091
3871
3746
3551
3416
19
2
3
9
5
3359
3282
3272
3095
3002
4
13
12
2922
2765
2602
2449
2358
2260
2149
5
7
7
16
12
1
2
14
3
3
3
1
3
N. V. Belova and E. N. Belova (The crystal structure of
tourmaline), Dokl. Alcad. Nauk SSSR 69, No. 2,
185-188 (1949).
C. Kurylenko, Transformation de la dravite de Doubrova (Moravie) de 375° k 1350°, Compt. rend.
Paris 233, 2109-2111 (1951).
Sodium Trimetaphosphate, NasPsOg (orthorhombic)
!
Powder data
Card
Ill(i6X
number
lines
11-648
3.
3.
3.
40
86
04
VJ}\J
Ul L/C
de Wolff, Techn. Phys.
Dienst, Delft, Holland.
Additional published patterns.
Tromans
The c?-values of the^ three strongest lines are:
3.407, 3.850, and 3.037 A.
Structural data.
Ondik and Gryder [2] in 1960
cards.
determined that sodium trimetaphosphate has the
space group CL-P2icn (No. 33) or DJ^-Pmcn
(No. 62) with 4(Na3P309) per unit cell.
Corbridge and
Internal Standard,
[1].
NBS sample. The sample of sodium trimetaphosphate was crystallized by heating sodium
trimetaphosphate above the melting point (about
650 °C) and then cooling slowly at the rate of
Spectrographic analysis
5 to 10 °C an hour.
showed the following major impurities: 0.001 to
10.01 percent each of aluminum, barium, calcium,
iiron, potassium, magnesium, silicon, and titanium.
The sample is colorless.
Internal Standard,
Tungsten, a 3.1648
=
hkl
Cu, 1.5405
d
A
/
6.
5.
5.
4.
200
002, 130
3.
131
3.
211
112
3.
022
221
3.
041
141
3.
202
2.
132
212
310
240
013
3.
3.
3.
2.
2.
2.
2.
2.
2.
150, 051
2.
311
241
113
151
2.
2.
2.
2.
232, 321
2.
123
2.
330
060
331
2.
2.
2.
79
65
095
015
237
960
850
444
407
351
330
110
037
837
762
723
706
591
540
522
503
457
412
406
387
340
292
267
204
175
d
43
53
43
48
5
16
63
48
100
31
/
a
A
133
213
242
152
223
2.
043
341
400
143
332
004, 260
o
6.
A
°C
at 25
A
110
Oil
111
021
121
„
hkl
„
Tungsten a = 3.1648 A
Cu, 1.5405 A at 25 °C
10
8
2.
136
128
121
103
2.
050
10
2.
029
994
982
965
954
17
2.
2.
1.
1.
1.
1.
1.
252
411, 420
350
024
1.
170
243
153
1.
171
1.
402
1.
134
214
333
352
224
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
927
911
900
871
849
838
806
794
781
762
723
719
699
681
675
8
2
6
9
5
6
5
8
1
13
10
4
4
2
1
1
1
<1
2
5
8
37
11
671
665
661
629
612
063, 253
271, 044
1.
441
144
1.
234
1.
22
10
181
1.
11
054
1.
35
14
451
073
082
1.
1.
583
557
554
521
518
353
371
025
531
254
1.
511
1.
507
501
465
449
372
282
1.
55
11
41
7
8
11
8
<1
1.
1.
1.
1.
1.
1.
8
5
5
1
6
2
5
7
3
2
5
6
6
3
5
<1
2
6
1.
427
418
11
2
8
11
49
Sodium Trimetaphosphate, NasPsOg (orthorhombic)
— Continued
The density of sodium trimetaphosphate calculated from the
lattice constants is 2.515
g/cm^ at 25 °C.
Lattice constants
NBS
1960
Ondik and Gry-
1962
1963
a
b
c
A
A
A
References
7.
93
13.
14
7.
75
deWolfif
7.
13.
22
7.
National Bureau
of Standards
at 25 °C.
7.
928
930
13.
220
7.
703
705
der
[1]
[2].
[2]
D. E. C. Corbridge and F. R. Tromans, Identification
of sodium phosphates with an x-ray focusing camera,
Anal. Chem. 30, 1101-1110 (1958).
H. M. Ondik and J. W. Gryder, Crystal chemistry of
the hydrates of sodium trimetaphosphate, J. Inorg
Nucl. Chem. 14, Nos. 3/4, 240-246 (1960).
Sodium Trimetaphosphate Monohydrate, NasPgOg'HaO (orthohombic)
Powder data cards
Card
Index
number
lines
1-0977
2.
3.
2.
11-391
4.
3.
3.
Source
hkl
84
03
60
New
96
57
01
Corbridge and Tromans
Jersey Zinc Co.
A
[1]
1958.
Card number 12-10 also is called Na3P309-H20;
however, it contains a very different pattern,
perhaps another form.
Additional published patterns. None.
NBS sample. The sample of sodium
tri-
metaphosphate monohj^drate was prepared at
NBS by heating sodium dihydrogen orthophosphate for 5 hr at 530 °C. Solid sodium
trimetaphosphate was salted out with NaCl
and then recrystallized several times. Spectrographic analysis showed the following major
0.001 to 0.01 percent each of aluminum, barium, calcium, iron, potassium, magnesium, silicon, and titanium.
impurities:
The sample
is
colorless
and
it
is
probably
optically negative.
The indices of refraction are
1.493, N3= 1.502, and N.,= 1.504.
The c?- values of the three strongest lines are:
N„=
and (2.605 and 2.601)A
Structural data. Ondik and Gryder [2] in 1960
determined that sodium trimetaphosphate mono3.566, 2.825,
hydrate has the space group C2v-P2icn (No. 33)
or D^^Pmcn (No. 62) with 4(Na3P309H20) per
unit ceU.
50
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
110
Oil
111
021
4.
121
4.
200
130
002
012
211
7.
144
6.
553
195
968
289
5.
4.
3.
3.
3.
3.
131
112
3.
022
221
122
3.
041
3.
141
2.
202
310
212
2.
132
240
311
150
051
042
013
330
113, 232
331
302
312
060
052
213
123,
3.
3.
3.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
252
905
778
633
566
42
38
49
60
32
5
32
17
15
100
469
340
278
230
060
64
60
55
022
848
825
769
762
73
716
605
601
520
491
484
474
382
375
272
5
100
57
10
75
5
18
21
39
6
17
4
4
2.
266
235
198
163
<2
2.
139
15
2.
2.
2.
16
i
Sodium Trimetaphosphate Monohydrate, NagPsOg'HaO (orthorhombic)
— Continued
Lattice constants
hkl
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
Ondik and
Gryder [2].
National Bureau
1960
1963
2.
125
116
A
A
o
of Standards
at 25 °C.
17
12
8.
53
8.
500
±0. 001
13.
21
13.
189
±0. 001
7.
58
7. 558
±0. 001
Q
O
c
043
2.
001
1.
954
143
350
252
1.
y'ly
062
004
351
162, 431
170, 412
A
O
421, 260
261,
c
1
o
2.
b
T
a
400
133
341
420
332
a
1.
ycsu
1
Q07
1.
1.
1.
1.
1.
053
024
243, 323
171, 440
153
1.
352
253
413
1.
1.
1.
1.
1.
1.
1.
12
29
The
density of sodium trimetaphosphate monoNBS lattice constants is
2.539 g-/cm3 at 25 °C.
O
y
900
889
o/U
OOO
840
hydrate calculated from
6
11
Q
y
A
6
823
817
811
786
781
9
7
3
References
11
719
674
612
10
[1]
16
17
10
[2]
D. E. C. Corbridge and F. R. Tromans, Identification
of sodium phosphates with an x-ray focusing camera,
Anal. Chem. 30, No. 6, 1101-1110 (1958).
H. Ondik and J. W. Gryder, Crystal chemistry of the
hydrates of sodium trimetaphosphate, J. Inorg.
Nucl. Chem. 14, 240-246 riflfiO^
Stannous Fluoride, SnFz (monoclinic)
Powder data cards. None
Additional
published
patterns.
Muhler, and Day [1] 1952.
I
I
The
Nebergall,
c?-valuQs of the three strongest lines are:
NBS sample. The sample of stannous fluoride
was obtained from the Indiana University School
3.552, 3.200 and 3.379 A.
Structural data. Bergerhoff [2] in 1962 determined that stannous fluoride has the space
group C2I-C2/C (No. 15) and 16 [SnFz] per unit
of Dentistry, Indianapolis, Ind.
cell.
Spectrographic
analysis showed the following major impurities:
0.001 to 0.01 percent each of calcium and silicon.
The sample was colorless. The indices of
refraction were not determined because the
Difficulties in indexing the NBS pattern were
overcome with the help of single crystal work
done by Dr. Howard T. Evans Jr., of the U.S.
Geological Survey.
sample reacted with the index liquids.
Lattice constants
a
b
0
0
A
A
1962
1963
Bergerhoff
[2].
....
National Bureau of Standards
at 25 °C
13.
46
13.
353
±.001
4.
92
4. 9089
±. 0004
c
/3
0
A
13.
86
109°30'
13.
787
019°6.5'
±.001
±.
3'
51
1
stannous Fluoride, SnFg (monoclinic)
Internal Standard,
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
hkl
d
— Continued
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
hU
T
/
I
o
A
Til
4.
112
204
311
O4 V
3 2QS
O.
512
3.
315
313
602
604
222
2.
516
602
7l2, 224
332
912
428
So 8
028
5
inn
AO
2
fin
400
204
020
021
Sll
Tl6
516
224
512
420
A
489
155
1
J.
X
Q
tj
2
320
3
532
2
408
536
9 99^^
9 1 flQ
9 084
2.
059
X
1
X
in
1
1.
I.
1.
1.
408
008
1.
lol, olo
1.
624
800
132
604
1.
1.
1.
1.
1.
Q^4
t7U^
0*^8
oOO
o
it
1.
3517
ooZo
2
i.
O iU
HQ 1
oUoi
1.
i.
1
716,T0-2-4
11-1-2
244
1.
12
22
2
U / lU,
•
*
/
*
1
440
5
428
2-0-12
6
6
2974
ZoOo
A
*t
1
i
1
J.
c
0
9
2
1
1
9AAft
1
X
9
1.
<1
*
5
9
l-l-lO
528
336
854
i
1
i.
ID
1 ft
t
i.
7- 1-10, 731
040, 734
833
776
690
629
6186
5997
5769
5594
5504
OOiU
18
2
1 ft
1
J..
1.
i.
912
732
\'
QC1 9
1
3-1 -10, 136, 820
624
5-1 -10, 826, O-O-IO
9 4.19
9 ^97
1
1
916
10-0-4
34
1.
5258
Alio
QQ01
oyzi
1.
1.
1
1.
1.
•
ii
1.
1.
1.
1.
1.
1.
2313
997^
2153
2036
1836
2
1712
1645
1536
1508
1435
2
<1
<1
1387
1335
<1
<1
1
1
1
1
1
1
1
4
5
3
References
[1]
The density of stannous fluoride calculated
from the NBS lattice constants is 4.875 g/cm^
at 25 °C.
52
[2]
Nebergall, J. C. Muhler, and H. G. Day, The
preparation and properties of stannous fluoride,
J. Am. Chem. Soc. 74, 1604 (1952).
G. Bergerhoff, Zur Kristallstruktur des Zinn-II-
W. H.
fluorides,
Acta Cryst. 15, 509 (1962).
Strontium 1:1 Borate, SrO*B203 (orthorhombic)
Powdet- data cards. None.
Additional published patterns.
None.
NBS
sample. The sample of strontium 1:1
borate was prepared at NBS by C. E. Weir.
A suspension of hydrogen 3 1 borate (boric acid)
and strontium carbonate was evaporated to drySpectrograpMc
ness and heated at 1000 °C.
analysis showed the following major impurities:
0.01 to 0.1 percent each of barium and silicon;
0.001 to 0.01 percent each of calcium and sodium.
The sample is colorless and optically negative
with N„= 1.632, N^= 1.650, and N^= 1.660.
The (^-values of the three strongest lines are:
3.467, 6.013, and 2.688 A.
Structural data. Block, Perloff, and Weir [1]
in 1963 determined that strontium 1:1 borate
has the space group Dzh-Pnca (No. 60) and
4(SrO-B203) per unit cell.
:
Internal Standard,
hkl
6.
o
o
Block, Perloff
1963
and Weir [1].
National Bureau
Standards
at 25 °C.
of
6.
o
A
A
1963
c
577
6. 5890
±. 0004
12.
12.
A
02
018
±. 001
4.
4.
±
.
329
3373
0005
111
3.
density of strontium 1 1 borate calculated
from the NBS lattice constants is 3.350 g/cm^ at
25 °C.
:
3.
3.
101
15
040
220
3.
37
131
141
2.
2.
004
888
688
313
240
2.
221
30
2.
169
041
003
27
21
977
948
9
7
934
812
792
760
734
44
311
202
212
331
222
260
400
420
171, 242
430
[1]
S. Block,
raphy
(1964).
A. Perloff, and C. E. Weir.
some M+2
borates,
The
2.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
262
1.
133
371
511
153
531
282, 333
2-10-0
of
3.
080
062
440
113
280
422
460
Reference
/
121
200
210
351
The
°C
at 25
013
467
292
176
241
122
b
A
A
020
060, 151
a
Cu, 1.5405
d
002
022
Lattice constants
A
Silver, a =4.0861
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
crystallog-
551
1.
Acta Cryst. 17, 314
480
1.
391
1.
600
1.
173
1.
620
l-ll-l
640
571
2-10-2
482, 373
1.
1.
1.
1.
1.
0.
712
647
589
5518
5232
5192
69
100
37
47
40
67
5
58
8
4
23
14
10
<2
11
O
^11
'
}
A
5023
4712
4447
4020
3667
4
3434
3320
2911
2820
2724
8
o
a
6
0
A
4
5
o
0
D
4
y
2543
2174
2027
1564
1291
<2
1165
1100
1036
0980
0906
5
5
5
5
3
0804
0461
0313
0161
0013
9879
n
D
c
lo
1
A
4
5
<2
<2
5
3
4
Terbium Arsenate, TbAs04
(tetragonal)
Powder data cards. None.
Additional published patterns. None.
NBS sample. The sample of terbium arsenate
was prepared at NBS from a water solution of
arsenic pentoxide and terbium trichloride.
It
was dried at 110 °C. Spectrographic analysis
showed the following major impurities: 0.01 to
0.1 percent silicon; 0.001 to 0.1 percent each of
antimony, calcium, iron, magnesium, and lead.
The sample was
colorless.
The
Internal Standard,
Tungsten, a = 3.1648
could not be determined because the
sample was too fine.
The values of the three strongest lines are:
3.550, 2.685, and 1.834 A.
Structural data.
No reference to the structure
of terbium arsenate was found, but it is apparently
isostructural with yttrium arsenate with the space
group DlM4i/amd (No. 141) and 4(TbAs04) per
unit cell.
7.
1025
A
6.
3536
NBS
3.
112
220
202
2.
301
103
321
2.
2.
2.
A
C
7
of terbium arsenate calculated from
lattice constants is 6.172 g/cm=* at 25 °C.
73d
550
685
510
367
8
100
69
22
7
9
1.
1.
1.
1.
1.
1.
1.
1.
440
1.
600, 404
1.
444
316
604
624
The density
the
200
532
424
116
o
o
4.
420
332
204
224
512
c
A
101
312
400
Lattice constants
National Bureau of
Standards at 25 °C.
at 25°
A
fraction
1963
A
d
indices of re-
a
Co, 1.7889
hkl
1.
1.
1.
0.
.
.
.
029
882
834
775
8
6
53
16
5878
4809
4500
3423
2755
15
14
11
8
13
2553
1838
1373
1230
0364
4
8
8
12
4
9849
9577
9495
9168
5
7
3
5
Thallium Chromate, Tl2Cr04 (orthorhombic)
Powder data cards. None.
Additional published patterns. Abbad and
Rivoir [1] 1947.
NBS sample. The sample of thallium chromate
was prepared at NBS from solutions of thallium
nitrate and sodium chromate.
Spectrographic
analysis showed the following major impurities:
0.1 to 1.0 percent lead; 0.01 to 0.1 percent each
of aluminum and silicon; and 0.001 to 0.01 percent each of barium, calcium, and antimony.
The color of the sample was yellow. The refractive indices could not be determined because
the sample was too fine.
The (^-values of the three strongest lines are:
The lattice constants reported by Abbad and
Rivoir have been converted from kX to angstrom
units for comparison with the NBS values.
\
Lattice constants
0
h
c
A
A
A
o
1947
Abbad and Rivoir
1963
National Bureau
of
Standards
at 25 °C
7.
[1]
7.
82
908
±. 001
10.
10.
70
730
±. 001
5.
5.
92
913
±. 001
3.145, 3.060, and 3.186 A.
Structural data. Abbad
and Rivoir [1] in 1947
determined that thallium chromate has the potassium sulfate structure, the space group Dzh-Pnam
(No. 62), and 4(Tl2Cr04) per unit cell.
The density
from the
NBS
of thallium chromate calculated
lattice constants is 6.946 g/cm^
at 25 °C.
I
54
Thallium Chromate Tl2Cr04 (orthorhombic)
,
hkl
Internal Standard, „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
d
— Continued
Internal Standard, „
Tungsten, a = 3.1648 A
Cu, 1.5405 A at 25 °C
hkl
d
/
o
o
A
020
Oil
120
5.
A
111
4.
37
19
45
337
210
3.
714
8
12
23
15
121
201
130
3.
553
290
263
186
145
54
27
24
57
100
96
53
14
28
5.
4.
3.
3.
220
211
3.
031
3.
002
221
040, 112
230
2.
2.
060
958
805
685
654
310
140
122
320
311
2.
561
2.
2.
540
461
366
349
141
2.
212
240
321
132
2.
222
330
241
150
051
440
232
151
3.
2.
2.
2.
2.
19
16
1
312
142
1.
250
401
420
322, 411
123
1.
341
1.
060
242
203
213
1.
1.
1.
1.
1.
1.
1.
1.
1.
8863
8750
8553
8472
8013
7921
7885
7755
7640
7409
10
1.
143
1.
062
520
511
1.
1
51
1.
5125
170
432
1.
5045
4931
4837
4782
4696
6
4539
4355
4271
4020
3959
4
4
1.
3842
3623
3602
3498
3462
1.
3410
6
1.
3250
3182
4
1.
1.
1.
1.
977
97^
9^4
936
9270
5713
5573
5299
422, 261
1.
450
361
262
124, 442
403
17
15
9
1.
10
10
079
071
017
6603
6434
6294
6250
5903
19
14
15
13
1.
1.
15
13
22
402
260
412
252
521
11
7305
7259
7235
6963
6726
431
1.
32
1
1.
1.
167
122
1.
1.
004
2.
2.
1.
071
191
2.
1.
15
8
13
2.
2.
1.
161
g
16
2.
2.
430
033
332
152
5
336
314
221
197
2.
/
1.
1.
1.
1.
413
540
343
522
134
9
4
080, 172,
224
370
600
5
14
1.
1.
1.
1.
[
67
5
5
6
3
g
g
g
7
5
5
g
5
3
4
6
5
5
5
j
1.
6
9
12
15
14
26
26
14
7
7
17
Reference
[1]
M. Abbad and
talioso,
L. Rivoir,
La estructura del cromato
fis. y. quim 43, 831-836
Anales Soc. espafi.
(1947)
55
Thulium Arsenate, TmAs04
Powder data
cards.
None.
None.
Additional published patterns.
NBS
The sample
of thulium arsenate
from a water solution of
arsenic pentoxide and thulium trichloride.
It was
dried at 110 °C.
Spectrographic analysis showed
the following major impurities: 0.01 to 0.1 percent
each of silicon and antimony; 0.001 to 0.01 percent
each of aluminimi, calcium, iron, lead, and
magnesium.
The sample was colorless. The indices of refraction could not be determined because the
sample was too fine.
sample.
was prepared
The
at
hkl
Internal Standard, „
Tungsten, o = 3.1648 A
Cu, 1.5405 A at 25 °C
NBS
(^-values of the three strongest lines are:
3.497, 2.644, and 1.8064 A.
Structural data.
No reference to the structure
of thulium arsenate was found, but it is apparently
isostructural with yttrium arsenate with the space
group Dlg-l4i/amd
per unit
(tetragonal)
(No.
141)
and 4(TmAs04)
cell.
d
o
A
101
4 667
11
200
211
112
220
3.
100
2.
497
796
644
473
202
301
2.
333
2.
1851
5
10
7
7
2.
2.
103
321
312
1.
400
1.
1.
1.
1.
420
1.
1.
1.
501
1.
1.
1.
440
fiOO 404
Lattice constants
532
a
c
o
A
A
1963
National Bureau of
Standards at 25 °C
6.
± 0.
9939
0003
6.
± 0.
2595
0003
1.
1.
1.
1.
lift
o
4Ti
444
1.
fiT^
1.
fi4n
0.
316, 552
.
800
56
7483
7354
5638
4584
4281
3853
3224
2566
2361
1660
1199
1060
0207
0073
9701
9433
217
820
516
644
536
5
72
23
55
16
3
15
15
14
3
8
11
4
7
8
12
3
<2
5
10
0
.
.
density of thulium arsenate calculated from
the NBS lattice constants is 6.678 g/cm^ at 25 °C.
9993
8524
8064
604
fi94
The
/
.
.
.
.
.
.
9032
8814
8743
8597
8480
8304
8245
7872
4
5
<2
<2
2
5
4
5
Titanium Dioxide, brookite, Ti02 (orthorhombic)
owder data cards
number
hkl
lines
3-0380
British
47
90
88
3.
2.
1.
d
Museum.
o
Sturdivant and
NBS sample. The sample of brookite was
No.
obtained from the U.S. National Museum.
Spectrographic
97661 from Magnet Cove, Ark.
analysis showed the following major impurities:
D.l to 1.0 percent silicon; 0.01 to 0.1 percent
Bach of aluminum, iron, and vanadium; 0.001 to
D.Ol percent magnesium.
The color of the sample was black. The
Indices of refraction were not determined because
they were higher than 2.00.
The c?-values of the three strongest lines are:
and 3.465 A.
Sturdivant and Pauling [1]
in 1928 determined that brookite has the space
group D^^Pcab (No. 61) and SCTiOs) per unit
Several lattice constants have been concell.
verted from kX to angstrom units for comparison
Structural data.
with the
NBS
/
A
Additional published patterns.
Pauling [1].
3.512, 2.900,
Internal Standard, „
a= 4.0861 A
CuX= 1.5405 A at 25 °C
Silver,
Source
Index
values.
120
111
121
3.
200
012
2.
201
131
220
211
2.
040
2.
512
465
900
729
476
100
79
91
409
370
344
332
296
18
6
4
4
254
244
8
18
16
16
3.
2.
2.
2.
2.
2.
112
2.
022
221
032
2.
231
1.
132
212
240
320
241
1.
151
1.
113
232
123
052
1.
160
312
251
203
152
1.
213
1.
161
1.
400
1.
2.
133
1.
9685
8934
8514
8332
7568
6908
6617
1.
1.
1.
1.
6486
6098
5968
5408
4942
1.
1.
1.
4
23
5
28
18
3
3
21
28
5
13
2
7
10
Lattice constants
A
1928
1928
1932
1963
>
^
Sturdivant and
Pauling [1].
Schroder [2]
Phillips
[3]
National Bureau
of Standards
at 25 °C.
Sample described above.
Sample from the National
5.
A
447
450
5. 44
» 5. 4558
±. 0004
b5. 456
±. 002
5.
9.
185
154
9. 20
9. 1819
±. 0007
9. 174
±. 001
9.
5.
145
5.
163
5.
14
1429
±. 0003
5. 138
±. 001
5.
Museum No.
NBS
of brookite
lattice constants (a) is
calculated from the
4.120 g/cm^ at 25 °C.
References
j[l]
j
[2]
[3]
H. Sturdivant and L. Pauling, The crystal structure
of brookite, Z. Krist.
68, 239 (1928).
A. Schroder, Rontgenographische Feinbauuntersuchung
am Brookit und tiber physikahsche Eigenschaften
J.
der drei Titandioxyde, Z. Krist. 66, 493 (1928).
F. C. Phillips, Crystals of brookite tabular parallel to
the basal plane, Min.
Mag.
1.
1.
1.
4
9
12
12
6
A
R2108 from von der Soule, Virven,
Tyrol. Spectrographic analysis showed the following major impurities: 0.1
to 1.0 percent iron; 0.01 to 0.1 percent each of magnesium, silicon, and vanadium; and 0.001 to 0.01 percent each of aluminum, barium, and manganese.
The lattice constants given were derived from powder pattern data.
The density
4729
4656
4609
4515
4415
1.
23, 126-129 (1932).
1.
401
1.
233
004
024 171
431
124
1.
333
080
1.
441
1.
1.
1.
1.
1.
1.
044
1.
521, 423
1.
281
1.
324
1.
125
0.
372, 254
.
4336
4167
3640
3358
3186
10
3116
2852
2381
2107
2074
2
2
9
5
8
3
10
2
1
1552
1480
1432
1217
0399
4
0366
0237
9873
9829
2
2
2
4
3
4
2
4
1
Zinc Telluride,
ZnTe
(cubic)
Powder data cards
Card
Index
number
lines
Source
Internal Standard „
Tungsten, a = 3. 1648 A
Cu, 1.5405 A at 25 °C
hkl
r
d
1-0582
2.
50
14
1.
83
3.
New
a
i
Jersey Zinc Co.
o
A
111
200
220
311
lZZ
Additional published patterns. None.
NBS sample. The sample of zinc telluride
was obtained from Semi-Elements, Inc., SaxonSpectrographic analysis showed the
bm-g, Pa.
following major impxirities: 0.01 to 0.1 percent
of silicon, and 0.001 to 0.01 percent each of
O.
9
iron,
The c?-values of the three strongest lines are:
3.523, 2.159, and 1.840 A.
Zachariasen [1] in 1925 deStructural data.
termined that zinc telluride has the zinc sulfide
structure, the space group Td-F43m (No. 216),
and 4[ZnTe] per unit cell. The unit cell measure-
UOi
1
1.
1.
400
331
420
422
C1 1
511
and magnesium.
The color of the sample was reddish-brown.
The indices of refraction were too high to be
determined by the usual grain-immersion method.
aluminum, barium,
A
1
O^U
762
nn
D.
n
6.
1
ol
^7
o
i.
1
a
D.
Q
O
A
u.
^
6.
Q
O
6.
OO'iO
0
a
1.
1745
7
6.
0789
0315
0171
9648
9307
3
6
6.
1
6.
440
1.
531
1.
600
620
533
0.
1.
.
.
.
.
.
731
D.
3
1.
1
622
444
711
642
6.
/
.
9200
8808
8545
8155
7945
6.
6
6.
3
6.
09
102
107
1 uo
1
104
102
102
103
1028
1042
1026
1022
1028
1
6.
1
6.
6
6.
8
6.
6
6.
1026
1026
1024
1026
1026
6.
1026
ment reported by Zachariasen has been converted
kX to angstrom
NBS value.
from
the
units for comparison with
Average value
of last five lines
Lattice constants
i
ii
o
A
1925
1963
Zachariasen [1].
National Bureau of Standards
at 25 °C
6.
101
6.
1026
1
Reference
[
density of zinc telluride calculated from
the NBS lattice constant is 5.639 g/cm^ at 25 °C.
The
58
[1]
W.
The
crystal structure of the telluride^
and mercury, Norsk, geol
Tidskrift 8, 302-306 (1925).
Zachariasen,
of
zinc,
cadmium,
CUMULATIVE INDEX TO CIRCULAR
MONOGRAPH
539,
VOLUMES
SECTIONS
25,
1,
2,
3,
2,
1,
AND
4,
5,
6,
7,
Vol. or
—
Aluminum, Al
Aluminum antimony, AlSb
Aluminum calcium sulfate hydrate
Aluminum
(trigonal)
Aluminum orthophosphate, AIPO4
Aluminum oxide, (corundum), alpha AI2O3-Aluminum oxide monohydrate (bohmite),
alpha AUOa-HzO
Aluminum oxide monohydrate diaspore,
beta
A1203-H20
aluminum
dodecahydrate (teschermigite), NH4A1(S04)2-12H20_
Ammonium
Ammonium
azide,
Ammonium bromide, NH4Br
Ammonium bromoosmate, (NH4)OsBr6
Ammonium bromoplatinate, (NH4)2PtBr6
Ammonium bromoselenate, (NH4)2SeBr6
Ammonium bromotellurate, (NH4)2TeBr6
Ammonium chloride (sal-ammoniac),
NH4CI
Ammonium chloroiridate (NH4)2lrCl6
Ammonium chloroosmate, (NH4)20sCl6
Ammonium chloropalladate, (NH4)2PdCl6--Ammonium chloropalladite, (NH4)2PdCl4
Ammonium chloroplatinate, (NH4)2PtCl6
Ammonium chlorostannate (NH4)2SnCl6
Ammonium chlorotellurate, (NH4)2Te Cle
Ammonium chromium sulfate dodecahyNH4Cr(S04)2-12H20
Ammonium dihydrogen
7
3
iin
A
2m
3
Antimony
Antimony
Antimony
Antimony
Antimony
fluoberyllate, (NH4)2BeF4
fluoborate, NH4BF4
fluogermanate, (NH4)2GeF6
fluosilicate
(cryptohalite),
(NH4)2SiF6
Ammonium gallium sulfate dodecahydrate,
oxide,
(orthorhombic)
(IV) oxide (cervantite), Sb204
(V) Oxide, Sb206
telluride,
3m
5
3m
Sb2Te3
10
9
4
Arsenic (III) iodide, Asis
Arsenic trioxide, claudetite,
3
6
AS2O3 (cubic)--
,
38
Barium, Ba
3
41
OIII
Q
0
Barium arsenate, Ba3(As04)2
Barium bromide monohydrate, BaBr2-H20.Barium carbonate (witherite), BaCOs (ortho-
Q
Q
A
*±
9
2
q
0
Q
y
6
49
71
1 J.
0
c
0
A
Q
0
c
0
1
1
oy
0
0
0
6
Im
8
6
5
7
6
3
0
A
0
0
Q
0
a
D
7
4
64
3m
5
R
u
rhombic)
carbonate,
BaC03(cubic)
8
Ba(C104)2-3H20
Barium peroxide, Ba02
Barium stannate, BaSnOs
Barium sulfate (barite), BaS04
Barium sulfide, BaS
Barium titanate, BaTi03
Barium tungstate, BaW04
Barium zirconate, BaZrOs
Beryllium aluminum oxide (chrysoberyl),
BeAl204
Beryllium aluminum
silicate,
0
Be3Al2(Si03)6
Beryllium chromium oxide, BeCr204
Beryllium germanate, Be2Ge04
Beryllium orthosilicate, phenacite, Be2Si04_Beryllium oxide (bromellite) BeO
Bismuth, Bi
Bismuth fluoride, BiFs
(III) iodide, Bil3
orthophosphate,
BiP04
Bismuth orthophosphate, BiP04 (trigonal).Bismuth orthovanadate, low form, BiV04
9
56
Bismuth orthovanadate, high form, BiV04
NH4Fe(S04)2-12H20
Ammonium meta vanadate, NH4VO3
Ammonium nitrate (ammonia-niter),
6
10
8
9
NH4NO3
Ammonium
7
4
Bismuth oxybromide, BiOBr
Bismuth oxychloride (bismoclite), BiOCl
Bismuth oxyiodide, BiOI
Bismuth sulfide (bismuthinite), Bi2S3
Bismuth telluride (tellurobismuthite),
7
5
mite),
oxalate
dodecahydrate,
monohydrate
(NH4)2C204-H20
Ammonium
perchlorate,
drate,
sulfate (mascagnite),
1
0
(NH4)2S04
(revised)
Ammonium
y
Q
0
(NH4)3P04(Mo03)i2-4H20
Ammonium
a
0
7
74
rhombic)
zirconium fluoride, (NH4)3ZrF7—
Antimony, Sb
Antimony (III) fluoride, SbFa
9
6
3
2m
8
14
14
4
» Frrther work on this program is in
progress, and it is anticipated tbat
additional sections will be issred. Therefore, the accumulative index here
Is not necessarily the concluding index for the project.
m—Monograph 25.
Bi2Te3
Bismuth
NH4CIO4, (ortho-
Ammonium perrhenate, NH4Re04
Ammonium phosphomolybdate tetrahy-
(tetragonal)
(monoclinic)
(oxam-
trioxide (bismite), alpha Bi203
Cadmium, Cd
Cadmium bromide, CdBr2
Cadmium carbonate (otavite), CdC03
Cadmium chloride, CdCl2
Cadmium cyanide, Cd(CN)2
Cadmium molybdate, CdMo04
Cadmium oxide, CdO
Cadmium perchlorate hexahydrate,
Cd(C104)2-6H20
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
selenide, CdSe, (hexagonal)
sulfate, CdS04
sulfide (greenockite), CdS
telluride, CdTe
tungstate,
51
CdW04
7
6
2m
3m
10
2
54
10
11
1
70
7
7
1
81
2m
7
18
6
3m
11
3
7
3
7
65
8
45
9
5
9
10
9
1
13
12
13
11
36
3
20
10
10
8
Im
7
6
20
3m
3m
11
3m
14
3m
14
14
(mono-
4
iodide, NH4I
iron
sulfate
9
1
beryl,
clinic)
0
3m
at
1075 °C
Barium fluoride, BaF2
Barium molybdate, BaMo04
Barium nitrate (nitrobarite), Ba(N03)2
Barium perchlorate trihydrate,
Bismuth
Bismuth
8
6
17
4
,
oiu
6
10
7
6
AS2O3 (mono-
clinic)
Arsenic trioxide (arsenolite)
a
D
31
10
As
Barium
3
10
10
selenide, Sb2Se3
(III) sulfide (stibnite), Sb2S3
Arsenic,
3
16
Sb203
valentinite,
6
Ammonium
Ammonium
;
(III)
3
3
6
(III) oxide (senarmontite), Sb203
10
Ammonium
NH4Ga(S04)2-12H20
(III) iodide, Sbis
(cubic)
phosphate,
NH4H2PO4
Ammonium
Ammonium
Ammonium
Antimony
(teschemacherite),
(NH4)HC03
drate,
3
sulfate
NH4N3
bicarbonate
8
(mullite),
silicate
3Al203-2Si02
Ammonium
72
(ortho-
rhombic)
Aluminum 3:2
4
Antimony
Antimony
topaz,
fluosilicate,
Al2Si04(F,OH)2
Aluminum metaphosphate, A1(P03)3
Aluminium orthophosphate (berlinite),
AIPO4
11
(chlor-
Page
sec.
1
(ettring-
Al203-6CaO-3S03-3lH20
Aluminum chloride hexahydrate
aluminite), AlCls-eHjO
ite),
10,
Vol. or
Page
sec.
9,
8,
3^
8
4
9
4
3m
3m
3
9
7
9
2m
13
54
16
23
16
17
10
17
11
18
8
6
21
2
27
3m
7
19
12
3m
20
4
15
21
3m
2m
59
VOLUMES 1, 2, 3, 4, 5, 6,
SECTIONS 1, 2, AND 3^— Continued
CUMULATIVE INDEX TO CIRCULAR
MONOGRAPH
25,
539,
7, 8, 9,
Vol. or
tri-Calcium aluminate, 3CaO-Al203
Calcium aluminate 12:7, 12CaO-7Al203
Calcium
aluminum
germanate,
Ca3Al2(Ge04)3
Calcium bromide hexahydrate, CaBr2-6H20Calcium carbonate (aragonite), CaCOs (or-
thorhombic)
Calcium carbonate
(calcite)
CaCOs
5
10
9
20
10
8
15
15
3
53
(hexag7
51
13
10
16
10
17
1
69
3m
22
16
18
58
19
onal)
2
Calcium chromate, CaCr04
Calcium
chromium
germanate,
Ca3Cr2(Ge04)3
Calcium
chromium
silicate
(uvarovite),
Ca3Cr2(Si04)3
Calcium fluoride (fluorite), CaF2
Calcium fluoride phosphate (fluorapatite),
Ca5F(P04)3
Calcium formate, Ca(HC02)2
Calcium gallium germanate, Ca3Ga2(Ge04)3Calcium hydroxide (portlandite), Ca(0H)2-Calcium iron germanate, Ca3Fe2(Ge04)3
Calcium iron silicate (andradite),
8
10
1
10
Calcium molybdate (powellite), CaMo04
Calcium nitrate, Ca(N03)2
Calcium oxide, CaO
Calcium sulfate (anhydrite), CaS04
Calcium sulfide (oldhamite), CaS
Calcium tungstate scheelite, CaW04
Carbon, diamond, C
Cerium (III) chloride, CeCl3
Cerium (III) fluoride, CeF3
Cerium, magnesium nitrate 24-hydrate,
Ce2Mg3(N03)i2-24H20
Cerium niobium titanium oxide (eschynite),
Cerium (IV) oxide (cerianite) Ce02
Cerium (III) vanadate, CeV04
Cesium aluminum sulfate dodecahydrate,
CsAl(S04)2-12H20
Cesium bromate, CsBr03
Cesium bromide, CsBr
bromoosmate (IV), Cs20sBr6
bromoplatinate, Cs2PtBr6
bromoselenate, Cs2SeBr6
bromotellurate, Cs2TeBr6
CSCIO3
CsCl
chloroosmate (IV), Cs20sCl6
chloroplatinate, Cs2PtCl6
chlorostannate, Cs2SnCl6
chromate, Cs2Cr04
chromium sulfate dodecahydrate,
CsCr(S04)2-12H20
Cesium dichloroiodide, CsICl2
Cesium fluoborate, CSBF4
Cesium fluogermanate, Cs2GeFfl
Cesium fluoplatinate, Cs2PtF6
Cesium fluoride, CsF
Cesium fluosilicate, Cs2SiF6
Cesium gallium sulfate dodecahydrate,
CsGa(S04)2-12H20
Cesium iodide, Csl
Cesium iron sulfate dodecahydrate,
CsFe(S04)2-12H20
Cesium nitrate, CSNO3
Cesium perchlorate, CSCIO4, (orthorhombic)Cesium sulfate CS2SO4
Cesium vanadium sulfate dodecahydrate,
CsV(S04)2-12H20
Chromium, Cr
Chromium orthophosphate, alpha, CrP04---
m— Monograph 25.
60
7
15
6
23
2
8
5
8
17
10
20
7
1
Im
3m
CeNbTiOa
chlorate,
chloride,
4
22
22
14
43
65
9
6
1
24
56
Im
9
6
8
3
Cobalt arsenide (skutterudite), CoAss
Cobalt(II) carbonate (spherocobaltite),
C0CO3
Cobalt diarsenide, CoAs2
Cobaltfluosilicate hexahydrate, CoSiF6-6H20Cobalt gallate, CoGa204
Cobalt germanate, Co2Ge04
Cobalt iron arsenide (safflorite), CoFeAs4
Cobalt mercury thiocyanate, Co[Hg(CNS)4]-
2m
8
8
9
6H2O
Cobalt sulfate, beta, C0SO4
Copper, Cu
Copper(I) bromide, CuBr
Copper carbonate basic, azurite, Cu3(OH)2
8
2
2m
Copper
carbonate,
Cu2(OH)2C03
basic,
Copper(I) chloride (nantokite), CuCl
Copper(I) iodide (marshite), Cul
Copper(I) oxide (cuprite), CU2O
Copper (II) oxide (tenorite), CuO
Copper sulfate (chalcocyanite), CUSO4
Copper (II) sulfide (covellite), CuS
Dysprosium arsenate, DyAs04
Dysprosium gallium oxide 3:5,
Dy3Ga2(Ga04)3
Dysprosium sesquioxide, Dy203
Erbium arsenate, ErAs04
Erbium gallium oxide 3:5, Er3Ga2(Ga 04)3
Erbium manganite, ErMn03
Erbium phosphate, ErP04
20
24
20
44
Gadolinium gallium oxide 3:5,
Gd3Ga2(Ga04)3
Gadolinium oxide, Gd203
Gadolinium oxychloride, GdOCl
11
14
Gallium,
Ga
3m
16
25
Gallium arsenide, GaAs
Gallium antimonide, GaSb
Gallium oxide, alpha, Ga203
Gallium phosphate (a-quartz type), GaP04-_
8
21
Germanium, Ge
3
50
22
17
27
26
19
Germanium
5
5
8
5
6
3m
5
dioxide,
4
23
47
dioxide,
Ge02
21
10
10
24
26
27
3m
10
10
10
iodide, Gel4
1
Gold(I) cyanide,
:
2 (aurostibite), AuSb2
AuCN
Gold tin, 1:1 AuSn
Hafnium, Hf
Holmium
Holmium
arsenate, HoAs04
ethylsulfate nonahydrate,
9
Im
10
7
17
Holmium
Im
11
Indium, In
Indium antimony, InSb
5
20
2m
12
Ho
[(C2H)5S04]3-9H20
sesquioxide, H02O3
Indium arsenide, InAs
Indium oxide, In203
Indium phosphate, InP04
27
27
28
2m
13
9
9
28
29
3m
2m
28
1
14
15
4
36
10
30
10
4
4
2
31
35
1
49
29
3m
38
23
4
13
3m
30
2m
15
9
30
3m
Im
2m
31
12
16
31
9
8
3m
25
32
Im
2m
13
17
Im
Im
13
14
2m
Im
Im
18
16
17
2
9
3m
33
6
4
8
30
25
27
1
18
1
51
8
5
28
1
33
7
18|
33;
(tetragonal)
(high form)
Germanium (IV)
Gold, Au
28
25
6
10
Ge02 (hexagonal)
(low form)
Germanium
Gold antimony
8
26
22
29
27
(malachite),
10
19
49
5
6
9
9
Cobalt(II) oxide, CoO
Cobalt(II, III) oxide, C03O4
Cobalt perchlorate hexahydrate, Co(C104)2-
Erbium sesquioxide, Er203
Europium arsenate, EuAs04
Europium (III) chloride, EUCI3
Europium gallium oxide 3: 5, Eu3Ga2(Ga04) 3Europium oxychloride, EuOCl
Gadolinium fluoride, GdFs
25
18
Page
sec.
Chromium orthophosphate, beta, CrP04
Chromium (III) oxide, Cr203
Chromium silicide, CrsSi
Cobalt aluminum oxide, C0AI2O4
(C03)2
Ca3Fe2Si30,2
Cesium
Cesium
Cesium
Cesium
Cesium
Cesium
Cesium
Cesium
Cesium
Cesium
Cesium
Vol. or
Page
sec.
10,
10
25;
7
3
19
3m
34^
Im
18
9
3
18[
j
32|
12'
4
73'
3m
35'
5
8
26'
29'
—
,
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6,
MONOGRAPH 25, SECTIONS 1, 2, AND 3^— Continued
7, 8,
Vol. or
9,
Vol. or
Page
sec.
Iodic acid, HIO3
Iodine, I2
Iridium, Ir
Iron, alpha Fe
Iron arsenide, FeAs
Iron arsenide (loellingite)
5
6
Fe As2
4
4
y
Q
0
Im
1 ri
10
34
5
29
36
20
Iron sulfide (pyrite), FeS2
Lanthanum arsenate, LaAs04
Lanthanum borate, LaBOs
Lanthanum chloride, LaCls
Lanthanum fluoride, LaFs
Lanthanum magnesium nitrate 24-hydrate,
3m
Im
im
i
om
Q
0
i
i
bromide, PbBr2
carbonate (cerrussite), PbC03
chloride (cotunnite), PbCl2
formate, Pb(HC02)2
fluochloride (matlockite),
£i
0
£1
PbFCl
_
PbO
arsenate, Li3As04
I
Manganese (II)
oU
OD
Q
66
0
C
60
Q
0/
z
i
/m
1
0
dy
Z4
1
0
silicate
'
Magnesium chromite (picrochromite),
MgCr204
Magnesium fluoride (sellaite), MgF2
Magnesium gallate, MgGa204
m— Monograpli 2o.
(revised)
selenide (tiemannite), HgSe
sulfide (cinnabar), HgS (hex-
agonal)
im
Im
25
7
27
0
QA
Molybdenum disulfide (molybdenite), M0S2
Molybdenum trioxide (molybdite), M0O3--Neodymium borate, NdBOs
Neodymium chloride, NdCl3
Neodymium ethylsulfate nonahydrate,
3m
om
38
oy
Neodymium
Neodymium
sulfide
(metacinnabar),
Mo
Nd[(C2H5)S04]3-9H20
fluoride,
NdFs
gallium
oxide
Neodymium
Neodymium
oxide, Nd203
oxychloride, NdOCl
2
Im
28
2m
2m
Im
im
1 »
.
om
4.1
rr J.
7
28
9
4
10
34
33
:
arsenic sulfide (gersdorffite), NiAsS)
carbonate,
-
(trigonal)
germanate, Ni2Ge04
oxide (bunsenite),
NiS04
sulfate hexahydrate
NiS04-6H20
Nickel sulfide, millerite, NiS
NiO
Im
30
7
7
30
5
5
NiW04
Niobium silicide, NbSi2
Osmium, Os
Palladium, Pd
Palladium oxide,
PdO
31
41
43
9
84
35
7
32
9
5
9
36
37
10
41
4
11
2m
24
33
72
73
35
25
49
74
1
7
1
1
6
2m
4
1
45
7
39
35
4
17
4
21
1
5
20
47
3
30
Im
Im
32
33
9
41
8
36
Im
34
26
37
1
13
9
10
42
42
35
Im
Im
10
8
10
9
1
2m
sulfate,
Nickel tungstate,
36
NiCOs
ferrite (trevorite), NiFe204
fluosilicate hexahydrate, NiSiF6-6H20gallate, NiGa204
(II)
39
8
aluminate, NiAl204
arsenic 1 2 (rammelsbergite), NiAs2(II)
10
4
Nickel, Ni
Nickel
Nickel
Nickel
Nickel
Nickel
Nickel
Nickel
Nickel
Nickel
Nickel
Nickel
32
83
3:5,
Nd3Ga2(Ga04)3
20
22
23
27
10
35
1
HgS
26
2m
1
6
9
Mercury (II)
Mercury (II)
7
Magnesium ammonium phosphate hexahy-
MgNHiPOi-GHjO
Magnesium carbonate (magnesite), MgCOa.
Mercury(I) bromide, Hg2Br2
Mercury(I) chloride (calomel), HgjClz
Mercury(II) chloride, HgClj
Mercury(II) cyanide, Hg(CN)2
Mercury(II) fluoride, HgF2
Mercury(I) iodide, Hgl
Mercury(II) iodide, Hgl2
Mercury(II) oxide (montroydite), HgO-_
(cubic)
on
0
zo
38
30
37
6
(huebnerite),
Molybdenum,
(high-cordi-
drate, (struvite),
tungstate
61
1
Mg2Al4Si50i8 (hexagonal)
MnS
1
zm
im
10
(alabandite),
Mercury(II)
Mg
Mg2Al4Si50i8 (orthorhombic)
alpha
MnSe
OU
LiN03
Magnesium aluminum
erite),
o4
OQ
Q
Magnesium aluminate (spinel), Mg AI2O4
Magnesium aluminum silicate (low-cordierite),
MnFe204
Manganese
Manganese
ferrite (jacobsite),
selenide,
sulfide
37
(rhodochrosite),
31
i
Li3P30s-3H20
Lithium tungstate, Li2W04, (trigonal)
Lithium tungstate hemihydrate,
Li2W04-K2H20
Lutetium gallium oxide 3 5, Lu3Ga2(Ga04)3_ _
Lutetium manganite, LuMn03
Lutetium oxide, LU2O3
carbonate
MnCOs
33
0
LiF
molybdate, Li2Mo04, (trigonal)
Manganese(II)
5
r
0
1
oxide, Li20
3Mg2Si04-MgF2
Magnesium sulfate heptahydrate (epsomite),
MgS04-7H20
Magnesium sulfide, MgS
Magnesium tin, Mg2Sn
Magnesium titanate (geikielite), MgTi03
Magnesium tungstate, MgW04
Manganese aluminate (galaxite), MnAl204--
MnW04
iodate, LilOs
Magnesium,
00
10
(humite),
5
i
bromide, LiBr
chloride, LiCl
:
I
7
L
perchlorate trihydrate, LiC104-3H20
phosphate, low form, (lithiophosphate), Li3P04
Lithium phosphate, high form, Li3P04
Lithium trimetaphosphate trihydrate,
I
A
(yellow)
Lead nitrate, Pb(N03)2
Lead (II, III) oxide (minium), Pb304
Lead phosphate hydrate, Pb5(P04)30II
Lead selenide (clausthalite), PbSe
Lead sulfate (anglesite), PbS04
Lead sulfide (galena), PbS
Lead titanate, PbTiOs
Lead tungstate (stolzite), PbW04
nitrate,
o4
fluoride
silicate
Manganese(II) oxide (manganosite), MnO_
Manganese(III) oxide (partridgeite), Mn203-
n
(orthorhombic)
fluoride,
QQ
00
00
Mg2Si04-MgF2
Magnesium
30
76
£i
(massicot),
01
rhombic)
Magnesium hydroxide (brucite), Mg(0H)2-_
Magnesium oxide (periclase), MgO
Magnesium silicate, enstatite, MgSi03
Magnesium silicate (forsterite), Mg2Si04
Magnesium silicate fluoride (norbergite),
Manganese
1
molybdate (wulfenite), PbMo04
monoxide (litharge), PbO (red) tetrag-
Lithium
Lithium
Lithium
Lithium
Lithium
Lithium
Lithium
Lithium
Lithium
Lithium
Zi
Magnesium germanate, Mg2Ge04 (cubic)
Magnesium germanate, Mg2Ge04 (ortho-
A
8
fluoride, alpha PbF2 (orthorhombic)
fluoride, beta PbF2 (cubic)
(II), iodide, Pbia
monoxide
/i
oxide,
onal. .-
Lead
j.y
im
La2Mg3(N03)i2-24H20
Lanthanum niobium titanium
LaNbTiOe
Lanthanum oxide, La203
Lanthanum oxychloride, LaOCl
Lead, Pb
Lead
Lead
Lead
Lead
Lead
Lead
Lead
Lead
Lead
Lead
Zo
Id
A
,
10,
36
44
38
45
43
47
26
(retgersite)
7
Im
2m
8
4
1
4
36
37
27
39
8
21
27
61
,
CUMULATIVE INDEX TO CIRCULAR
MONOGRAPH
25,
VOLUMES,
539,
SECTIONS
1, 2, 3, 4,
5, 6, 7, 8, 9,
AND 3^— Continued
1, 2,
Vol. or
Vol. or
Page
see.
Platinum, Pt
Potassium aluminum sulfate dodecahydrate
1
31
(alum), KA1(S04)2-12H20
Potassium borohydride, KBH4
Potassium bromate, KBrOs
Potassium bromide, KBr
Potassium bromoplatinate, K2PtBr6
Potassium bromoselenate, K2SeBr6
Potassium chlorate, KCIO3
Potassium chloride (sylvite), KCl
Potassium chloroplatinate, KsPtCle
Potassium chlororhenate, K2ReCl6
Potassium chlororuthenate (IV), K2RUCI6-Potassium chlorostannate, K2SnCl6
Potassium chromium sulfate dodecahydrate,
KCr(S04)2-12H20
Potassium cobaltinitrite, K3Co(N02)6
Potassium cyanate, KCNO
Potassium cyanide, KCN
Potassium dihydrogen arsenate, KH2ASO4-Potassium dihydrogen phosphate, KH2PO4 Potassium fluogermanate, K2GeF6
Potassium fiuoplatinate, K2PtF6
Potassium fluoride, KF
Potassium fluosilicate (hieratite), K2SiF6
Potassium fluotitanate, K2TiF6
Potassium heptafluozirconate, KsZrFy
Potassium hvdroxy-chlororuthenate,
K4Ru2Cl,o6-H20
Potassium iodide, KI
Potassium lithium sulfate, KLiS04
Potassium metaperiodate, KIO4
Potassium nitrate (niter), KNO3
Potassium nitroso chlororuthenate,
6
9
36
44
38
66
40
—
KsRuCleNO
Potassium perchlorate, KCIO4
Potassium perchromate, KaCrOs
Potassium permanganate, KMn04
Potassium perrhenate, KRe04
Potassium phosphomolybdate, tetrahydrate,
K2P04(Mo03)i2-4H20
Potassium sulfate (arcanite), K2SO4
Potassium thiocynate, KCNS
Potassium zinc deca vanadate 16 hydrate,
K2Zn2Vio028-16H20
Potassium zinc fluoride, KZnFs
Praseodymium chloride, PrCls
Praseodymium fluoride, PrFs
Praseodymium oxychloride, PrOCl
Rhenium, Re
Rhodium, Rh
Rubidium aluminum sulfate dodecahydrate,
RbAl(S04)2-12H20
Rubidium bromate, RbBrOs
Rubidium bromide, RbBr
Rubidium bromotellurate, Rb2TeBr6
Rubidium chlorate, RbClOs
Rubidium chloride, RbCl
Rubidium chloroplatinate, Rb2PtCl6
Rubidium chlorostannate, Rb2SnCl8
Rubidium chlorotellurate, Rb2TeCl6
Rubidium chromate, Rb2Cr04
Rubidium chromium sulfate dodecahydrate,
RbCr(S04)2-12H20
Rubidium fiuoplatinate, Rb2PtF6
Rubidium fluosilicate, Rb2SiF6
Rubidium iodide, Rbl
Rubidium perchlorate, RbC104
Rubidium periodate, RbI04
Rubidium sulfate, Rb2S04
Ruthenium, Ru
m— Monograph 26.
62
7
1
8
8
3m
1
5
2m
10
6
6
9
7
1
Im
3
6
6
1
5
7
9
41
42
65
49
28
46
38
39
45
39
77
38
69
41
42
64
50
40
46
10
47
1
68
43
3m
7
3
2m
6
3m
7
8
8
3
8
3m
5
Im
5
9
2
3
6
8
7
8
8
4
5
6
8
3m
6
6
6
4
41
58
29
43
44
42
41
43
62
44
45
51
39
52
47
13
9
44
45
43
46
47
41
53
46
48
46
47
48
49
43
30
2m
2m
31
8
48
4
5
sec.
Samarium chloride, SmCls
Samarium fluoride, SmFs
Samarium gallium oxide 3 5, Sm3Ga2(Ga04)3_
Samarium oxychloride, SmOCl
Scandium oxide, SC2O3
Scandium phosphate, SCPO4
:
Im
Im
Im
Im
3
8
Selenium, Se
Selenium dioxide (selenolite), Se02
5
Silicon, Si
2
1
dioxide alpha or low quartz, Si02
(hexagonal)
Silicon dioxide (alpha or low cristobalite),
Si02 (Revised) (tetragonal)
Silicon dioxide (beta or high crisobalite)
Si02 (cubic)
Silicon
Silver,
Silver
Silver
Silver
Silver
Silver
Silver
Silver
Silver
Silver
Silver
Ag
10
1
1
antimony
telluride,
arsenate,
Ag3As04
3m
AgSbTe2
5
bromate, AgBrOs
5
bromide (bromyrite), AgBr
carbonate, Ag2C03
chlorate, AgC103
4
Im
7
chloride, (cerargyrite), AgCl
iodide (iodyrite), Agl (hexagonal)
iodide, gamma, Agl (cubic)
4
8
9
9
metaperiodate, AgI04
SUver molybdate, Ag2Mo04
Silver
Silver
Silver
Silver
Silver
Silver
Silver
Silver
Silver
3
7
AgN03
AgN02
5
oxide, Ag20
(II) oxynitrate,
Im
nitrate,
nitrite,
perrhenate,
5
Ag708N03
4
AgRe04
8
phosphate, Ag3P04
5
2m
Ag2Se04
Ag2S04
selenate,
7
sulfate,
sulfide (argentite), Ag2S
Sodium acid fiuoride, NaHF2
Sodium
Sodium
Sodium
Sodium
trite),
Sodium
Sodium
Sodium
Sodium
Sodium
6 °C
Sodium
Sodium
Sodium
Sodium
10
5
borohydride, NaBH4
bromate, NaBr03
bromide, NaBr
carbonate monohydrate (thermona-
Na2C03-H20
chlorate, NaClOs
chloride (halite),
cyanate,
cyanide,
cyanide,
9
5
3
8
3
2
NaCl
NaCNO
NaCN (cubic)
NaCN (orthorhombic)
2m
1
at
1
fluoride (villiaumite)
iodate, NalOs
iodide, Nal
,
NaF
1
7
4
magnesium aluminum boron hy-
droxy silicate, dravite,
NaMg3Al6B3Si6027(OH)4
Sodium metaperiodate, NaI04
Sodium molybdate, Na2Mo04
Sodium nitrate (soda-niter), NaN03
Sodium nitrite, NaN02
--Sodium orthotungstate (VI) dihydrate,
Na2W04-2H20
Sodium perchlorate, NaC104 (orthorhombic).
Sodium sulfate (thenardite), Na2S04
Sodium sulfite, Na2S03
Sodium tetrametaphosphate tetrahydrate,
alpha, Na4P40i2-4H20 (monoclinic)
tetrametaphosphate tetrahydrate,
beta, Na4P40,2-4H20 (triclinic)
3m
7
Im
6
4
2m
7
2
3
10
Sodium
Sodium trimetaphosphate, Na3P309
Sodium trimetaphosphate monohydrate,
NasPsOg-HjO
Sodium tungstate, Na2W04
Stannous fluoride, SnF2
Strontium arsenate, Sr3(As04)2
2m
3m
3m
Im
3m
2m
.
MONOGRAPH
25,
SECTIONS
AND 3^— Continued
1, 2,
Vol. or
3m
Strontium 1: 1 borate, SrO-B203
Strontium bromide hexahydrate, SrBr2-6H20Strontium carbonate (strontianite) SrCOa-Strontium chloride, SrCl2
Strontium chloride hexahydrate, SrCl2-6H20Strontium fluoride, SrF2
Strontium formate, Sr(CH02)2
Strontium formate dihydrate,
Sr(CH02)2-2H20 (orthorhombic)
Strontium iodide hexahydrate, Srl2-6H20
Strontium molybdate, SrMo04
Strontium nitrate, Sr(N03)2
Strontium oxide, SrO
Strontium peroxide, Sr02
Strontium sulfate (celestite), SrS04
Strontium sulfide, SrS
Strontium titanate, SrTiOs
Strontium tungstate, SrW04
Strontium zirconate, SrZrOs
Sulfamic acid, NH3SO3
Sulfur, S
Tantalum, Ta
'
4
3
,
4
4
5
8
1
j
'
8
7
50
1
80
68
52
5
6
2
7
3
7
9
Silicide,
Tellurium, Te
Tellurium (IV)
I
1
(tetragonal)
Tellurium (IV)
(tetragonal)
Tellurium (IV)
(paratellurite)
oxide,
paratellurite,
,
I
1
I
Thallium(I) nitrate,
TINO3
Thallium (III) oxide, TI2O3
Thallium(I) perchlorate, TICIO4
Thallium (I) phosphate, TI3PO4
Thallium(III) phosphate, TIPO4
Thallium(I) sulfate, TI2SO4
ThaUium(I) thiocyanate, TlCNS
71
Tin(II) oxide, SnO
Tin (IV) oxide (cassiterite), Sn02
4
28
54
Tin (II) telluride, SnTe
Titanium, Ti
7
3
61
1
46
Titanium
dioxide
(anatase),
Ti02
brookite,
Ti02
1
gonal)
Titanium dioxide,
(ortho-
rhombic)
10
55
3m
54
Zinc
Zinc
Zinc
Zinc
2m
8
7
60
57
4
61
51
5
6
70
54
3m
54
6
55
6
56
6
8
4
6
2
57
62
53
58
28
2m
38
7
7
58
59
59
63
8
Zn
aluminate (gahnite), ZnAl2 04
borate,
ZnB204
carbonate smithsonite,
cyanide,
Zinc, fluoride,
Zinc
Zinc
Zinc
Zinc
Zinc
Zinc
ZnCOs
Zn(CN)2
ZnF2
fluosilicate hexahydrate, ZuSiFe-eHjO.
germanate, Zn2Ge04
iodide, Znl2
orthosilicate (willemite), Zn2Si04
oxide (zincite), ZnO
pyrosilicate hydrate, hemimorphite,
Zinc selenide, ZnSe
Zinc sulfate (zinkosite), ZnS04
Zinc
sulfate heptahydrate (goslarite),
ZnS04-7H20
Zinc sulfide, (wurtzite), alpha
9
8
8
2
7
61
3
66
49
39
50
28
Im
51
8
1
67
16
2
38
Im
2m
Im
1
83
8
69
73
60
70
56
60
62
25
6
8
10
9
7
2
7
62
23
64
8
71
2
2
14
16
3m
2m
58
40
2
3
ZnS (hexag-
onal)
Zinc sulfide, (sphalerite), beta ZnS (cubic)
Zinc telluride, ZnTe
Zinc tungstate, (sanmartinite), ZnW04
Zirconium, alpha, Zr
Zirconium iodate, Zr(I03)4
Zirconium silicate zircon, ZrSi04
Zirconium sulfate tetrahydrate,
Zr(S04)2-4H20
m-Monograpli 25
44
59
64
28
65
33
5
Zn4(OH)2Si207-H20
6
8
57
1
8
:
Zinc,
3m
1
sulfide (tungstenite), WS2
dioxide (uraninite), UO2
Ytterbium gallium oxide 3 5, Yb3Ga2(Ga04)3Yttrium arsenate, YASO4
Yttrium gallium oxide 3:5, Y3Ga2(Ga04)3--Yttrium, oxide, Y2O3
Yttrium oxychloride, YOCl
Yttrium phosphate (xenotime), YPO4
57
53
37
W
Uranium
Urea, CO(NH2)2
Vanadium (V) oxide, V2O5
9
1
(tetra-
56
6
'
24
5
7
oxide tellurite, Te02 (ortho-
12
Tin(IV) iodide, Snl4
1
Te02
48
57
56
58
1
Tungsten
1
Terbium arsenate, TbAs04
9
2
54
54
29
59
26
TeOa
Thallium aluminum sulfate dodecahydrate,
T1A1(S04)2-12H20
Thallium (I) arsenate, TI3 As O4
Thallium (I) bromate, TlBr03
Thahium bromide, TlBr
Thallium (I) chlorate, TICIO3
Thallium (I) chloride, TlCl
Thallium chloroplatinate, TlaPtCls
Thallium chlorostannate, Tl2SnCl6
Thallium chromate, Tl2Cr04
Thallium chromium sulfate dodecahydrate,
TlCr(S04)2-12H20
Thallium fluosilicate, TljSiFe
Thallium gallium sulfate dodecahydrate,
TlGa(S04)2-12H20
ThaUium(I) iodate, TIIO3
Thallium (I) iodide, Til (orthorhombic)
3m
Tungsten,
9
rhombic)
Thulium arsenate, TmAs04
Thulium sesquioxide, Tm203
Tin, alpha, Sn (cubic)
Tin, beta, Sn (tetragonal)
1
51
8
oxide
Im
44
53
7
TaSi2
61
52
Page
sec.
Thallium(I) tungstate, TI2WO4
Thorium oxide (thorianite), Th02
Titanium dioxide (rutile), Ti02 (tetragonal),
Titanium (III) oxide, TiOi.sis
Titanium silicide, Ti5Si3
I
Tantalum
53
60
56
40
58
67
55
56
58
8
—
i
Vol. or
Page
sac.
2
11
Im
51
4
68
7
66
CUMULATIVE MINERAL INDEX
Vol. or
sec.
Alabandite
MnS
Alum, KAI(S04)2-12H20.
Ammonia-niter, NH4NO3.
Anatase, TiOj
Andradite, Ca3Fe2Si30i2-
4
6
7
1
9
Vol. or
Page
11
36
4
46
22
sec.
PbS04
Anhydrite, CaS04.
Anglesite,
Aragonite, CaC03
Argentite, Ag2SArcanite, K2SO4
_
-
3
4
.
.
_
3
10
3
Page
67
65
53
51
62
63
:1
CUMULATIVE MINERAL I^iDEX— Continued
Vol. or
Arsenolite, AS2O3
Aurostibite, AuSb2
*Azurite, Cu3(OH)2 (603)2
Barite, BaS04
Berlinite, AIPO4
*Beryl, Be3Al2 (Si 03)6
Bismite, (alpha) Bi203
Bismoclite, BiOCl
Bismuthinite, BizSs
Bohmite, AlzOj- H2O
Bromellite, BeO
7
4
4
18
30
65
3
13
17
54
23
3
38
1
36
46
57
Niter, KNO3
Nitrobarite, Ba(N03)2
30
47
Oldhamite, CaS
51
72
Oxammite, (NH4)2C204- H2O
*Paratellurite, Te02
Paratellurite, Te02
3
9
3m
4
3m
*Brookite, Ti02
Brucite, Me(0H)2
Bunsenite, NiO
Calcite,
51
lu
6
1
CaCOs
HgiCh
2
Calomel,
1
Cassiterite, Sn02
Celestite, SrSOi
1
54
2
61
4
44
56
56
Cerargyrite, AgCl
Cerianite, Ce02
Cerrussite, PbCOs
Cervantite, SbjOi
Chalcocyanite, CUSO4
Chloraluminite, AlCUChrysoberyl, BeAl204
Cinnabar, HgS
*Claudetite, AS2O3
1
2
10
.
6H2O
3m
MgSi03
Epsomite, MgS04- 7H2O
Eschynite, CeNbTiOe
3m
Al203-6CaO-3S03-31H20
Fluoroapatite, Ca5r(P04)3
8
3ra
6
7
Fluorite, CaFz
Forsterite, Mg2Si04
Galaxite, MnAl204
1
1
9
Galena, PbS
Gahnite, ZnAl204
2
2
5
MgTiOs
Geikielite,
Im
NiAsS
ZnS04-7H20
GersdorfBte,
Goslarite,
Greenockite,
Halite, NaC;i
8
CdS
4
_
.
2
*Hemimorphite, Zn4(OH)2Si207- H2O
2
Hieratite, K2SiF6
5
Huebnerite,
MnW04
Humite, 3Mg2Si04-MgF2
lodyrite, Agl
Jacobsite,
Litharge,
MnFe2 04
PbO
(red)
Lithiophosphate, Li3P04
Loellingite,
FeAs2
Magnesite, MgC03
Malachite, Cu2(OH)2C03
Manganosite, MnO
Marshite, Cul
Mascagnite, (NH4)2S04 (revised)
•Natural mineral,
m— Monograph 26.
.
MgO
2m
Im
8
9
2
3m
10
7
10
5
4
9
41
47
32
30
24
3
22
69
83
35
18
38
43
35
71
15
41
62
50
24
1
58
6
5
3
29
24
22!
42
36
10
28;
CoFeAs4
1
59i
2m
401
ZnW04
CaWOi
6
Se02
MgF2
Senarmontite, Sb203
Skutterudite, C0AS3
*Smithsonite, ZnCOs
Soda-niter, NaN03
Sphalerite, ZnS
Spherocobaltite, C0CO3
23
53
4
33;
3
311
10
21;
6
2
10
2
5
7
3
PbW04
Strontianite, SrCOs
Struvite, MgNH4P04Sylvite, KCl
*Tellurite, Te02
1
8
Spinel, MgAl204
Stibnite, Sb2S3
6H2O
Tellurobismuthite, Bi2Te3
Tenorite, CuO
(
50i
16;
24
351
6'
241
3m
56'
41'
1
65'
9
57
3m
16
1
49l
Teschemacherite, NH4HCO3
Teschermigite, NH4A1(S04)2- I2H2O
Thenardite, Na2S04
Thermonatrite, Na2C03-H20
9
6
2
8
Th02
Tiemannite, HgSe
1
57,
7
3S
4
44
65
Thorianite,
Im
*Topaz, Al2Si04(F,0H)2
Trevorite, NiFe204
38
Xenotime, YPO4
8
9
37!
11
34'
32'
31
45
51
36
30
38
34
28
56'
37
44
Tungstenite, WS2
Uraninite, UO2
Uvarovite, Ca3Cr2(Si04)3
*Valentinite, Sb203
ViUiaumite, NaF
Willemite, Zn2Si04
Witherite, BaC03
Wulfenite, PbMo04
Wurtzite, ZnS
30
51
1
Sal-ammoniac, NH4CI
Stolzite,
55
7
*Scheelite,
Selenolite,
5
10
7
9
MnC03
13
23
15
11
10
Rutile, TiOs
Sellaite,
7
7
7
7
Sanmartinite,
5
81
39
NiS04-6H20
45
48
42
1
1
Zincite,
10
8
2
10
10
ZnO
Zinkosite, ZnS04
*Zircon, ZrSi04
U.
S.
GOVERNMENT PRINTING OFFICE
:
1964
O
-
5^
3
59
54
33;
IT
6
1
63'
7
2
7
2
8
2
62
54
2^
7
14
67
25
64
4
(
64
728-345
i
3'
35
58
10
8
Powellite, CaMo04
Pyrite, FeS2
Safflorite,
37
32
47
30
39
4
Mn203
Rhodochrosite,
3
Im
3m
_
*Phenacite, Be2Si04
Picrochromite, MgCr204
Portlandite, Ca(0H)2
Retgersite,
21
3
.
38
28
29
1
Ettringite,
Partridgeite,
Periclase,
4
9
CdCOs
*Quartz, Si02 (alpha or low)
Rammelsbergite, NiAs2
5
2
2
3
*Enstatite,
Otavite,
32
75
8
5
MgFs
10
17
9
4
10
*Diaspore, A1203' H2O
*Dravite, NaMg3Al6B3Si6027(OH)4
Norbergite, Mg2Si04'
l
3
9
9
2
Diamond, C
Molybdenite, M0S2
Molybdite, M0O3
Montroydite, HgO (revised)
Mullite, SAlzOs- 2Si02
Nantokite, CuCl
3
5
Cotunnite, PbCl2
CoveUite, CuS
Cristobalite, (alpha or low) Si02 (revised)
Cristobalite, (beta or high) Si02
Cryptohalite, (NH4)2SiF6
Cuprite, CU2O
*Millerite, NiS
Minium, Pb304
7
Im
Im
2
HgS
29
3m
Corundum, AI2O3
Metacinnabar,
3m
4
Clausthalite, PbSe
Cordierite, Mg2Al4Si50i8 (orthorhombic)
Cordierite, Mg2Al4Si50i8- (hexagonal)
8
Page
sec.
Massicot, PbO (yellow)
Matlockite, PbFCl
1
10
AgBr
Bromyrite,
Vol. or
Page
sec.